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1 Introduction

1.1 Notes to the text
is text serves as a review of the basic concepts and results of high school mathematics, that
the students of the course Fundamentals of Mathematical Analysis (BIE-ZMA) should already
well know and master. In addition, the topics treated here partially coincide with the first
introductory lecture of BIE-ZMA. e course Preparatory Mathematics (BIE-PKM) takes place
electronically in the first half of the winter semester of the academic year 2019/2020.

e text is divided into several chapters associating thematically similar problems. e
purpose of the text is not a systematic presentation of secondary school program, but its review,
highlighting important contexts or interpretations of the subjects from a new perspective.
For this reason, different chapters and their sections might not follow in logical order.

Aer these introductory paragraphs, in the second chapter we deal with the meaning of
proof and the mathematical approach to problem solving. In the third chapter we introduce
the mathematical notation and symbols, and discuss the properties of sets and numerical oper-
ations.e fourth chapter then presents a brief overview of the so-called elementary functions,
especially polynomial functions, rational functions, trigonometric functions, exponential and
logarithmic functions. e fih chapter summarizes the basic methods of describing some
geometrical objects on the plane by using analytical geometry.

Now let us summarize some of the conventions used in this text. For the reader’s conve-
nience, the text is accompanied by a list of the used symbols. At the very end of the document
there is also a relatively detailed index of terms and a few references to used sources or
interesting publications.

Significant equations in this document are numbered within the chapters. Equation (3.5)
is the equation number 5 in the third chapter. We use the same numbering method for
pictures and tables as well. us, picture 1.3 means the third pictures in the first chapter.
Only references to equations are traditionally indicated by brackets. ese links are active in
the electronic version of the document. When decimal digits are used, we use a decimal point
instead of a decimal comma.

We would like to thank doc. Ing. Stepan Starost, Ph.D. Mgr. Jan Starý, Ph.D., Ing. Daniel
Vašata, Ph.D. and Mgr. Lenka Nováková for comments and suggestions. If a kind reader finds
errors or confusion in the following lines can always contact the authors of this document
preferably by email.
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2 Mathematics is not only about
computing

If people do not believe that mathematics is simple, it is only because they do not
realize how complicated life is.

John von Neumann

Aer passing through high school, students believe that mathematics is nothing but a set of
computational procedures (algorithms). But this idea is quite far from reality. e aim of this
chapter is to introduce the reader to a more realistic perspective.

2.1 Computation and abstraction
Mathematics has given the world a number of algorithms, computational procedures that
can be taken and directly apply to a specific, oen very narrowly focused, problem. Let
us name the Fast Fourier transform (FFT, application in signal processing, e.g. in the mp3
format), Simplex algorithm (application in machine learning algorithms and optimization
problems), or cryptosystems like for example RSA, based on number theory or cryptosystems
based on elliptic curves (ECC), etc. Other interesting examples of algorithms can be found in
the article [1].

e question, however, is whether it is admissible to reduce IT mathematics only to
this computational aspect, as it usually happens in secondary schools. It is not appropriate
to perform such a mutilation of university mathematics for several reasons (and not only
according to the author of this text). Let us try to mention at least the most important here.

Mathematics is very closely connected with the so-called scientific method of knowledge,
which can be said to be the basis of our civilization without much exaggeration. A frequent
human goal is to find a deeper understanding of the world and to solve various problems.
Mathematics in this activity does not play the role of a mere numerical machine. For any
given problem, first it is necessary to analyze it, dismantle it into parts and examine their
relationships and behavior. en, typically, a mathematical model is created so that (more or
less) it describes the problem. Subsequently, in the context of this abstract model, one tries to
draw conclusions and solve the original problem.

Similarly, it is possible (and very oen this is the case) to think at programming in an
abstract way, to create programs that solve a given problem. Usually, the programmer is
confronted with a real problem that he must first analyze and describe. He thinks about
how to consider the problem (for example, create a detailed object or database model) and
he proposes a solution. Subsequently, he embarks on the implementation of the solution.
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2. Mathematics is not only about computingThe structure of a mathematical text

Without a good intuition, based on understanding the problem, its solution is unlikely to be
of good quality.

To program logically – i.e. to think abstractly about individual parts of the code – several
programming paradigms serve, for example

• procedural (e.g. C, Fortran),

• object-oriented (e.g. C++),

• functionals (e.g. Lisp, Haskell),

• logical (e.g. Prolog).

It is no coincidence that the laer three paradigms are closely inspired by the mathematical
way of thinking. e goal of these efforts is to bring order to the problem and improve its
understanding. e above paradigms represent different abstract ways to consider and think
models and algorithms.

It is also worth noting that some practical tasks have no effective solution. is may be
a small shock to students coming from high school. But school examples are very special
kinds of problems, oen chosen just to have a nice solution. e absence of an effective
solution means that there is no suitable algorithm to effectively address the task. Again,
slightly surprising, this fact may not always be a bad thing, and on the contrary, it can have a
good use, for example in computer security.
Example 2.1: For example, consider the task of deciding whether a natural number n is a
prime or a composite number. We can try to look for factors (nontrivial divisors) of n, but this
is a difficult task (for n big). On the other hand, you can effectively decide whether the number
n is not prime without knowing its factors. On this observation is based the cryptosystem RSA.

At the end of this more abstract part of the text, let us make one more comment. Namely,
a university graduate should be able to think about what he/she is doing. e work that can
be automated was, is, and will be done by unthinking robots. He/she should also have a desire
to learn and explore new things. IT students pay this multiple times. You never know what
kind of problem you will be facing in the future, nor do you know where your technology and
tools will move in your industry. Mathematics, as a systematic and logical way of thinking,
can only help you in this endeavor. Moreover, math is beautiful.

2.2 The structure of a mathematical text
e aim of this section is to clarify and emphasize the logical structure of a mathematical text.
As a rule, a mathematical text is divided into definitions, sentences and proofs. e reader
oen encounters the following types of structures:

• Definition : New concepts are being introduced (defined). In a more informal interpre-
tation new concepts can also be introduced directly in the text (as oen done in these
notes). e purpose of the definition is to unambiguously anchor (define) concepts.
e author of the definition agrees with the reader on what it is the meaning of a term.
is is very important. Without clearly defined terms, there is a danger that two people
would not be able to agree, because everyone is talking about something else but both
use the same name for it.
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2. Mathematics is not only about computingThe structure of a mathematical text

• Theorem : An important statement that deserves a numerical designation in the text,
or even to be named aer its authors.

• Proof : A structure containing evidence of a previous statement, for example a theorem,
but also a lemma, corollary (see in the following). Since it is typically longer than the
statement formulation, its ending is usually marked with an ending symbol.1 In BIE-
ZMA we usually use the Halmos symbol of tombstone �. e reader can also oen
find the abbreviation Q.E.D. coming from the Latin quod erat demonstrandum („as it
was to be proven“). e reader can find more about proofs in section 2.3.

You might also see:

• Lemma 2: An auxiliary claim that does not have a wider application in itself3, but it is
used in the proof of one of the immediately following theorems.

• Corollary : Claims very straightforward from previous theorems, or reformulation of
previous theorems into another context. Typically with a very simple proof (practically
just a straightforward utilization - i.e. application - of previous theorems).

Remark 2.1: At this point, I would like to take a short note about a frequent student’s
„mistake“. It is oen the case to encounter the sentence „to define a theorem“ is points
to a fundamental misunderstanding by the users of this senseless words. ey probably
misunderstand the word „define“ with „verbatim copy“. „To define a theorem“ is not possible
in principle. You can define a term and then give a certain statement about that term, that is,
the theorem. But here you have to prove, verify that the theorem is true. Fortunately, claims
in mathematics cannot be defined.

Readers might be more familiar to notations using XML language. e structure of a
mathematical text can then be seen as follows:

<definition>

...

</definition>

<theorem>

...

</theorem>

<proof>

...

</proof>

Apparently, presenting the reader with the text in this way would be typographically crazy.
However, it should be noted that the source LaTeX code of this document uses this approach.

Of course, most mathematical texts are not composed only of the above described struc-
tures. Additional comments, examples or diagrams are oen given for the reader’s conve-
nience, explaining further context regarding the discussed topic.

1Imagine a terminal XML tag.
2Lemma is a statement of medium importance.
3Exceptions confirm the rule, such as the well-known „Riesz lemma“ or „Riemann-Lebesgue lemma“. ey

are very important in themselves, but still carry the designation „lemma“. is is for historical reasons. ey
were statments used as lemmas in the original papers, but were later used to solve other problems.
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2. Mathematics is not only about computing What is a proof?

is structured approach of writing can be found not only in mathematics, but also in
other technical and professional literature. For example, in the IT field, let us mention the
documentary genre, or specification of standards, where a strong emphasis is placed on the
logical structure of the text.

2.3 What is a proof?
e word proof raises irrational resistance in many students. In this chapter, we will try
to whitewash its reputation. A proof is nothing more than a logical argument ensuring the
validity of a claim. It is an answer to the inquiring question „why?“ In this chapter, we will
try to outline the meaning of this term in a broader context and we will show some simple
standard proofs.

Students at our faculty oen come up with the notion that there is no need for proofs, it
is only necessary to know the statements of theorems. However, this is a very short-sighted
approach, especially for the following reasons.

• As already mentioned, a proof is nothing but a logical argument. It is based on as-
sumptions and conclusions are reached by logical steps. erefore, learning a proof
improves not only the knowledge of the studied objects, but also the argumentative and
expressive skills. It develops the capability of unambiguously describing and expressing
ideas.

• e proof reveals to the student why the claim is true. It is then easier to remember
its statement (e.g. its assumptions). Without studying the proof, the student loses
understanding of the context and resorts to learning sentences by heart (which is not
enriching for him4 nor manageable).

• Most of the proofs, especially the so-called constructive ones, give direct guidance
(algorithm) to solve problems.

• No superior authority (teacher, professor, guru) other than logics decides, on the
correctness of the proof, and thus the truth of the proven claim. Once proven, it stays
proven forever. Such an absoluteness of mathematics is beautiful.

An old concise comparison says: studying mathematics without proofs is like playing
football without a ball. In short, mathematics without proofs does not make much sense!

2.4 A few examples of proofs
In this section, we will show some simple proofs of well-known and important statements.
e reader will get acquainted to further proofs in the following chapters. In chapter 3.6 we
will continue to practice this skill in proving several sum formulas.

Before we begin our first proof, let us refresh a few concepts, which will appear in the
proven claim. We recall first the notions of rational and irrational real number.
Definition 2.1: A real number x, which is the ratio of two integers, is called rational. A
real number, which is not rational, is called irrational.

4Except memory training.
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2. Mathematics is not only about computing A few examples of proofs

Furthermore, let us recall the notions of coprime and non-coprime numbers.
Definition 2.2: If two integer numbersm and n have common divisors (factors) other than
1, they are said non-coprime. We say that two integer numbersm and n are coprime, if the
only positive integer that divides both of them is 1.
Question 2.1: Which of the following numbers are rational and which are irrational?

π

2
,
3

4
, sin

π

4
, sin

π

6
.

Question 2.2: Which of the following pairs of numbers are coprime or non-coprime?

1. 7 and 6330079,

2.
√
2 and 2,

3. 5192311 and 36551

Proof by contradiction
We can use the so-called contradiction. e idea at the basis of a proof by contradiction
is simple. One of the logic axioms says that every statement T must be either true or false.
us, if we show that the logical opposite (negation) of T is false, then the original statement
T is true.
Theorem 2.1: e square root of 2 is irrational.

Proof of the irrationality of
√
2. We assume the opposite, that is

√
2 is rational. us, since

it is also a positive number, there exist two natural and coprime integer numbers p and q
satisfying √

2 =
p

q
.

It follows5 the equality

2 =
p2

q2
, thus 2q2 = p2.

Since 2q2 is even (it clearly can be divided by 2), we see that also p2 is even (otherwise
above we would have an equality between an even and an odd number, which is impossible).
e only way this can be true is that p itself is even. us,6 p = 2k, where k is a natural
number. Substituting this equality into the above equation and dividing both sides by 2, we
get q2 = 2k2. If we use the same argument again, we get that also q is even. erefore, p and
q are non-coprime (both can be divided by 2). But such a situation cannot occur. Since by our
assumption p and q are coprime, here we have come to a contradiction with our assumption,
which therefore must be false. us

√
2 is irrational.

Let us summarize the principle of the proof by contradiction. We want to be convinced of
the truth of a certain claim T (i.e. we want to prove it). We show that the logical opposite
(negation) of T is false. us, necessarily T must be true.

5Since a = b, a2 = b2.
6is equality expresses the evenness of p.
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2. Mathematics is not only about computing A few examples of proofs

T1 T2 T3 T4 T5

Figure 2.1: Scheme of the proof by mathematical induction. Instead of proving that all Tn are
true, for n = 1, 2, . . ., we can just prove that both T1 and the induction step, i.e. the assertion
Tn ⇒ Tn+1 (red arrows) are true.

Proof by mathematical induction
In the following, we illustrate the proof by mathematical induction. is type of proof
is oen used when we have infinitely many statements numbered by natural indices7, for
example T1, T2, T3, . . . and we need to prove they are all true. e proof is done in two steps:

1. proove the first claim T1,

2. for any natural n prove the so-called induction step: if Tn is true, then also Tn+1 is true.

A graphical representation of this procedure is shown in figure 2.1. e red arrows correspond
to the induction step. e starting point, i.e. the proof of T1, is indicated in blue.

Mathematical induction can be compared to demolish a domino spiral. Each domino piece
represents a „statement“ and can be in two states. A piece can be standing, or falling (similarly
a statement can be true, or false). If we want to find out if the assembled domino spiral falls,
we have two options. We can check all the pieces one by one and see if they fall. e second
option is to check:

• if the first piece falls,

• two adjacent pieces are located at such a distance that if the first one falls (the one
closer to the first piece) then its neighbor also falls (analog of the induction step).

en we automatically know that all the pieces would fall. Let us emphasize the substantial
difference in these approaches. e second method (ie, mathematical induction) controls the
state of only the first piece, while it does not checks whether the others are standing or not,
unless they are adjacent.

Let us illustrate the proof by mathematical induction for the so-called binomial theorem.
In the statement of the theorem, we use the abbreviated sum, i.e. the summation notation,
which the reader can find described more in detail in 3.6. Factorials, bynomial coefficients
and general combinatorics are treated in section 3.7.
Theorem 2.2 (Binomial theorem): For any real number a and b and any non negative integer
number n, i.e. for a, b ∈ R and n ∈ N0, the following equality holds

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k. (2.1)

Proof of the binomial theorem by mathematical induction. Let us verify that the equality being
examined is true for the first n considered, i.e. for n = 0. e le-hand side of (2.1) is

7e particular numbering does not maer, as it is not important which number we are starting with. We
only assume the so-called countability: it is possible to re-number the claims with natural numbers.
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2. Mathematics is not only about computing A few examples of proofs

(a+ b)0 = 1 and for the right-hand side we have

0∑
k=0

(
0

k

)
akb0−k = 1 · 1 · 1 = 1.

e equality 1 = 1 is certainly true. Now let us assume that (2.1) holds for n ∈ N0. Let us
verify that (2.1) is true for n+ 1 instead of n. us we want to find out whether

(a+ b)n+1 =
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

By direct calcuclation, we get8

(a+ b)n+1 = (a+ b) · (a+ b)n
!
= (a+ b)

n∑
k=0

(
n

k

)
akbn−k =

=
n∑

k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn+1−k =

=
n+1∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=0

(
n

k

)
akbn+1−k =

=

(
n

n

)
an+1bn+1−(n+1)︸ ︷︷ ︸

an+1

+
n∑

k=1

((
n

k − 1

)
+

(
n

k

)
︸ ︷︷ ︸

(n+1
k
)

)
akbn+1−k+

+

(
n

0

)
a0bn+1−0︸ ︷︷ ︸
bn+1

=

=
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

In the equality marked by the exclamation point, we used the inductive assumption (the
validity of the relation for n) and then we just performed algebraic operations. If we read the
beginning and end of the calculation, we see that we have derived (2.1) for n+ 1, which was
our goal.

e claim of the binomial theorem contains well kown algebraic „formulas“

(a+ b)2 = a2 + 2ab+ b2,

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3.

e above formulas represent special cases of the binomial theorem for a particular chosen n
(n = 2, 3). For such small values of n, the formulas can be easily verified in an alternative
way, by brackets expansion. For example for the first formula, thus for n = 2 we have

(a+ b)2 = (a+ b) · (a+ b) = a2 + ab+ ba+ b2 = a2 + 2ab+ b2.

8Imagine how the computation would appear without using the summation convetion!
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2. Mathematics is not only about computing A few examples of proofs

is calculation effectively proves the binomial theorem for n = 2. Although in a similar
way we could verify its validity also for n = 3, this cannot be considered as a proof of the
binomial theorem. We would lack the proof all the claims for n = 3, 4, 5, . . .! Fortunately, we
did not have to prove all of them, thanks to the mathematical induction.

e importance ad utility of the binomial theorem can be further demonstrated on a
concrete example (someone would say „trick“). Let us imagine that we are going to count 482
quickly by our heads. We can take advantage of the fact that the number 48 is close to 50,
whose square is easy to calculate. Specifically, according to binomial theorem we have

482 = (50− 2)2 = 502 − 2 · 50 · 2 + 4 = 2500− 200 + 4 = 2304.

Question 2.3: What is the sum of the first n odd natural numbers? I.e. what is the value of
the sum

1 + 3 + 5 + · · ·+ (2n− 1) =
n∑

j=1

(2j − 1), n ∈ N

equal to? Proove your claim.

Direct proof
Another type of proof is the direct proof. So to speak, without any detours, straightforwardly,
we derive the claim from the assumptions. Consider the following theorem.
Theorem 2.3: For any real number a and b and n ∈ N the following equality holds

an − bn = (a− b)
n−1∑
k=0

akbn−1−k. (2.2)

Proof. Let us take a, b ∈ R a n ∈ N. We have to proove the equality (2.2). Let us start from
the right-hand side of this equality and gradually adjust it through algebraic manipulation, to
get the le-hand side of (2.2). Namely,

(a− b)
n−1∑
k=0

akbn−1−k = a ·
n−1∑
k=0

akbn−1−k − b ·
n−1∑
k=0

akbn−1−k =

=
n−1∑
k=0

ak+1bn−1−k −
n−1∑
k=0

akbn−k =

=
n∑

k=1

akbn−k −
n−1∑
k=0

akbn−k =

= an +
n−1∑
k=1

akbn−k − bn −
n−1∑
k=1

akbn−k =

= an − bn.

In other words, aer multiplying the sum by the bracket (a− b), the majority of terms cancel
each other by subtraction, leaving only the difference an − bn.

9



2. Mathematics is not only about computing What is not a proof?

Alternatively, it would be possible to proove theorem 2.3 by mathematical induction (try
it!).

ere are well known special cases of theorem 2.3:

a2 − b2 = (a− b)(a+ b),

a3 − b3 = (a− b)(a2 + ab+ b2).

ese formulas and the general formula 2.2 will be useful (not only) in calculating the limits
in the future. What makes theorem 2.3 so useful? It allows us to express the difference of
same powers of two numbers by the difference of the numbers themselves. In other words, if
we have some information about the difference a− b, then using this theorem we can infer
something on the difference an − bn.
Remark 2.2: e proven equality (2.2) also contained the formula for the sum of the first
terms of a geometric sequence with ratio q 6= 1 and starting by 1. Indeed, considering the
formula in the theorem for a = q 6= 1 and b = 1, we get

qn − 1 = (q − 1)
n−1∑
k=0

qk

and dividing by the non zero factor q − 1, it follows

n−1∑
k=0

qk =
qn − 1

q − 1

2.5 What is not a proof?
e previous part of the text dealt with the question of what a proof is and contained several
concrete examples of proofs. In this section, we will point out the most frequent errors related
to proofs. us, we will deal with what it is not a proof.

„Proof“ by examples vs. counterexample
e truth of a general statement cannot be based on several specific examples that support its
truthfulness. In contrast, the truth of the statement can be refuted by just one counterexam-
ple 9.

Let us see, as a demonstrative case, a claim that Fermat wrote in 1650:10

For any n ∈ N0 the number 22n + 1 is a prime number.

Pierre de Fermat

By exploring the value of the expression 22
n
+ 1 for some small n we obtain the numbers

3, 5, 17, 257, 65 537, which are prime. We have validated the claim for the first five cases.
9If somebody tells you that all the cars around the world have a blue or green color, how can you convince

him/her of his/her mistake? You go out on the street and show him/her a car of red (or other than blue and
green) color. I.e. you refute his/her claim by demonstrating a counterexample.

10e expression ab
c

means a to the power of bc, and it is different from (ab)c = abc.
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2. Mathematics is not only about computing What is not a proof?

However, this does not proove the truth of the claim for all n! Indeed, the next value for n = 6
is not a prime number:

22
6

+ 1 = 18446744073709551617 = 274177 · 67280421310721. (2.3)

Of course, in Fermat’s time this breakdown of the formula was unknown. e formula (2.3)
gives therefore a counterexample to Fermat’s statement and refutes it. In other words it
prooves that the statement is not true. For sure, examples supporting a claim can be sometimes
useful. ey could guide a person to guess a general claim. However, the truth of such claim
cannot be derived from the examples. E.g., as mentioned above, the binomial theorem 2.2
cannot be proven by verifying his statement only for n = 1, 2, 3, because this does not say
anything on the cases n = 4, 5, . . .

From the assumption to the claim.
Another common phenomenon is the misunderstanding of the way a proof is conducted.
Let us repeat again that the goal is to go from the assumption to the claim of a theo-
rem/lemma/corollary through logical steps. If you are studying a proof, you should pay
aention on where and how the assumptions were used (there is nothing more humorous
than a proof in which the assumptions of the theorem do not show up at all). Let us try to
illustrate this phenomenon on another rather common error. For simplicity, consider a very
simple statement: the sum of even numbers is an even number. For the sake of completeness,
let us recall that an integer k is called even, when it can be expressed in the form k = 2`,
where ` is some other integer (this is the definition of evenness for integer numbers). As a
proof, some students would write: „When I add two even numbers, I must get an even number
again.“ Is this a proo? Of course not, it repeats what it is to be proven, it only says that the
claim must be true. Even if that must is wrien in large font and blood, it will not be a reason
(proo) for the statement to be true. A correct (direct) proof would look like this: let us take
two even numbers, let us say a, b ∈ Z. ey are even (here it is the assumption) and therefore,
by definition, there exist some integers k and ` such that a = 2k a b = 2`. us, considering
their sum, according to the distributive law, it applies that

a+ b = 2k + 2` = 2(k + `),

us, we see that a + b is actually the double of the integer number k + `, and so it is by
definition even! I hope the reader will appreciate the difference between „obviousness“ and
the real proof shown above, now. In the previous paragraph, based on assumptions, definition
and properties of integers (distributive law, closeness with respect to sum), it has been shown
that the statement is true.

Obvious proof
To conclude, let us point out the meaning of the word „obvious“. A claim is obvious, just
when his proof immediately comes to your mind. Not because you believe it is true, but you
do not really know why.

11



3 Basic concepts

If I have seen further it is by standing on the shoulders of giants.

Isaac Newton

3.1 Note on mathematical notation
Every programming language requires that code be wrien using correct syntax. If a pro-
grammer does not comply with the syntax of a language their code may be incomprehensible
and hence inapplicable, for the compiler or interpreter of the language. Although there is
no firmly codified notation in mathematics it is good to follow established notation. In this
subchapter we will sum up the most commonly used notation.
Remark 3.1: Students are oen surprised that mathematical notation and terminology is
not clearly and globally codified. ere is the ISO 80000-2 standard which aims to fix some
symbols and names but it is not very widespread. Uniform nomenclature is not used for
historical reasons but also because of the different needs of different areas of mathematics.
Matematics is live and creative and it does not make sense to bind it with any ISO standard.
Even in painting and art there are many styles using different tools to achieve similar results.
Similarly, why is there not only one programming language? And it is good. But what is
globally true is the logical structure of mathematics and the way mathematics is built. In
other words, it does not maer what symbols we use or which language we speak, what
maers is how and what rules we follow.

Equality and equations
First we will analyze the meaning of the most important of symbols, the equals sign =. In
programming languages as well as in mathematical notation the symbol = plays a crucial
role. Unfortunately, in each of these areas it is used slightly differently, which can oen be
very confusing. In the vast majority of programming languages the meaning of the symbol =
is assignment. For instance, this line of code

a = 2

oen means that from this moment onwards the value of the variable a is 2. So does the line
of code

a = a + 1

12
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3. Basic concepts Note on mathematical notation

say to the computer that the new value of the variable a is the old value of a increased by 1.
Furthermore, in programming we oen encounter the symbol == which tests actual equality
of two objects. For example, the line of code

a == b

is evaluated as true, if the objects a and b are equal1. Otherwise, it is evaluated as false.
e situation with matematical notation is a bit more complicated. Basically, we can say

that the context in which the symbol= is used plays a most important role. e basic function
of the symbol = is to denote equality of two known objects. In this way we can formulate a
claim, e.g.

a = b, (3.1)

where a and b are certain defined objects, which is either true or not. For natural number 4
the equality 4 = 4 is true, for for numbers 4 and 3 the equality 4 = 3 is false. In this sense
the matematical symbol = is close to the programming symbol == discussed above.

e symbol = is also used to write down an equation. For instance, in the equation

x2 − 1 = 0 (3.2)

x stands for anunknown, an object to be determinedwith the property that aer we substitute
it in the equation (3.2) we get equality between the le-hand side and the right-hand side of
this equation. Such instances of x are then called solutions of the equation (3.2). In this case
the equation (3.2) has two solutions, the numbers 1 and −1, and no other real number is a
solution. Indeed, aer substituting 1 or −1 into the equation (3.2) we get an equality 0 = 0,
which is true. On the other hand if we substitute for instance 2 for x then we get an equality
3 = 0, which is false2.

e symbol = is furthermore used to denote assignment in the programming sense. It
can usually be easily seen from the context if it is the author’s intention. Let’s take a closer
look at the following text sample.

Assume we have a rectangle with sides of length a=3 and b=4. We will denote
the length of the rectangle diagonal with c. By the Pythagoras’ theorem we have
that c=

√
a2 + b2, i.e. in our case c=5.

e first two uses of the symbol = marked with red mean assignment. From that moment
on the symbols a and b have specific values. In programming slang we would say that
variables a and b were inicialized. e second sentence of the paragraph does not contain
the symbol = but its meaning is the same because it unequivocally defines the symbol c.
Finally, the last sentence claims that the blue equalities are true. Here it does not concern
assignment/definition/initialization but the validity of a certain relationship between defined
objects a, b and c.

Sometimes we use the symbol := to denote assignment. We usually choose this symbol
when we want to emphasize that a new object has been introduced. e symbol on the
le-hand side of := is then defined by the expression on the right-hand side of :=. Here we

1e notion of equality may depend on the type of a particular object.
2Note that the examples in this paragraph only serve to explain the property of „being a solution of an

equation“. We are not talking about how to effectively find a solution and whether it can be done for a given
equation at all. We will learn more about this problem in BIE-ZMA.
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would like to warn the reader that CAS3 Mathematica uses the discussed symbols in a slightly
different way. We will discuss this topic in more detail in chapter 6.

Variable notation
Let us now summarize some common conventions for naming that we will use in this
document as well as in the BIE-ZMA course. Although the choice of names used for objects
is entirely up to the author, it is good to follow these unwrien rules.

• We use leers from the end of the Latin alphabet to name unknowns in equations, for
example x, y or z.

• We use leers from the beginning of the Latin alphabet to name known – previously
defined – objects or parameters of a problem, for example a, b, c, etc. We oen use the
Greek alphabet for numerical values, i.e. α, β, γ, . . .

• For summation indices (see Section 3.6 below) and integer quantities we oen use
leers i, j, k, `, m or n. When using the leer i we must be careful not to confuse it
with the imaginary unit denoted also by4 i.

• We use capital leers A,B,C, . . . to name sets. We also usually use capital leers of
the latin alphabet to denote points in a plane (space).

• We use leers r, s, t to parametrize geometrical objects (lines, circles, areas, etc.).

Brackets
Next, let’s mention the role of brackets in mathematical notation. We use brackets to indicate
function (mapping) argument, to specify the order of execution of operations or to mark
intervals and points. Without parentheses, many algebraic expressions would not make
sense5. In the rest of this subchapter, we will discuss in more detail just such cases of using
brackets.

If we have a function f and an element a from the domain of f , then f(a) denotes the
function value of f in a. To be more precise, f(a) is a number, on the other hand f is an
abstract object of the function type. erefore, this use of parentheses exactly matches the
usage you will find in programming languages. If f and a have already been defined then
the meaning of f(a) is: call the function f with argument a and return f(a). e value of a
can be seen as input and f(a) as output of the function f . Graphically, we can imagine this
situation as in Figure 3.1.

However, sometimes we call the whole expression f(x) a function. We oen use this
point of view if we also want to tell the reader what the variable will be called (here x). In
some cases, brackets around function arguments are omied, in particular when we want to
improve readability and simplify notation. E.g. we oen write sinα instead of sin(α) or ln 2

3Computer Algebra System.
4erefore, we try to distinguish the imaginary unit at least typographically, compare i and i. For the sake

of completeness, note that especially in physical (e.g. electrical) literature, the imaginary unit is oen denoted
by j, whereas the leer i is reserved for instantaneous current value.

5ey would not be unambigously defined. For example, consider the expression 2 · 3 + 5. Without the
introduction of conventional priority of operations we cannot determine if it means 2 · (3 + 5) or (2 · 3) + 5.
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a f f(a)

Figure 3.1: Function f and its functional value. a is the input and f(a) is the output. e
function f itself is a „black box“ which transfers input to output.

instead of ln(2). We must however take care to avoid any misunderstanding. For example,
the expression

ln 2 · 3 (3.3)

could be interpreted as
ln(2 · 3) or ln(2) · 3.

Of course, these numbers are not the same. Using a calculator6 we can easily verify that the
two expressions are approximately equal to

ln(2 · 3) = ln(6) ≈ 1.791 759 469 23,

ln(2) · 3 ≈ 2.079 441 541 68.

Especially with „manual“ calculation7 these inaccuracies may lead to catastrophic errors.
erefore it is beer to write multiplicative factors in front of functions. Here, the expression
3 ln 2 is defined unambiguously, as opposed to the expression in (3.3).

Let’s remind the reader that for some functions we use special notation which does not
require brackets. For instance, square root is denoted by

√
x, cube root by 3

√
x and the

absolute value by |x|. e reader is also familiar with the floor (resp. ceiling) of a real number
x denoted by the symbol bxc (resp. dxe).

Parentheses are furthermore used to specify the order of algebraic operations. For example,
the expression (

a+ (c/2)
)
· 3

should be understood as follows: first divide c by two and add a, then multiply this number
by three. Without brackets,

a+ c/2 · 3,

it would (without the order of operations convention 8) not be clear how to evaluate this expres-
sion. In this respect mathematics does not differ from programming languages. e majority
of programming languages employs operator precedence (see e.g. C Operator Precedence).
Remark 3.2: It may seem that what we describe here is really elementary andwell understood
by all students. Unfortunately, the number of errors that arise in tests because of such
inaccuracies as

ln(1 + x) = ln 1 + x = ln(1) + x = x

shows that it is not something that should be neglected in this text.
6How does a calculator/computer find these values? Can we even trust it? We will answer this question in

BIE-ZMA aer studying Taylor series of functions.
7For instance in a test.
8Yes, the fact is only a convention.
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Indices
At the end of this section we will mention the importance of upper and lower indices. Upper
indices (or superscripts) are usually used to denote exponents, for instance

35, an, e2 etc.

Sometimes we use upper indices to denote vector components or the complex conjugate of a
complex number a. Oen we can see a∗ instead of a. In BIE-ZMA we will use upper indices
to denote higher-order derivatives of functions.

Lower indices (or subscripts) are used to indicate either the order of an element in a
sequence, or more generally, dependence of a given quantity on an integer parameter. is
notation is similar to indexing array elements. In programming, a[2] means practically the
same thing as our a2. We will study sequences in more details in BIE-ZMA.

3.2 Sets and set operations
By a set we mean a collection of objects specified by enumeration, or by properties that the
set elements must satisfy9. If the number of elements is small or if they can be simply listed,
we write for instance

A = {π, e}, B = {1, 2, 3, . . .}. (3.4)

e set A contains exactly two elements (the numbers π and e). e set B consists of all
natural numbers (readers must be clear about what elements to substitute for the three dots).
If x is an element of A, we write x ∈ A, in the opposite case x is not an element of A and we
write x /∈ A. For the set A defined in (3.4) it is true that π ∈ A, but 1 ∈ A is false.

e empty set, i.e. a set containing no elements at all is denoted by the symbol ∅. If we
want to list all elements of it we write

∅ = {}.

On the other hand, {∅} is a set consisting of the empty set ∅ ∈ {∅}, and therefore it is not
empty.

If N is a set and A(x) a formula about x, an element of N , then the set

C = {x ∈ N | A(x)}

consists of all x ∈ N for which A(x) is true. Here, A(x) stands for a property whose truth
depends on the actual value of the variable x. As an example, let N = Z and let A(x) be
the statement „x is an even number“. en A(2) is true but A(3) is not. e set of all even
integers can be described as follows

D = {m ∈ Z | m is divisible by two}.

We can also describe the set by enumerating it, D = {. . . ,−4,−2, 0, 2, 4, . . .}, which may be
slightly confusing. We can compare sets according to the elements they contain. We will call

9is naive definition can generally lead to logical paradoxes, perhaps the best known is Russell’s paradox.
By considering only „small“ subsets of number sets we will avoid all such problems. e notion of a set is studied
in great detail by set theory, for example Zermelo-Fraenkel set theory from the beginning of the twentieth
century.
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a set A a subset of a set B, if and only if every element of A is also an element of B. In that
case we write A ⊂ B (A is contained in B) or B ⊃ A (B contains A). e property of being
a subset is what we call an ordering on sets. is ordering is not complete in the sense that
there are (you will easily find them) sets A and B such that neither A ⊂ B nor B ⊂ A.
Remark 3.3: Let’s draw aention to a frequent misunderstanding here. Set inclusion (the
property of being a subset) defined above is not strict. More precisely, for every set A we have
that A ⊂ A. I.e. if A ⊂ B then there need not be an element of B which is not contained in
A. is remark relates to Remark 3.1. In principal, there are two approaches to the notation
for strict (excludes equality) and non-strict (allows equality) inclusion:

1. A ⊂ B denotes non-strict inclusion and A $ B denotes strict inclusion,

2. A ⊆ B denotes non-strict inclusion and A ⊂ B denotes strict inclusion.

In this text and in the majority of courses at FIT you will meet the first approach. As a maer
of fact, we do not even use the symbol for strict inclusion as it is not needed in most cases. It
is always a good idea to find out what approach is used in the text.

We say that two sets A and B are equal if A ⊂ B and at the same time B ⊂ A. Set
equality is naturally wrien as A = B. is definition of equality gives us instructions how
to prove equality of two sets, it is enough to verify both inclusions.

Set operations
We will recall basic operations with sets. For two sets A and B, their intersection is defined
as the set of all elements which are in A and in B simultaneously. e intersection of two
sets is denoted by A ∩B. Symbolically, we can describe this set as

A ∩B := {x | x ∈ A and x ∈ B}.

e union of two sets A and B consists of all elements that are A or10 in B. We denote it by
A ∪B and we write

A ∪B := {x | x ∈ A or x ∈ B}.
e two operations can be naturally generalised to any number of sets. Let I be any (so called
index) set and let Ai be a set for every i ∈ I . en we put⋂

i∈I

Ai := {x | x ∈ Ai for every i ∈ I},⋃
i∈I

Ai := {x | there exists i ∈ I such that x ∈ Ai}.

Example 3.1: For example, for each natural i put

Ai =

(
1, 1 +

1

i

)
,

i.e. Ai is an open interval from 1 to 1 + 1
i
. e intersection and union of these sets are⋂

i∈N

Ai = ∅
⋃
i∈N

Ai = (1, 2).

10is „or“ is not exclusive.
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Another important set operation is the difference. of setsA andB, A\B, which consists
of all elements that are in A but not in B. Symbolically,

ArB := {x ∈ A | x /∈ B}.

If A is a subset of a fixed set X , then Ac := X r A is called the complement of the set A.
However, X must be defined beforehand!
Question 3.1: What is ArB and B r A if A = (1, 3) and B = 〈2, 4)?

Note that while for any two sets A and B we have that

A ∪B = B ∪ A and A ∩B = B ∩ A,

this property (commutativity) is not valid for set difference. In general, the set A r B is
different from the set B r A.

Another basic operation on sets is the Cartesian product. Cartesian product of two sets
A and B, wrien as A × B, is the set containing all ordered pairs 11 of elements from A
and B, i.e. pairs (a, b), where a ∈ A and b ∈ B. We call a (resp. b) the first (resp. second)
component of (a, b). Formally,

A×B :=
{
(a, b)

∣∣ a ∈ A a b ∈ B
}
.

Similarly, we can define the Cartesian product of more sets. For example,A×B×C represents
the set of all ordered triples of elements from A, B and C .

3.3 Number sets
In this part of the text, we will narrow our aention to sets of numbers. ese sets will be
one of the main objects of our interest in BIE-ZMA

Natural numbers
We denote the set of natural numbers 12 by N,

N := {1, 2, 3, . . .}.

Natural numbers abstract the notion of the „count“ of objects. Figure 3.2 shows three sets of
different geometrical shapes. Examples (a), (b) and (c) have the property of always having
three shapes. We express this observation by stating that there are three shapes there and we
denote it by Arabic numeral 3.

Note that the set of natural numbers is closed under multiplication and addition. More
precisely, by multiplying and adding two natural numbers, we get a natural number again:

if a, b ∈ N then a+ b ∈ N,
if a, b ∈ N then a · b ∈ N.

11It is necessary to distinguish between an ordered pair (a, b) and a set {a, b}. e sets {a, b} and {b, a} are
the same, but ordered pairs (a, b) and (b, a) are generally not (for different a and b). An ordered pair contains
information about the order of its elements, as opposed to a set.

12We denote the set of natural numbers with zero by N0 := {0, 1, 2, 3, . . .}.
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(a) (b) (c)

Figure 3.2: Groups in (a), (b) and (c) have a common feature, each group contains 3 shapes.

To appreciate positional notation of numbers using Arabic13 numerals try to consider the
problem of performing algebraic operations (addition, multiplication, subtraction) using the
Roman numeral system. It’s not easy, is it? Arabic numerals in Europe were promoted by
Leonardo from Pisa (known as Fibonacci) in the beginning of the thirteenth century. In 1202
he published the Liber abbaci („e Counting Book“), which greatly aided the development of
business and science. A courious reader can find out more interesting facts about the „first
computational revolution“ in this engaging book [3].

Integers
e set N is, however, not closed under subtraction of two natural numbers. We can also
formulate this fact with the use of addition by saying that the equation

a = b+ x (3.5)

for some natural numbers a, b ∈ N may not have a solution x in natural numbers. Consider
e.g. a = 4 and b = 5. In other words, we cannot express the concept of „debt“ and „empty
count“ using only natural numbers.

To eliminate these shortcomings, we need to add zero and negative numbers to natural
numbers. us we get the set of integers,

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

In this set we can multiply, add and subtract, but the result of division is outside of this set.
I.e. there need not be an integer solution to the equation

a = b · x (3.6)

for some integers a and b. is operation can be motivated by the need to divide an object
into several parts. For example, when dividing one pizza (a = 1) into eight pieces (b = 8) we
get eighths of pizza (x = 1

8
). We have to move to rational14 numbers.

Rational numbers
e set of rational numbers consists of solutions to the equation (3.6) with non-zero b,
which we write as fractions

Q =

{
p

q

∣∣∣∣∣ p ∈ Z, q ∈ N, p, q coprime

}
. (3.7)

13In fact, they came from India and were brought to Europe by Arab traders.
14Ratio – quotient.

19



3. Basic concepts Number sets

We define addition and multiplication of fractions using operations in Z as follows15

p

q
+
r

s
:=

ps+ qr

qs
,

p

q
· r
s
:=

pr

qs
, where

p

q
,
r

s
∈ Q.

We can simplify the right-hand sides of these terms by dividing by common factors so we
always get an element of the set (3.7). Integers are naturally included in the set of rational
numbers, i.e. Z ⊂ Q, as fractions p

1
, where p ∈ Z, while algebraic operations are preserved.

Rational numbers Q together with addition + and multiplication · satisfy important
relationships

a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c, (3.8)

a · (b+ c) = (a · b) + (a · c) (3.9)

valid for all rational numbers a, b, c. We call equalities (3.8) the associative laws for addition,
resp. multiplication. Only thanks to these laws we can omit parentheses when writing chains
of additions or multiplications since the final result actually does not depend on parentheses16.
We call the equality in (3.9) the distributive law. e reader is certainly intimately familiar
with it, because it can be used to perform the „factoring out“ operation. To be able to omit
parentheses on the right-hand side of (3.9) we introduce the convention of precedence of
multiplication over addition. An important element of the set of rational numbers is the
number 0 which satisfies

0 + a = a+ 0 = a,

for any rational number a. For every rational a there is a rational number denoted by −a
with the property that

a+ (−a) = (−a) + a = 0.

e relationship between 0 and addition is analogous to the relationship between the number
1 and multiplication. For every rational number a we have that

1 · a = a · 1 = a.

Finally, for any non-zero rational number a there exists a rational number denoted by a−1

having the property that
a · a−1 = a−1 · a = 1.

e previous paragraph can be summed up by saying that the set of rational numbers Q
together with addition + and multiplication · forms a field. e area of mathematics which
studies17 number fields is called general algebra. Finite18 fields are widely used in modern
encryption algorithms and generally, in computer security.

15At first glance, the definition of addition may seem incomprehensible. However, the motivation is simple.
Imagine that we want to express what fraction of a pizza represent 2

3 and 1
4 of a pizza. To achieve this, we must

first think about how to express these quantities in a „comparable“ way. irds and quarters can be completely
divided into twelhs. So we have 8

12 and 3
12 of a pizza, in total 8+3

12 = 11
12 of a pizza. Addition of fractions is

just a generalization of this observation to all fractions. You certainly know this procedure under the name
„conversion to a common denominator.“

16E.g. (4 + 2) + 1 = 4 + (2 + 1) = 4 + 2 + 1 = 7. Note that this is not automatically true for an arbitrary
binary operation. For example, if we consider division ÷, a÷ b := a

b , then
1
4 = (2÷ 4)÷ 2 6= 2÷ (4÷ 2) = 1.

17Among others.
18Having a finite number of elements.
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1

1x

Figure 3.3: Square with side of length 1 and diagonal of length x.

In the set of rational numbers, we can therefore perform the so-called algebraic operations
of addition, subtraction, multiplication and division (by non-zero numbers). is „numerical
environment“ is fully sufficient to perform simple accounting and business operations that
motivated the development of algebra in the Middle Ages. Unfortunately (or maybe fortu-
nately) this numerical set is not sufficient to describe a number of practical problems. On
the other hand, even such an old concept as rational numbers cannot be fully modelled on
modern computers (as we do not have infinite memory).

Real numbers
At the beginning of this chapter we showed that natural numbers and integers are „not
enough“. It was always necessary to add more numbers to meet our requirements. Similar
situation also occurs in the case of rational numbers. is set is already closed under binary
algebraic operations of addition and multiplication, but this time we encounter difficulties
in analyzing the following geometric problem. Consider a square with side of length 1 (a
rational number), see Figure 3.3.

We want to know the length of its diagonal. It can be constructed using a ruler and
compasses. In Figure 3.3 it is denoted by x. According to the Pythagoras’ theorem,

12 + 12 = x2. (3.10)

So x2 = 2. We call this positive number x the square root of two and denote it by
√
2. We

can easily show that this number is not rational as we have already shown in eorem 2.1. So
we face a serious problem. e length of the red line in Figure 3.3 cannot be expressed as a
rational number! Does it mean that we cannot use the concept of a diagonal in this case? No,
it just demonstrates the imperfection of rational numbers which will be solved by introducing
the real numbers.

Other important irrational numbers are Ludol’s19 number (traditionally marked by Greek
leer π) or Euler’s20 constant (traditionally marked by Latin leer e). In a sense, there are
considerably more21 irrational numbers than rational numbers, one can say that a „typical“
real number is irrational. We will learn more about the relationship of these two sets in

19Ludolph van Ceulen, 1540 – 1610, a mathematician of Dutch origin, dedicated his life to calculating the
number π to 35 decimal places that are even engraved on his tombstone.

20Leonhard Euler, 1707 – 1783, Swiss mathematician and physicist.
21Let us emphasize this idea. e reader may feel that we are adding only a few irrational numbers to rational

numbers. But quite the opposite is true!
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−4 −3 −2 −1 0 1 2 3 4

Figure 3.4: Number line

BIE-ZMA. e reader certainly knows that numbers can be imagined as points lying on a
straight line, called the number line. A significant point corresponding to zero is selected on
the line and a number a is ploed on the line at the distance of |a| from 0. Positive numbers
are placed on the right and negative numbers on the le of 0.

If we ploed only rational numbers on the line the resulting line would be „punctured“.
For instance, there would be holes at the distance of

√
2 (to the right as well as le) from

0. To fill in the number line we must consider also irrational numbers. e requirement
for the non-puncteredness of the real line is more accurately expressed by the „axiom of
completeness“. We will deal with this issue in more detail in one of the first BIE-ZMA lectures.

Interestingly enough, it may not be easy to decide on rationality or irrationality of a
number. ere are numbers about which we do not know to which set they belong. An
example is the Euler-Mascheroni constant defined by the formula22

γ := lim
n→+∞

(
n∑

k=1

1

k
− lnn

)
≈ 0.5772156649.

More information on this particular issue can be found in [5].

Complex numbers
It might seem that aer adding irrational numbers to the rational ones no additional numbers
are needed. Note that the geometrical consideration of the past paragraph can be simply
reduced to the requirement (see the equation (3.10)) that the equation

x2 − 2 = 0

have a solution in a given number set (here±
√
2 ∈ R). But a simple variation of this equation

x2 + 1 = 0, (3.11)

does not have a real solution23 either. is equation can be solved by introducing an imag-
inary unit (we denote it by i), which satisfies i2 = −1 and hence is also a solution of the
equation (3.11). We call i the complex unit. is new number can be multiplied by and
added to any real number. In this way we get the complex numbers,

C = {a+ bi | a, b ∈ R}.

If z = a+ bi is a complex number then the real number a is called the real part of z and the
real number b the imaginary part of z. Two complex numbers are equal when their real
parts and their imaginary parts are equal. We denote the real part of a complex number z

22You will learn more about limits in BIE-ZMA.
23at should be obvious. For any real number x its square x2 is non-negative and so x2 + 1 is always

greater than or equal to one and it can never equal zero.
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Re
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a+ bib

a

Figure 3.5: Complex plane.

by Re z and the imaginary part by Im z. Real numbers are naturally included in the set of
complex numbers as we can identify a real number a with a complex number a+ 0i.

Algebraic operations on C are defined as follows:

(a+ bi) + (c+ di) := (a+ c) + (b+ d)i,

(a+ bi) · (c+ di) := (ac− bd) + (ad+ bc)i, a+ bi, c+ di ∈ C. (3.12)

Note that if d = b = 0 then a+ c and a · c has the same meaning as in real numbers. e set
C together with these operations forms a field.

We can imagine complex numbers as points in the complex plane. We call the horizontal
axis the real axis and the vertical axis the imaginary axis. A complex number a+ ib is then
represented by a point with coordinates (a, b), see Figure 3.5.

We define the absolute value of a complex number as

|a+ bi| :=
√
a2 + b2, a, b ∈ R.

In the complex plane, we can imagine the absolute value of a complex number a+ bi as the
length of the segment joining 0 and a+ bi. We call a− bi the complex conjugate of a+ bi,
a, b ∈ R. e complex conjugate is thus obtained by reflection about the real axis.

Addition of complex numbers can be imagined as the addition of vectors (we add their
„corresponding components“). Multiplication of complex numbers can be represented as
rotation and scaling in the complex plane. is is not at all obvious but it can be derived
from the definition of multiplication (3.12), see Figure 3.6. In particular, multiplication by the
imaginary unit i can be seen, in the complex plane, as rotation by the angle π

2
relative to the

origin of the coordinate system which corresponds to 0, counterclockwise.
e reason to introduce complex numbers may seem artificial. Now, the question is

whether or not, when we examine solutions of polynomial equations other than (3.11), we will
need another complex unit. is question was answered by Gauss24 in his famous Fundamental
theorem of algebra: every polynomial of degree n with complex number coefficients has n
roots in the complex numbers25. So complex numbers are sufficient to solve polynomial
equations.

24Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German mathematician.
25We count roots according to their multiplicity (e.g. the polynomial x2 − 4 has two roots 2 and 2).
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Re

Im

a+ bi

(a+ c) + (b+ d)i
c+ di

Re

Im

z1

z2

z1 · z2

αβ γ

|z1 · z2| := |z1| · |z2|
γ := α + β

Figure 3.6: Geometric interpretation of addition and multiplication of complex numbers.

A number of mathematical methods applied in practice inherently use complex numbers.
For instance the Fourier transform (resp. Fast Fourier Transform, FFT), used to analyze signal,
could be only awkwardly described without the complex number apparatus. Without complex
numbers it would be very difficult to formulate quantum physics, the theory behind a number
of modern technologies that may completely change the issue of IT security in the near future.

At the end of this chapter, we would like to remark that complex numbers can be further
extended to the (non-commutative) field of quaternions. is field has three complex units
(i, j and k). In total there are four units (one real 1 and three „complex“ ones), thus the name.
Relationships between these units are defined by formulas

i2 = j2 = k2 = −1 and ijk = −1. (3.13)

From these relationships you can derive other products of different combinations of units.
Question 3.2: From the definition in (3.13) derive the products

ij and ji.

e set
H = {a+ bi+ cj+ dk | a, b, c, d ∈ R},

together with operations defined analogously to complex numbers was introduced by Hamil-
ton26. Why do we mention quaternions? aternions can be used to calculate, for example,
the rotation of vectors in three-dimensional space. ey are used by a number of algorithms
implemented in graphics cards. If you are interested see here [2].

26Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish physisist and mathematician.
Aer discovering the relationships in (3.13) he engraved them on a bridge in Dublin.

24



3. Basic concepts Significant subsets of real numbers

Question 3.3: Plot the following complex numbers in the complex plane.

a) z = (4 + 3i)(1− 2i), b) z = (2− i)2,

c) z = i(1 + i), d) z =
1

2 + i
.

3.4 Significant subsets of real numbers
In this chapter we will recall the definition of intervals and introduce some new notions
describing the properties of subsets of real numbers.

Intervals represent important subsets of real numbers. For a, b ∈ R, a < b, we define:

(a, b) =
{
x ∈ R

∣∣ a < x < b
}

open interval,
[a, b] =

{
x ∈ R

∣∣ a ≤ x ≤ b
}

closed interval,
[a, b) =

{
x ∈ R

∣∣ a ≤ x < b
}

le-closed and right-open interval,
(a, b] =

{
x ∈ R

∣∣ a < x ≤ b
}

right-closed and le-open interval,
(a,+∞) =

{
x ∈ R

∣∣ a < x
}

open interval.

e unbounded intervals [a,+∞), (−∞, a) and (−∞, a] are defined analogously.
Furthermore, for subsets of the real axis, we will recall the following definition. We call a

set A ⊂ R bounded from above (resp. below), if there exists a constant K ∈ R such that
for every x ∈ A, x < K (resp. x > K). We call a set A ⊂ R bounded, if it is bounded from
above as well as from below.

Let A ⊂ R. We call a number a ∈ A a maximum of the set A, if for every x ∈ A we
have that x ≤ a. We call a number b ∈ A a minimum of the set A, if for every x ∈ A we
have that x ≥ b. In other words, a maximum (resp. minimum) of a set A of real numbers is
such an element of it which is greater (resp. less) than or equal to all other elements of the
set. We also denote the maximum (resp. minimum) of a set A by maxA (resp. minA).

A maximum (respectively minimum) of a set defined in this way need not always exist.
For instance, there is no minimum nor maximum of the set (1, 2) as numbers 1 and 2 do not
belong to (1, 2). is problem can be solved by introducing an infimum and a supremum of a
set which represent generalizations of minimum and maximum. We will study these notions
in more detail in BIE-ZMA lectures.
Question 3.4: Which of the sets below are bounded from above, from below or bounded?

1.
{ 1
n

∣∣∣n ∈ N
}
,

2. the set of all prime numbers,

3. the set of all solutions of the inequation x2 − (π + 1)x+ π > 0,

4. {sinx | x ∈ R}.

Question 3.5: Determine the maxima and minima of the following sets if they exist.

1. A = {2,−1, 3},

2. B = (4, a], where a > 4 is a fixed parameter,
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3. Basic concepts Propositions and logical connectives

3. C = {(−1)n | n ∈ N},

4. D = {2k − 3 | k ∈ N},

5. E = {2k − 3 | k ∈ Z}.

Question 3.6: Prove or disprove this claim: every set which is bounded from above has a
maximum.

3.5 Propositions and logical connectives
It is advantageous to write matematical statements in an abbreviated form using the symbolism
of predicate logic. is area ofmathematics will be discussed in detail in theMathematical logic
course (BIE-MLO). Using this approach, logical structure of statements that might otherwise
be hidden from the reader behind sentences of natural (in our case English) language will
emerge. At this point we will only briefly summarize the basics that are already known to
the reader.

An elementary proposition is a sentence for which we can decide whether or not it
is true. We denote propositions by capital leers A, B, C, . . .We oen meet propositions
which depend on a parameter x. We call them predicates and denote by A(x). Different
values of x therefore yield different predicates A(x). Here are a couple of examples.

• Let x be an inhabitant of the Earth. A(x) denotes the statement „x is a man“. If a
denotes the author of this text then A(a) is false.

• Let x be a natural number. B(x) denotes the statement „x is even“. en for instance
B(2) and B(4) are true but B(99) is not.

Let’s recall basic propositional connectives (operations), which serve to construct more
complex propositions from simpler ones. ey are:

• ¬A, negation, A is false.

• A ∧B, conjunction, A and B are true at the same time.

• A ∨B, disjunction, A is true or B is true.

• A⇒ B, implication, if A is true then so is B, A implies B.

• A⇔ B, equivalence, A is true if and only if B is true, A is equivalent to B.

e truth values of propositional connectives are determined by the truth table below
depending on truth values of elementary propositions A and B.

A B ¬A A ∧B A ∨B A⇒ B A⇔ B

0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

In order to quantify variables in propositional formulas, we introduce three quantifiers
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• ∀, universal quantifier, for every, for all.

• ∃, existential quantifier, there exists, for some.

• ∃!, ∃1, there exists just one.

If a variable x ranges over all real numbers, we write ∀x ∈ R. Similarly, if we say there
exists an integer k, we write ∃k ∈ Z. For clarity, we separate quantifiers in a formula by
parentheses.
Example 3.2: A natural number p greater than 1 is a prime number, if every natural number
k which is a factor of p is equal to 1 or to p itself. When we write it using quantifiers and
propositional connectives we get this formula

(p > 1) ∧ (∀k ∈ N)
(
k|p ⇒ (k = 1 ∨ k = p)

)
,

here we use k|p to denote the predicate with the meaning „k is a factor of p“.
Example 3.3: Goldbach’s conjecture is a simple mathematical statement which has been
numerically tested for milions of cases but which has not been proved yet. is conjecture
says that every even natural number greater than 2 can be expressed as the sum of two primes.
If we denote the set of all primes by P and the set of all even numbers by 2N then we can
write Goldbach’s conjecture as a formula

(∀n ∈ 2N)((n > 2) ⇒ (∃k, l ∈ P )(n = k + l)).

At the end of this section we will clarify one term frequently used (not only) in mathe-
matical literature, which is that of a „sufficient“ and a „necessary“ conditions. If A⇒ B is
true then A is a sufficient condition for B and B is a necessary condition for A.

e reason to use these names should be obvious. If A⇒ B is true and if we know that
A is true then B must be true as well! erefore A is sufficient for B to be true. On the other
hand, if A⇒ B is true and if we know that B is false then A must be false as well. I.e. for A
to be true B must necessarily be true.

3.6 Abbreviated writing of sums and products
Very oen we come across the need to sum a finite sequence of numbers a1, a2, . . . , an, or
to discus the properties of such a sum. Instead of a lengthy and potentially ambiguous27
expression

a1 + a2 + · · ·+ an (3.14)

we write
n∑

k=1

ak.

e summation sign, the symbol
∑ 28, is the enlarged capital Greek leer „S“ (sum in English,

summa in Latin). A „local variable“ k is called the index of summation, 1 is the lower
27e reader could possibly misunderstand what to add instead of „dots“. It could happen that we do not

give the readers easily comprehensible information, but an IQ test. e situation is further complicated if, in
addition, each of the summands is a sum itself. For instance: 1 + 0 + 0 + 2 + 10 + 4 + 40 + · · ·+ 365596 =?

28We also say sigma notation.
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bound of summation and n the upper bound of summation. It does not maer what we
call the summation index. For instance, the summations

n∑
k=1

ak and
n∑

j=1

aj

are equal because they represent the same sum (3.14), which of course does not depend on
any summation index (it does not contain k or j). Note, however, that the summation index
under the summation sign as well as in the summands is always the same. On the other hand,

n∑
k=1

aj = aj + aj + · · ·+ aj︸ ︷︷ ︸
n×

= k · aj,

which is something totally different.
Because addition is associative and commutative, (see equation (3.8)) we have that

n∑
k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk. (3.15)

Indeed, we can use the associative and commutative laws for addition and arrange the
summands in a suitable way. Similarly, because of the distributive law (see equation (3.9)) it
is true that

n∑
k=1

(c · ak) = c ·
n∑

k=1

ak, (3.16)

where c ∈ R is a constant, i.e. a number independent on k. is equation represents the
generalization of a familiar operation of „factoring out in front of brackets“. It is essential for
both equations (3.15) and (3.16) that the lower bounds and the upper bounds are the same.

Let’s demonstrate this concept on a concrete example. We want to talk about the sum of
all natural numbers from 3 to 10. e shorthand is the following

S = 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
10∑
k=3

k. (3.17)

Compare this expression to the use of the for cycle for finding this sum in C.

int main()

{

int sum = 0;

for (int k = 3; k <= 10; k++) sum += k;

cout << 'The sum is: ' << sum << endl;

return 0;

}

In order to calculate using the summation notation, it is helpful to know how to manipulate
summation indices. For instance, the sum S in (3.17) can be also wrien as (we sum in the
reverse order)

S =
8∑

k=1

(11− k) = 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3,
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1 2 3 · · · 50 51 · · · 98 99 100

101

...

101

101

101

5050
+

Figure 3.7: Gauss’ trick for summing the first one hundred natural numbers.

or (the index of summation starts from 1 and we sum in the same order as originally)

S =
8∑

k=1

(2 + k).

e point of this paragraph is One sum can be expressed in a number of equivalent ways.
Sometimes the change of the bounds of summation has no influence on the result, such as

here
n∑

k=1

k2 =
n∑

k=0

k2.

We just added one summand for k = 0, and 02 = 0.
Example 3.4 (Gauss trick): e story goes that in elementary school, children were given
the task to sum up all numbers from 1 to 100. To the surprise of the teacher, the young Gauss
came up with an answer really quickly. He did not add the numbers one by one, but he
noticed that if he adds the first number (i.e. 1) and the last number (i.e. 100) he gets 101. If
he adds the second number (i.e. 2) and the one before last (i.e. 99), then he gets 101 again. If
this way we can go all the way to 50 + 51 = 101. is method is pictured in Figure 3.7. So,
the result is

50 · 101 = 5050.

e general formula for the sum of all numbers from 1 to some n is

n∑
k=1

k =
n(n+ 1)

2
= n · n+ 1

2
. (3.18)

The proof of Gauss’ summation trick. Using the summation notation we can express Gauss’
thoughts like this

100∑
k=1

k =
50∑
k=1

(
k + (101− k)

)
=

50∑
k=1

101 = 50 · 101 = 5050.
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Note that we can use the same trick for adding numbers from number 1 to an arbitrary
number n:

2
n∑

k=1

k =
n∑

k=1

k +
n∑

k=1

(n+ 1− k) =
n∑

k=1

(
k + (n+ 1− k)

)
=

=
n∑

k=1

(n+ 1) = n(n+ 1)

us we get the famous formula (3.18).

To appreciate this result, one should consider the difference between the given task (to
add up numbers from 1 to 100) and the formula. On the le-hand side of the equality

100∑
k=1

k =
100 · (100 + 1)

2

we have to carry out in total 99 operations of addition compared with one addition, multi-
plication and division on the right-hand side. at is why Gauss was the only one to get a
good result. Note that if we increase n, the number of operations on the le-hand side will
also increase, however, the number of operations required to evaluate Gauss’ formula will be
still the same. Implementing this particular sum using simple summation would therefore be
considerably inefficient. Using Landau notation, this observation can be expressed by stating
that the computational complexity of the sum itself is O(n) and of Gauss’ formula it is O(1).
You will learn about Landau notation in BIE-ZMA and especially BIE-ZDM lectures.

Another sum which can be expressed explicitly without the summation sign is shown in
the next example.
Example 3.5 (Součet prvních několika členů geometrické posloupnosti): For any real q
different from 1 and a natural n we have that

n∑
k=1

qk−1 =
1− qn

1− q
. (3.19)

The proof of the sum of a geometric sequence formula. We denote the expression in question
by

Sn :=
n∑

k=1

qk−1, n ∈ N.

Note what this expression does when we multiply it by the quotient q. From the definition of
Sn we have that

Sn+1 = 1 + q + q2 + q3 + · · ·+ qn−1 + qn = 1 + q
(
1 + q + · · ·+ qn−2 + qn−1

)
=

= 1 + qSn,

Sn+1 = Sn + qn,

which is valid for any positive natural n. By comparing the two formulas for Sn+1 we get the
equality

1 + qSn = Sn + qn, n ∈ N,
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whence
Sn(1− q) = 1− qn, n ∈ N.

Assuming that q 6= 1, the formula (3.19) immediately follows. Alternatively, we could also
refer to Remark 2.2.

Question 3.7: Can we remove the assumption that q 6= 1 in the example above? Is it then
necessary to change the formula (3.19)?
Question 3.8: To practise basic operations with sums calculate the sums below

5∑
k=1

1,
6∑

k=1

k −
6∑

k=1

(k + 1).

Question 3.9: Which of the below expressions can be uniquely interpreted (i.e. evaluated)
without further specifications?

a)
4∑
k

k + 1, b) j
30∑
j=1

30k,

c)
∑
j

2j, d)
2j∑
j=1

sin j.

Abbreviation of product
Analogously to summation, there is an abbreviated notation for product. We use the Greek
capital leer

∏
(read pi, product). For instance, the product of the first ten natural numbers

can be wrien as

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 =
10∏
k=1

k.

We work with products in a similar way as with sums. e only difference is that we use
multiplication instead of addition; the underlying concept is the same. For example, we have
that

n∏
k=1

ak · bk =
( n∏

k=1

ak

)
·
( n∏

k=1

bk

)
,

n∏
k=1

c · ak = cn
n∏

k=1

ak.

3.7 Factorial and binomial coefficient
e factorial of a positive natural number n is defined as

n! :=
n∏

k=1

k.

e factorial of zero is defined separately, 0! := 1. e factorial of negative integers is not
defined.
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e factorial can be extended to all real numbers with the exception of negative integers.
is extention is represented by a special functionΓ, which has the property thatΓ(n+1) = n!
for n ∈ N0 and, moreover, Γ(x+ 1) = xΓ(x) for x ∈ Rr {. . . ,−2,−1, 0}. e reader will
certainly meet the Γ function in the Probability and Statistics course (BIE-PST).

e binomial coefficient is oen used in practical calculations. For a natural n and
integer k such that 0 ≤ k ≤ n we define(

n

k

)
:=

n!

(n− k)!k!
.

Although this definition looks confusing, the actual meaning of a binomial coefficient
(
n
k

)
is

simple. is number represents the number of possible selections of k items out of n objects
where the order of selection does not maer and where we do not allow repeted selection of
an item.

Oen it is useful to know all binomial coefficients for a given n. Here, the Pascal’s
triangle will come in handy. First we will observe the equality(

n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
. (3.20)

Indeed, (
n

k − 1

)
+

(
n

k

)
=

n!

(n− k + 1)!(k − 1)!
+

n!

(n− k)!k!
=

=
n!

(n− k)!(k − 1)!

(
1

n− k + 1
+

1

k︸ ︷︷ ︸
n+1

(n−k+1)k

)
=

=
(n+ 1)!

(n− k + 1)!k!
=

(
n+ 1

k

)
.

Now imagine all binomial coefficients organised as a Pascal’s triangle. e formula (3.20)
then says that the sum of neighbouring binomial coefficients will be located one row below.
See Figure 3.8.

e rows of a Pascal’s triangle are enumerated starting from zero, i.e. the 0th row contains
only 1, the first row reads 1, 1, the second row reads 1, 2, 1, etc. is method of enumeration
is chosen so that

(
n
k

)
lie in row n. It also makes it easer to remember the binomial theorem

(see equation 2.1), the coefficients for (a+ b)n are placed in row n.

3.8 Important constants
In applications we oen encounter the need to use Euler’s number e and Ludolph’s number
π. Approximate values of these constants with precision of one thousand decimal places are
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Figure 3.8: Pascal’s triangle.

given below.
π ≈ 3.14159265358979323846264338327950288419716939937510582097494459230781

64062862089986280348253421170679821480865132823066470938446095505822

31725359408128481117450284102701938521105559644622948954930381964428

81097566593344612847564823378678316527120190914564856692346034861045

43266482133936072602491412737245870066063155881748815209209628292540

91715364367892590360011330530548820466521384146951941511609433057270

36575959195309218611738193261179310511854807446237996274956735188575

27248912279381830119491298336733624406566430860213949463952247371907

02179860943702770539217176293176752384674818467669405132000568127145

26356082778577134275778960917363717872146844090122495343014654958537

10507922796892589235420199561121290219608640344181598136297747713099

60518707211349999998372978049951059731732816096318595024459455346908

30264252230825334468503526193118817101000313783875288658753320838142

06171776691473035982534904287554687311595628638823537875937519577818

57780532171226806613001927876611195909216420199 . . .
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e ≈ 2.71828182845904523536028747135266249775724709369995957496696762772407

66303535475945713821785251664274274663919320030599218174135966290435

72900334295260595630738132328627943490763233829880753195251019011573

83418793070215408914993488416750924476146066808226480016847741185374

23454424371075390777449920695517027618386062613313845830007520449338

26560297606737113200709328709127443747047230696977209310141692836819

02551510865746377211125238978442505695369677078544996996794686445490

59879316368892300987931277361782154249992295763514822082698951936680

33182528869398496465105820939239829488793320362509443117301238197068

41614039701983767932068328237646480429531180232878250981945581530175

67173613320698112509961818815930416903515988885193458072738667385894

22879228499892086805825749279610484198444363463244968487560233624827

04197862320900216099023530436994184914631409343173814364054625315209

61836908887070167683964243781405927145635490613031072085103837505101

15747704171898610687396965521267154688957035035 . . .

e definition of Euler’s number will be discussed in detail in BIE-ZMA. It is not necessary to
stress out the importance of π. One application of e is related to its being used as the base of
the natural logarithm that we will be discussing in section 4.10.
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4 Elementary functions

In this chapter we first discuss the concept of function and further summarize the properties
of several known types of real functions of a real variable f .

4.1 What is it a function?
For the purposes of this text, the term „function“ is understood as follows:
Definition 4.1 (Real function of a real variable): Let us have a non-empty set of real numbers
A ⊂ R. By Real function of a real variable (abbreviated function) f we mean an unambigu-
ous rule that assigns to each number of A a unique real number. We denote such a function as
f : A→ R. If the function f assings to a ∈ A the number b, we write f(a) = b. e number
a is said pre-image of the number b and b is said image of a through the function f . We
also say that f(a) is the value of the function f at the point a.
Example 4.1: Let us consider the set A = [−1, 1]. Let us try to construct the function g such
that „to each x in the set A it corresponds the real number y satisfying x2 + y2 = 1“. Can g
be uniquely specified as a function g : A→ R? Let us take x ∈ A. We ask if y ∈ R such that
x2 + y2 = 1 can be found unambiguously. is is equivalent to solve the equality

y2 = 1− x2. (4.1)

Since x ∈ A, 1− x2 ≥ 0 and therefore the equation (4.1) has two solutions (for x 6= ±1)

y = ±
√
1− x2.

Which y should we take? is is not an anumbiguous way to assign a number y to every x
in A, as required in the definition of function. erefore, we cannot construct a function as
asked in this example. We need to slightly adjust the entry.
Example 4.2: Consider the set A = [−1, 1]. Let us try to construct a function g as follows:
„to every x in the set A we assign a non-negative real y such that x2 + y2 = 1“. Can g be
uniquely specified as a function g : A → R in this way? We can start as in the previous
example. us we solve (4.1) with respect to y for given x ∈ A. However now we realize that
the equation has just one non-negative solution

y =
√
1− x2.

is y is the image of a given x ∈ A. erefore, aer this consideration, we see that g is now
well defined aas a function. We can write g more explicitly as

g(x) =
√
1− x2.
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4. Elementary functions What is it a function?

Speaking of functions it is very oen necessary to talk about displayed objects and possible
functional values.
Definition 4.2: Let us take a function f : A→ R as defined in 4.1. We say that the set A is
the domain of f and we denote it as Df . e set

Hf := {b ∈ R | (∃a ∈ Df )(f(a) = b)} (4.2)

is said image set (or range) of the function f .
In the previous example the domain of the fuction g id Dg = [−1, 1]. Remember the

meaning of the symbols used in equation (4.2). e set Hf contains all the real numbers b for
which there exists a in the domain of f such that f(a) = b. We oen denote the domain of
the function f also without index, i.e. D(f).

Here let us point out a frequent mistake. When a function f : A→ R is given, R is not
necessarely its image set. For example, the function sin, that we will describe later, is in the
usual notation denoted as 4.1 funkce sin : R → R. However its image set is Hsin = [−1, 1],
which certainly it is not the whole real axis.

e reader is certainly used to introduce a function as f(x), using an explicit formula
indicating what operations need to be done with the (real) x to get its image f(x). is is
not the only (nor most common) way to denote a function f . You will see other notations
in BIE-ZMA. If a function is given thorugh a formula, without any further comment, then the
set of all real x, for which f(x) has meaning as a real number, is called the natural domain
of the function f .
Example 4.3: Suppose a function is specified by the formula

h(z) =
√
z2 − 3z + 2,

without any comment on the domain. Its domain is then the above mentioned natural
domain. We have to find it. For the square root to make sense, we need that its argument is
non-negative, thus z belonging to the natural domain of h must satisfy

0 ≤ z2 − 3z + 2 = (z − 2)(z − 1)

e product of two real numbers is non-negative, if the given numbers are both non-negative
or both non-positive. us z belong to Dh if it satisfies z ≥ 2 and simultaneously z ≥ 1 (i.e.
z ≥ 2) or z ≤ 2 and simultaneously z ≤ 1 (tj. z ≤ 1). erefore the natural domain of our
function is

Dh = (−∞, 1] ∪ [2,+∞).

Example 4.4: Not every formula specifies a function. For example, the expressions
√
−1− x2, ln ln sin(x),

have no sense in the set of real numbers x.
To illustrate a function we can use its graph. If we introduce two orthogonal coordinate

axes, denoted by default x (horizontal axis, independent variable) and y (vertical axis, depen-
dent variable), we call graph of the function f the set which contains the pairs (x, y) ∈ R×R
such y = f(x). It holds then

graph f = {(x, f(x)) ∈ R× R | x ∈ Df}.

Now we will deal with several kinds of known functions. An overview of the properties
of many functions can be found, for example, in [4].
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4. Elementary functions What is it a function?

Properties of functions
In order to easily talk about the behavior of functions, it is worthwhile introducing some
useful terms. By slope, we distinguish the following types of functions:
Definition 4.3: A function f with domain Df ⊂ R is said to be, on the set A ⊂ Df ,

• increasing, if (∀x, y ∈ A)
(
x < y ⇒ f(x) ≤ f(y)

)
,

• stricly increasing, if (∀x, y ∈ A)
(
x < y ⇒ f(x) < f(y)

)
,

• decreasing, if (∀x, y ∈ A)
(
x < y ⇒ f(x) ≥ f(y)

)
,

• strictly decreasing, if (∀x, y ∈ A)
(
x < y ⇒ f(x) > f(y)

)
,

• monotonic, if it is increasing or decreasing,

• strictly monotonic, if it is strictly increasing or strictly decreasing.

Here again, the reader is reminded that our nomenclature is not widely used in every
country, it is used in Anglo-Saxon literature. It is therefore more likely that the reader will
encounter it when searching the Internet and studying English literature.

In terms of symmetry, we distinguish between odd, even and periodic functions.
Definition 4.4: A function f is said

• even, if (∀x ∈ Df )((−x ∈ Df ) and (f(−x) = f(x))),

• odd, if (∀x ∈ Df )((−x ∈ Df ) and (f(−x) = −f(x))),

• periodic with period T > 0, if (∀x ∈ Df )((x+ T ∈ Df ) and (f(x) = f(x+ T ))).

e graph of an even function is axially symmetrical with respect to the y axis. e graph
of an odd function is symmetric with respct to the origin of the coordinates axis. e function
value of an aperiodic function at a point x does not change with a shi to the point x+ T , T
being the period.

Finally, let us recall the notion of injective function here.
Definition 4.5: We call a function f : Df → R injective, when for very different number a
and b from the domain of the function f also the functional values f(a) and f(b) are different.
Equivalently, in symbols

(∀a, b ∈ Df )(a 6= b⇒ f(a) 6= f(b)).

Alternatively, the requirement in the definition can be reformulated as follows: a function
f is injective, if for every a, b ∈ Df such that f(a) = f(b), ti holds that a = b.
Example 4.5: For example the function f(x) = x2 defined on the whole R is not injective.
e requirement in the definition is not met: it is enough to choose two different numbers, as
for example a = 1 a b = −1, for which obviously f(1) = f(−1). In contrast, the function
f(x) = x3 defined on the whole R is injective. Indeed, let us take two a, b ∈ R such that
f(a) = a3 = b3 = f(b). Does it follow from this that a = b? e use of a known algebraic
formula results in equality

0 = a3 − b3 = (a− b)(a2 + ab+ b2). (4.3)
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Figure 4.1: Graph of the absolute value.

e expression in the second bracket is zero only if a = b = 0. We can make sure of this by
adjusting the square:

a2 + ab+ b2 = a2 + 2a
b

2
+
b2

4
+

3

4
b2 =

(
a+

b

2

)2

+
3

4
b2

If at least one of a, b is non-zero, then from (4.3) it necessarily follows a = b.
Remark 4.1: Frequent student myths include the statement: The function f is injective when
every element in the domain has just one image. is statement applies to every function (it is
in the definition of function)! It does not express the injectivity of the function.

4.2 The absolute value
For a real number x we set

|x| :=

{
x, x ≥ 0,

−x, x < 0.
(4.4)

e function |x| is called absolute value. e notation used in equation (4.4) should be
interpreted as follows: For given x grater or equal to 0, then |x| is defined as x and in the
case x is negative, |x| is defined as −x. e graph of the function absolute value is ploed in
picture 4.1.

Now let us summarize a few basic properties of the absolute value. Its e domain of the
absolute values is the whole set of real numbers, i.e. D|x| = R. e image set of the absolute
value is given by the set of all non-negative real umbers, thus H|x| = [0,+∞). Indeed, from
definition (4.4) we obtain the inequality |x| ≥ 0 for every x and on the other hand for any
y ≥ 0 it holds |y| = y. Furthermore, directly from definition (4.4) it clearly follows that for
every real x and y it holds

| − x| = |x|, x ≤ |x|, −x ≤ |x| (4.5)

and (think about it!)

|x · y| = |x| · |y|,
∣∣∣∣xy
∣∣∣∣ = |x|

|y|
for y 6= 0.
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An important property of absolute value is the so-called triangular inequality.
Theorem 4.1 (triangular inequality): For every real x and y the following inequality holds

|x+ y| ≤ |x|+ |y|.

Proof. Consider any real x and y. We have

• if x+ y ≥ 0, then |x+ y| = x+ y ≤ |x|+ |y|,

• if x+ y < 0, then |x+ y| = −(x+ y) = −x− y ≤ |x|+ |y|.

Obviously, for every real z it applies z ≤ |z|.

Question 4.1: Prove or refute the claim: for every x ∈ R it holds
√
x2 = x.

4.3 Lower and upper integer part
Other frequently used and useful functions are the lower integer part and the upper integer
part of a real number.

e lower integer part of a real number x is defined as the gratest integer number which
is smaller than or equal to x and we denote it as bxc. Similarly, the upper integer part of a
real number x is defined as the smallest integer number that is greater than or equal to x and
we denote it as dxe. us, we could explicitly write (we just express symbolically what we
have wrien in the previous sentences):

bxc = max{m ∈ Z | m ≤ x},
dxe = min{m ∈ Z | m ≥ x}.

edomain of the upper and lower integer part is thewhole real lineR. Trivially, according
to its definition, we are able to costruct bxc, resp. dxe, for every real number x. e set of
values of these functions is then given by the set of all the integers, i.e. Z. e graphs of the
upper and lower integer parts are shown in the figure 4.2.

4.4 Linear function
We call linear function 1 any function, for which there exists costants a, b ∈ R such that

f(x) = ax+ b (4.6)

holds for every x ∈ R. e graph of a linear function is a straigh line, see picture 4.3.
e domain of a linear function is the whole real line R. If a 6= 0, then the image set of

function (4.6) is given by the set of all real numbers. In the case a = 0 the image set of the
function (4.6) is the set Hf = {b}. In short,

Df = R,

Hf =

{
R, a 6= 0,

{b}, a = 0.

1From the latin linearis, that means „straight“ or „direct“.
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Figure 4.2: Graph of the lower (above) and upper (below) integer part.
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Figure 4.3: Graph of a linear function.
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In the special case with vanishing a, i.e. f(x) = b, we speak of constant function.
e roots of a linear function are easy to find, for example the equation ax+ b = 0 has

solution x = −b
a

if a is not zero. In case a = 0 and b is not vanishing, then the corresponding
equation has no solution and no intersection with the x axis exists. In case both a and b equal
to zero, we have the zero fuction, whose roots are given by the set of all real numbers.
Question 4.2: At the beginning of this section it was said that the graph of each linear
function is a straight line. On the contrary, is every straigh line the graph of a linear function?
Question 4.3: Above examples of a linear function f(x) = ax + b have been metioned,
which have just one, or no intersection with the x axis. Do they exhaust all the possibilities
regarding the number of intersection with the x axis?
Remark 4.2 (Terminology): In the second semester, you will study Linear Algebra (BIE-LIN),
where the term linear operator plays a central role. At this point the reader should note that
the word „linear“ in linear algebra means to require the following property:

f(x+ αy) = f(x) + αf(y)

for all the vectors x, y and all the numbers α. is condition is satisfyed by the linear function
introduced here only if b = 0, i,e. only when theirs graphs pass through the origin of the
coordinates system. Our linear function f(x) = ax+ b for non-vaishing b is called in linear
algebra affine function (operator).

4.5 Quadratic function
We call quadratic function a function f for which there exist constants a, b, c ∈ R, with
a 6= 0 such that

f(x) = ax2 + bx+ c (4.7)

for every x ∈ R. e domain of such a function is by definition the whole real line R. e
graph of a quadratic function is a parabola, see picture 4.4. e coordinates of the vertex of
the parabola are easily revealed aer squaring:

ax2 + bx+ c = a

(
x2 + 2 · b

2a
· x+

(
b

2a

)2)
+ c− b2

4a
=

= a

(
x+

b

2a

)2
+ c− b2

4a
. (4.8)

is adjustment is motivated by the simple requirement that the independent variable x occurs
only in a squared expression. is is accomplished with the clever addition and subtraction
of quadratic terms as shown here.

e squared bracket in (4.8) is always non-negative. From there it follows that the vertex
of the parabola is located at the coordinate point(

− b

2a
, c− b2

4a

)
.
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4. Elementary functions Quadratic function

From equation (4.8) it is evident that the sign of the coefficient a decides whether all functional
values are greater (smaller) than or equal to c− b2

4a
. e image set of the quadratic function is

therefore

Hf =


[
c− b2

4a
,+∞

)
, a > 0,(

−∞, c− b2

4a

]
, a < 0.

A well known formula applies to find the intersections x± of the function f with the x axis:

x± =
1

2a

(
− b±

√
b2 − 4ac

)
. (4.9)

e equation ax2 + bx + c = 0 has therefore real solutions only under the assumption of
non-negativity of the discriminant b2 − 4ac.

Proof of the formula for the roots of a quadratic function. e formula for the roots can be
derived from a modification to a square. Looking for roots, i.e. solving the equation
ax2 + bx+ c = 0 and by using the equality (4.8), we get(

x+
b

2a

)2

=
b2 − 4ac

4a2
.

From here, the solution can be expressed as follows:

x = − b

2a
±

√
b2 − 4ac

2|a|
.

Finally, by using the sign ±, we can write in compact form

x± =
−b±

√
b2 − 4ac

2a
,

which is exactly (4.9).

At this point, it should be pointed out that there can be many different proofs of a claim.
Some may be easier, some more complicated. For example, if we just wanted to validate the
present statement, that is, xpm as given in (4.9) expresses the roots of a quadratic function (4.7),
it is enough to proceed as follows2:

Alternative proof of the formula for the roots of a quadratic function. e validity of (4.9) can
be easily verified by a simple substitution. Let us take x+ and show that it is a root of (4.7).

ax2+ + bx+ + c = a · 1

4a2

(
− b+

√
b2 − 4ac

)2
+

b

2a

(
− b+

√
b2 − 4ac

)
+ c =

=
1

4a

(
b2 − 2b

√
b2 − 4ac+ b2 − 4ac

)
− b2

2a
+

b

2a

√
b2 − 4ac+ c = 0

us x+ is indeed a root! Analogously, it can be verified that x− is a root of (4.7), too.

Question 4.4: Let as take a > b > 0. e numbers a and b are said to be in golden ratio3, if
the ratio a+b

b
is the same as a

b
. What is then the value of ϕ = a

b
?

2Of course, to do this, we should get that formula for the roots from someone, or we could guess it, by some
ingenious idea.

3e value of this ratio is also sometimes called the golden section.
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Figure 4.4: Graphs of two quadratic functions.

4.6 Polynomial function
It is certainly well known to the reader how to define the integer power of a real number a.
Let us recall it here. For a natural number n we set

an := a · a · · · a︸ ︷︷ ︸
n times

(4.10)

and for n = 0, a0 := 1 (in the context of this section, even in the case a = 0). For negative
integers n and non vanishing a we define an := 1

a−n . e number −n is then positive so we
can use it in the denominator (4.10). For examples, it holds

π0 = 1, 24 = 2 · 2 · 2 · 2 = 16, 3−2 =
1

9
, 00 = 1.

According to this definition of power, it is obvious that for every real non-zero a and
integer k and n we have the important relationships (think!)

ak · an = ak+n a
(
ak
)n

= akn. (4.11)

e „power“ operation with a > 0 can be defined not only for integer coefficients. However,
at this point it is not clear how to define (let alone calculate) the value of an expression such
as for example 3π or 1.22.8. is issue is discussed in more detail in BIE-ZMA.

e generalizations of linear and quadratic functions are polynomials. We callpolynomial
function each function of the form

f(x) =
n∑

k=0

akx
k, x ∈ Df = R.

If an 6= 0, we say that n is the degree. (or order) of f . e real constants a0, a1, . . . , an
determine the function f as in previous cases the constants a, b, c did for the linear, resp.
quadratic, function. ese constants are oen called polynomial coefficients. To emphasize
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4. Elementary functions Polynomial function

the field in which we work, we sometimes speak of the functions introduced above as real
polynomials.

Of course, polynomial functions include both linear and quadratic functions. A common
feature of polynomials is that only adding and multiplying operations are needed to calculate
their functional values. In this sense, they are indeed one of the simplest (elementary)
functions. In addition, these operations can be cheap on CPU, resp. FPU, and therefore the
evaluation of polynomial functional values is easy.

e domain of any polynomial is the whole real line, Df = R. If the degree of the
polynomial is odd, then its image set is R. However, if the polynomial degree is even, then
only a portion of the real axis contains the image set (in particular a certain interval or a
point in the case of a constant polynomial).

Finding the roots of polynomials is generally a complicated task. Explicit formulas like
for example (4.9), are known only for polynomials of degree 1, 2, 3 and 4. For higher degree
polynomials, not only formulas for the roots are unknown, it is also proven that they do not
exist. Let us emphasize this fact once more. If a polynomial of degree at least five is given,
then the formula to find its roots does not exist and will never exist. When searching for
roots then we have to resort to numerical methods4.
Question 4.5: Which of the following functions is a polynomial?

1. f(x) = x2 + 2x+ 3 + 4
x
,

2. f(x) = x sin(2)− x3,

3. f(x) = e2 ln(1+x2),

4. f(x) = x3+x
x2+1

e only high school „method“ to search for the roots of a polynomial P (x) of degree
greater than two5 consists in repeating the following steps

1. guess one root, let us call it λ,

2. find (for example by the polynomial division) the root factor, i.e. factorize P (x) =
(x− λ)Q(x), where the polynomial Q(x) is of one degree lower than P (x),

3. return to the first point, but now guess the root of the polynomial Q(x).

is process is repeated until we reach a polynomial of the degree two, for which we can find
the roots by using the formula (4.9).

It is advisable to realize that this procedure is not an algorithm solving the task of finding
the roots of a given polynomial. e first task is an esoteric step leaning on randomness. For
example, try applying the procedure to the following polynomial (still of quite small degree):

12x6 − x5 + 57x4 − 10x3 − 9738x2 + 759x+ 47817.

At this point we advise the reader to review the polynomial division algorithm. is
algorithm finds use not only in the task of finding the roots of polynomials, but also finds
very important applications in computer security and encryption.

4See, for example, the bisection method or Newton’s method discussed in BIE-ZMA.
5We can find the roots of polynomial of degree one and two easily.
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x

y

a

√
a

y = x2

Figure 4.5: Construction of the square root of a number a.

Question 4.6: Find the roots of the following polynomials.

1. x2 + x− 12,

2. x3 − 2x2 − 5x+ 6,

3. x3 + 2x2 − 4x− 8.

4.7 Roots
Let us now consider a real number a and a natural number n. We use powers with natural
exponents to define natural roots as a certain (see below) real solution of the equation
xn = a. We then symbolically denote this solution in the following two ways

a
1
n = n

√
a, n ∈ N.

It is necessary to distinguish between the cases of odd and even n and to consider whether
such a construction makes sense or not.

Even roots
If it is n = 2k, k ∈ N, thus n is even, then xn ≥ 0 for every x ∈ R. is means that the
equation xn = a has a real solution only for a ≥ 0. is situation is shown in figure 4.5 for
n = 2. For a > 0 the solutions of such equation are actullay two, since x2k = (−x)2k.

We define the even root 2k
√
a as the non-negative solution of the equation x2k = a.

erefore, for example,
√
x2 is |x| and not x. For a = 0 the solution is just one and it is

2k
√
0 = 0.
From the above discussion, it is clear that the domain and the image set of the function

f(x) = 2k
√
x are both given by the set [0,+∞). Furthermore, the following equality applies

2k
√
x2k =

(
2k
√
x
)2k

= x for every x ≥ 0.

In other words, 2k
√
x is the inverse function of x2k restricted to the set [0,+∞). See picture 4.6

for k = 1. is will be discussed in more detail in BIE-ZMA.
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x
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f(x) = x2, x ≥ 0

f−1(x) =
√
x

Figure 4.6: Square power and square root.

x

y

a

3
√
a

y = x3

Figure 4.7: Construction of the cubic root of the number a.

Odd roots
If it is n = 2k − 1, k ∈ N, thus n is odd, then the equation x2k−1 = a has only one solution,
that we call odd power of a and we denote it as 2k−1

√
a. For example, 3

√
−8 = −2. See

picture 4.7 for the case n = 3.
e domain and image set of an odd root are both given by the whole real line R. An odd

power and the corresponding odd root are inverse to each other, namely it holds
2k−1
√
x2k−1 =

(
2k−1
√
x
)2k−1

= x for every x ∈ R.

For illustration in the case k = 2, see picture 4.8.

4.8 Rational function
We call rational function any function of the form

f(x) =
P (x)

Q(x)
,

where P and Q are polynomials. Generally speaking, the domain of such a function is given
by the set of all real numbers that does not contain roots of the polynomial Q, i.e.

Df = {x ∈ R | Q(x) 6= 0}.

Rational functions include linear, quadratic and all polynomial functions. Simply, you just
have to set Q(x) = 1, for x ∈ R and P to be any polynomial.
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x
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f(x) = x3

f−1(x) = 3
√
x

Figure 4.8: Cubic power and cubic root.

It is no longer easy to say something about the image set, so we will not dicuss this
question. However, let us at least show a few examples illustrating that there can be very
diverse situations (see picture 4.9).

4.9 Trigonometric functions
As trigonometric functions we name the functions sine (sin), cosine (cos), tangent (tg) and
cotangent (cotg). Furthermore, in this chapter we will mention theirs appropriately chosen
inverse functions, which are the functions arcsine (arcsin), arccosine (arccos) and arctangent
(arctg).

e functions sine and cosine are defined by using the following geometric construction
or algorithm. e input is the angle alpha and the output is given by sin(α) and cos(α).
While reading the algorithm, it is advisable to look at the picture 4.10.

1. Consider an orthogonal coordinate system with coordinate axis x and y and construct a
unit circleK (i.e. a unit circle with radius 1 in the given axes units) and center point at
the origin (0, 0).

2. Clockwise from the positive direction of the x axes we measure the angle6 α. One side of
this angle is the positive x axis and we denote the other side by p.

3. Let A be the point at the intersection of p and K . en we construct the point P as the
intersection with the y axis of the line passing through A and parallel to x. In this way,
we obtain the rectangular triangle OPA.

4. e length of the (oriented) side OP represents cos(α) and the other (oriented) side PA
represents sin(α).

Of course, the accuracy of the result depends on the accuracy of our drawing tools.
Infinite accuracy can only be achieved with infinitely accurate tools (here ruler, compass and

6the angle is measured in radians
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Figure 4.9: Examples of rational functions.

protractor). Obviously, this „calculation method“ is not very practical. In the course BIE-ZMA
we will show how to effectively evaluate functional values of (not only) these functions.

e basic values of the sine and cosine functions are summarized in the following table
and you can remind yourself of their graphs in figure 4.11.

α 0 π
6

π
4

π
3

π
2

sinα 0 1
2

√
2
2

√
3
2

1

cosα 1
√
3
2

√
2
2

1
2

0

From the construction of sine and cosine, it follows immediately the following equality

sin2(α) + cos2(α) = 1, α ∈ R. (4.12)

is equation is a consequence of the Pitagora’s theorem applied to the triangle OPA with
hypotenuse of lenght 1 and sides of lenght sin(α) and cos(α) (see the construction above and
picture 4.10). Furthermore, it is evident from the construction that the sine function is odd
and the cosine function is even, i.e.

sin(−α) = − sin(α) a cos(−α) = cos(α), α ∈ R.
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Figure 4.10: Geometric construction of the functions sine and cosine.

For the domain of these function we have

Dsin = Dcos = R.

eir image set is
Hsin = Hcos = [−1, 1].

To conclude, both functions are periodic with period 2π, both functions are well defined on
R and for every x ∈ R the equality sin(x+ 2π) = sin(x) and cos(x+ 2π) = cos(x) holds.

Very useful are the so-called addition formulas for the functions sine and cosine: for
any real α and β, it holds

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) (4.13)

and
cos(α + β) = cos(α) cos(β)− sin(α) sin(β). (4.14)

ese formulas could be most easily derived using the property of multiplication of complex
numbers by their goniometric expression.

By using the fact that sine is and odd function and cosine is an even function, from
formulas (4.13) a (4.14) we immediately get analogous formulas for the difference of angles:

sin(α− β) = sin(α) cos(β)− cos(α) sin(β),
cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

Similar formulas can be derived for both the tangent and cotangent functions. e meaning
of these formulas and their use is obvious: if we have information about the values of sinα
and cos β, then they allow us to get information for example on the value of sin(α + β).

From formulas (4.13) and (4.14), we obtain the double-angle formulas, which are very
oen used:

sin(2α) = 2 sin(α) cos(α),

and
cos(2α) = cos2(α)− sin2(α). (4.15)
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Figure 4.11: e trigonometric functions sin, cos, tg and cotg.

By using the relationships (4.12) and (4.15), we immediately derive formulas for the sine
and cosine of half angle,

cos2(α/2) =
1

2

(
1 + cos(α)

)
,
∣∣ cos(α/2)∣∣ =√1

2

(
1 + cos(α)

)
,

sin2(α/2) =
1

2

(
1− cos(α)

)
,
∣∣ sin(α/2)∣∣ =√1

2

(
1− cos(α)

)
.

If we want to get rid of absolute values in these formulas, we have to decide the sign of
expressions based on the angle α, more precisely to which of the four quadrants in the
Cartesian plane it belongs.

rough the functions sin and cos we define the functions tangent tg and cotangent cotg
as

tgα :=
sinα
cosα

, α ∈ Dtg = Rr
{π
2
+ kπ

∣∣ k ∈ Z
}
,

cotgα :=
cosα
sinα

, α ∈ Dcotg = Rr
{
kπ
∣∣ k ∈ Z

}
.

eir image set is the whole R. For the sake of clarity, we present their graphs in picture 4.11.
Neither of the previously introduced trigonometric functions is injective on its domain. If

you choose any y in the image set of sin, there exists infinite x in the domain of sin such that
sin(x) = y (see picture 4.11). erefore, for any given y ∈ Hsin, it cannot be unambiguously
specified x ∈ Dsin satisfying y = sin(x). e same observation applies to cos, tg and cotg.
Trigonometric functions are not injective on their natural domain and therefore can not have
inverse functions… unless we restrict them appropriately, that is, we reduce their domain. In
accordance with the established convention, we define

• arcsine, arcsin, as the inverse function of sin restricted on the interval [−π
2
, π
2
],
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Figure 4.12: Graph of the functions arcsin and arccos.
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Figure 4.13: Graph of the functions arctg x and arccotgx.

• arccosine, arccos, as the inverse function of cos restricted on the interval [0, π],

• arctangent, arctg, as the inverse function of tg restricted on the interval (−π
2
, π
2
),

• arccotangent, arccotg, as the inverse function of cotg restricted on the interval (0, π).

Question 4.7: From the geometric definition of the functions sin and cos derive the values
of sin π

3
and cos π

3
.

Question 4.8: From the geometric definition of the functions sin and cos derive the values
of sin π

4
and cos π

4
.

Question 4.9: Without using a calculator (it would not give the result exactly) find the value
of the following expressions.

1. arcsin sin
9π

4
,

2. sin
7π

4
.
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Figure 4.14: Exponential functions.

Question 4.10: Derive the addition formula for the function tg, i.e. express tg(x + y) by
using tg(x) and tg(y).

4.10 Exponantiation and logarithm
For 0 < a 6= 1 the function7

f(x) = ax, x ∈ Df = R,

is called exponentiation of base a. is function extends the operation of elevation to
power to non-integer exponents. For any real numbers x and y, it applies the well known
equality

ax · ay = ax+y a
(
ax
)y

= axy.

In figure 4.14 the graph of the function f is shown for different bases a.
In general, for a > 1 f is strictly increasing (i.e. f(x) < f(y) for any x < y),Df = R and

Hf = (0,+∞). For a < 1, f is strictly decreasing (i.e. f(x) > f(y) for any x < y), Df = R
and Hf = (0,+∞).

Logarithm
e logarithm is the inverse function of the exponentiation (only in the case of base different
from one, otherwise the exponential function is not injective). More specifically, from the
graph of the exponential function f(x) = ax, a 6= 1, we see that for every real number y
there exists a real x such that ax = y. We say that a function with such a property is injective
(in this case on the whole R) and therefore invertible on its image set. e inverse function
of the exponentiation of base a, 0 < a 6= 1, is said logarithm of base a and we denote it
as loga. e domain of the exponentiation is the whole R and its image set is the interval

7We will see in the course BIE-ZMA the definition of the generic power, ie ax, for positive a and real x. In
secondary schools, the concept is axiomatic.
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4. Elementary functions Exponantiation and logarithm
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Figure 4.15: Graph of some logarithmic functions with different bases.

(0,+∞). From this it follows that the domain of the logarithm, since it the function inverse
of the exponentiation, is Dloga = (0,+∞) and its image set is Hloga = R.

e reader has certainly already indirectly encountered logarithms through applications.
For example the Richter scale (that measures the intensity of earthquakes) or the decibel scale
(measuring the intensity of sound) are logarithmic.

Important properties of the logarithm can be derived from properties of the exponentiation:

aloga x = x, x > 0, (4.16)

loga a
x = x, x ∈ R, (4.17)

loga xy = loga x+ loga y, x, y > 0, (4.18)
loga x

y = y loga x, x > 0 a y ∈ R. (4.19)
Indeed, the first two equalities, (4.16) and (4.17), are merely an expression of the inverse
relationship between the exponential and the logarithm, thus they apply by definition. Let us
prove the equality (4.18). For positive x, y there exist real u, v such that

x = au a y = av.

From this we have
xy = au · av = au+v.

us
loga xy = u+ v = loga x+ loga y.

In a similar way, the property (4.19) can be proven.
Remark 4.3: e reader is certainly familiar with the operation called remove the logarithm.
at is, saying the following: if

loga x = loga y,
for some x, y > 0 and 0 < a 6= 1, then

x = y.

is operation is no magic. It is just about using the injectivity of the function loga. e same
can be done with any injective function!
Question 4.11: Which is the domain of the function f(x) = loga x2?
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5 Analytical geometry

Let no one ignorant of geometry enter here.

Inscription above the entrance to Platonic Academy

5.1 Basic notions
We will recall how geometric objects in a plane can be described using equations. ese con-
cepts are very useful because, as everyone knows, the output periphery of an overwhelming
number of electronic devices are two-dimensional (monitors, paper, projectors, etc.).

Consider an orthogonal coordinate system with axes x, y and origin O in a plane. A point
in this plane is described by two numbers called coordinates. For example, if a point A has
coordinates (1, 2), we write1 A = (1, 2), or, using square brackets, A = [1, 2]. e point A
lies at the intersection of a line parallel to the y-axis which cuts the x-axis at number 1 and a
line parallel to the x-axis which cuts the y-axis at number 2. e situation is shown in detail
in Figure 5.1.

Another important geometric object is the vector. We will denote vectors by lower
case leers with arrows, e.g. ~a, ~b, ~c. We understand a vector as a pair of numbers2 giving

1We do not use expressions such as A[1, 2] to denote point coordinates. is notation rather evokes the
feeling in the reader that A is a function of two variables. In addition, it is dangerously similar to Mathematica
syntax.

2We will write vectors as rows although it would be more correct to write them as columns. You will learn
more about this topic in BIE-LIN.

y

x

O

−2

−1

1

2

−2 −1 21

A

Figure 5.1: Orthogonal coordinate system and point A = (1, 2).
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α · ~a, α > 1

~a
α · ~a, 0 < α < 1

α · ~a, α < 0

O

(a)

~a

~b

~a+~b

(b)

O

Figure 5.2: Geometric interpretation of scalar multiplication (a) and vector addition (b).

a direction; if we have a vector ~a = (a1, a2) then the numbers a1 and a2 are called vector
components of ~a. We can add vectors and multiply them by a number using the rules

α · (a1, a2) := (αa1, αa2), (a1, a2) + (b1, b2) := (a1 + b1, a2 + b2). (5.1)

For obvious reasons we sometimes say that vector addition and scalar multiplication (mul-
tiplication of a vector by a number) defined in (5.1) are done „componentwise“. Equality of
vectors is defined intuitively. We say that two vectors ~a = (a1, a2) and~b = (b1, b2) are equal
if their components are equal, i.e. if a1 = b1 and a2 = b2, and we write ~a = ~b. Geometric
interpretation of vector addition and scalar multiplication is shown in Figure 5.2.

We can multiply a vector by a number. Can we also multiply two vectors? For that
purpose we define scalar product 3. Standard4 scalar product of two vectors ~a = (a1, a2)

and~b = (b1, b2) is defined by this rule

~a ·~b := a1b1 + a2b2.

3You are certainly also familiar with the vector product, which assigns to a couple of three-dimensional
vectors another three-dimensional vector. However, as this chapter concerns only planar objects we will not
discuss this operation in more detail here.

4ere are more ways, even infinitely many, of defining scalar product. You will find out more about this
topic in BIE-LIN.
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5. Analytical geometry The line

e product is called scalar, because the result is not a vector but a number (a scalar). Furthe-
more, scalar product is related to the angle between vectors. e angle between two vectors
~a and~b is α ∈ 〈0, π), if and only if

cosα =
~a ·~b

‖~a‖ ‖~b‖
.

Length of a vector ~a = (a1, a2) is defined by the Pythagoras’ theorem. It is denoted by
‖~a‖ and computed as

‖~a‖ :=
√
a21 + a22 for ~a = (a1, a2).

Note that the length can be also expressed using scalar product as ‖~a‖ =
√
~a · ~a.

You will study these and other geometric objects in the BIE-LIN course, for more than
two dimensions as well.

5.2 The line
e simplest geometric structure (apart from the point) is the line. To describe a line p
completely we need to know a point A which is contained by the line and a direction of the
line, i.e. a non-zero vector ~a. e line p then consists of all points with coordinates

(x, y) = A+ t · ~a, t ∈ R. (5.2)

e number t is called a parameter as it parametrises the points on the line. Note that if
we bound the set of possible values of t we get only parts of the line. For instance, for
t ∈ 〈0,+∞) we get a ray with the initial point A and direction ~a, whereas for t ∈ 〈0, 1〉 we
get a line segment with A and A+ ~a as its end points. is way of describing a line, i.e. by
an equation (5.2), is oen called the parametric equation of a line.

An alternative way of describing a line is this. A line consists of all points with coordinates
(x, y) which satisfy the linear equation of a line

ax+ by + c = 0. (5.3)

Constants a, b, c are parameters of the line. In equation (5.3), the symbols x and y represent
unknowns. A point (α, β) is contained in the given line if and only if aer substituting α for
x and β for y into (5.3) we get a valid equality (0 = 0). Let’s analyze in more detail the line p
described by equation

x− 2y + 1 = 0. (5.4)

e point (1, 2) does not lie on p because aer substituting to (5.4) we get −2 = 0 which is
not true. On the contrary, (−1, 0) and (0, 1/2) aer substituting give 0 = 0 and so they do
lie on the line. Two points are sufficient to plot a line.

We assume that the reader knows how to convert a parametric equation of a line to its
linear equation and vice versa.
Question 5.1: Convert the parametric equation of a line into a linear equation: (x, y) =
(1, 2) + (2t,−t), t ∈ R.
Question 5.2: Convert the linear equation into a parametric equation for 3x− 2y + 1 = 0.
Question 5.3: Construct a linear equation of a line containing points (1,−3) and (2, 4).
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Figure 5.3: Circle with centre at point (c1, c2) ∈ R2 and radius r > 0.

5.3 The circle and the ellipse
e equation of a circle can be formed easily if we recall the Pythagoras’ theorem. again.
A circle with centre at point C = (c1, c2) and radius r > 0 is the set of all points (x, y) whose
distance from C is equal to r. Hence

(x− c1)
2 + (y − c2)

2 = r2

is situation is shown in Figure 5.3.
e equation of an ellipse is given by

(x− c1)
2

a2
+

(y − c2)
2

b2
= 1,

where a and b are positive parameters and A = (c1, c2) is the centre of the ellipse. e
parameters a and b define the length of the semi-major axis and the semi-minor axis. If a = b
then we get a circle. A typical ellipse is depicted in Figure 5.4.
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Figure 5.4: Ellipse with centre at (c1, c2) ∈ R2, semi-major axis b and semi-minor axis a,
0 < a < b.
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6 Warning

e BIE-ZMA course is taught at the Faculty of Information Technology, therefore many
students have a warm relationship to the various computer algebraic systems (CAS), be it
particular programs (Mathematica, Maple, Matlab, Sage, Maxima,…) or on-line applications
(WolframAlpha, CoCalc). We would like to point out here that although we generally welcome
the use of these systems, users that are not familiar with various parts of mathematics may
find the outputs and behaviour of such systems confusing.

We will mention some of the classic traps.

6.1 Smart calculators are too smart

How come that ln(−1) or sin(i) are evaluated and do not return an
error?
Virtually all elementary functions can be extended almost to the entire set of complex numbers.
And indeed, ln(−1) = iπ and sin(i) = i sinh(1). ere is not enough time to study the calculus
of complex numbers in BIE-ZMA. However, we will at least mention how to define ez for any
complex number z.

Mathematica, for example, works implicitly in „complex mode“. is may be very confus-
ing for an uneducated user.

How come that 3
√
−1 is evaluated as 1

2 +
√
3
2 i and not as −1?

If you are curious you can easily verify that this answer is not wrong:(
1

2
+

√
3

2
i

)3
=

(
1

4
+

√
3

2
i− 3

4︸ ︷︷ ︸
− 1

2
+

√
3

2
i

)
·

(
1

2
+

√
3

2
i

)
=

= −3

4
− 1

4
= −1.

e „problem“ is that in complex numbers there are in total three solutions to the equation

z3 = −1, z ∈ C.

e one solution that we got is what we call principal solution – the solution with the least
„argument“. We repeat again the calculus of complex numbers is not part of the BIE-ZMA
course.
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6. Warning Frequently asked questions

Equality in CAS Mathematica
In CAS Mathematica there are several symbols for equality with the following meaning:

• Symbol == denotes logical equality (comparison, writing equations).

• Symbol = denotes assignment.

• Symbol := denotes „delayed evaluation“.

We will demonstrate the various meanings using the example below. e output of this piece
of code

a = 4;

b = a;

Print[b]

a = 2;

Print[b]

is

4

4

On the other hand, the cell containing

a = 4;

b := a;

Print[b]

a = 2;

Print[b]

results in the output

4

2

6.2 Frequently asked questions
Here you will find an overview of most frequent questions, problems and mistakes which
students meet especially at the beginning of the course and which can already be discussed
now.

We did/called/denoted it differently at high school
It is possible and it is also quite all right. However, you cannot expect that all people around
the world will comply with the approach you were taught at high school. Different people
may use different conventions and may have very good reasons for doing so.

If you use some materials to study it is a good idea to first make yourself familiar with
the language which is used in the text. For example, the BIE-ZMA course material starts with

60



6. Warning Frequently asked questions

a list of symbols and ends with a list of names which helps readers to find definitions they
need quickly.

We can demonstrate this situation on the names used in connection with monotonous
functions and sequences (increasing, strictly increasing, non-increasing, etc.). ere are
a lot of different nomenclatures. However, we will only use one set of names to avoid
misunderstanding. See lectures and lecture notes.

is remark does not only apply to mathematics but it is generally valid.

Inclusion
Not only in BIE-ZMA, the symbol ⊂ is used to denote inclusion and we do not distinguish
between a subset and a proper subset. I.e., the inclusion A ⊂ B holds if and only if every
element of the set A is also an element of the set B. In particular, for any set A we have
that A ⊂ A. We can make do with this one notion without a problem throughout the whole
course.

Texts which do distinguish between subsets and proper subsets usually use special symbols
A ⊆ B and A ( B for that end.

Domains of trigonometric functions
e functions sin, cos, tg are not injective and therefore they do not have inverses. However,
we can restrict them to sets on which they are injective and then construct inverse functions
on such sets. ere are infinitely many ways of rectricting these functions in such a way. e
standard choice is the following:

arcsin =

(
sin
∣∣∣
〈−π/2,π/2〉

)−1

,

arccos =
(
cos
∣∣∣
〈0,π〉

)−1

,

arctg =

(
tg
∣∣∣
(−π/2,π/2)

)−1

.

Hence we have that

Darcsin = 〈−1, 1〉, Harcsin = 〈−π/2, π/2〉,
Darccos = 〈−1, 1〉, Harccos = 〈0, π〉,
Darctg = R, Harctg = (−π/2, π/2).

Zero to the power of zero
e algebraic expression 00 is defined as 1. Zero in the exponent denotes an empty multipli-
cation (there are no numbers to be multiplied) and so the result is the identity element for
multiplication which is 1. Similarly, the empty sum evaluates to 0, the identity element for
addition.
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6. Warning Frequently asked questions

Necessary condition, direction of an implication
If an implication A⇒ B is true then we oen call B a necessary condition for A. If B is not
true then A cannot be true either (because if A were true then so would be B).
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7 List of the used symbols

e table below is compatible with the notation used in the lectures and exercises of BIE-ZMA.

Symbol Meaning

= symbol of equality
:= equality by definition, the expression on the le is defined on the right
a ≤ b a is less than or equal to b
a ≥ b a is greater than or equal to b
a < b a is less than b
a > b a is greater than b
N = {1, 2, . . .} set of natural numbers
N0 = {0, 1, 2, . . .} set of natural number plus 0
Z set of integer numbers
Q set of rational numbers
R set of real numbers
C set of complex numbers
Re z real part of the complex number z
Im z imaginary part of the complex number z
(a, b) open interval, or an ordered pair or point in a plane
[a, b] closed interval
A ⊂ B A is a subset of B, it admits A = B
A ∪B union of the sets A and B
A ∩B intersection of the sets A and B
ArB set difference
A×B Cartesian product of the sets A and B
|A| number of elements of the set A
x ∈ A x is an element of the set A
x /∈ A x is not an element of the set A
∧ conjunction
∨ disjunction
⇒ implication
⇔ equivalence
∀ universal quantifier
∃ existential quantifier
Df nebo D(f) domain of a function f
Hf nebo H(f) image set of a function f
e Euler’s number
π Ludolph’s number
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7. List of the used symbols

Symbol Meaning

i imaginary unit
sin function sine
cos function cosine
tg function tangent
cotg function cotangent
arcsin function arcsine
arccos function arccosine
arctg function arctangent
loga logarithm of base a, 0 < a 6= 1
ln natural logarithm, i.e. loge
log decimal logarithm, i.e. log10
bxc lower integer part of the real number x
dxe upper integer part of the real number x
|x| absolute value of the number x
n! factorial of the number n(
n
k

)
binomial coefficient

e following table lists frequently used Greek leers with their name.

Greek leer Upper case Name LaTeX

α alpha alpha
β beta beta
γ Γ gamma gamma
δ ∆ delta delta
ε epsilon epsilon
ζ zeta zeta
η eta eta
θ Θ theta theta
κ kappa kappa
λ Λ lambda lambda
µ mu mu
ν nu nu
ξ Ξ xi xi
π Π pi pi
ρ rho rho
σ Σ sigma sigma
τ tau tau
ϕ Φ phi varphi
χ chi chi
ψ Ψ psi psi
ω Ω omega omega
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Answers to some questions

2.1 e numbers 3
4
and sin π

6
= 1

2
are rational, π

2
and sin π

4
=

√
2
2

are irrational.

2.2 1. non-coprime (both can be divided by 7), 2. neither coprime nor non-coprime, it is not
a pair of integers, 3. coprime (both are prime numbers).

2.3
∑n

j=1(2j − 1) = n2. e proof by mathematical induction is easy and le to the reader.

3.1 ArB = (1, 2), B r A =〉3, 4)

3.2 From ijk = −1 by multiplying with k from the right we have −ij = −k and so ij = k.
Similarly, from ijk = −1 by multiplying with i from the le and then with j from the le we
get −k = ji.

3.3 a) Re z = 10, Im z = −5, b) Re z = 3, Im z = −4, c) Re z = −1, Im z = 1, d) Re z = 2
5
,

Im z = −1
5
.

3.4 a) bounded, b) bounded from below, c) not bounded from above or below, d) bounded.

3.5 a) minA = −1, maxA = 3, b) has no minimum, maxB = a, c) minC = −1, maxC = 1,
d) minD = −1, has no maximum, e) has no maximum neither minimum.

3.6 e claim is not true, for instance consider (0, 1).

3.7 Yes, if q = 1 then
n∑

k=1

qk−1 = n.

3.8 5, −6.

3.9 None, all expressions are ambiguous.

4.1 e statement is not true, consider any negative number x. For every real number x it
holds

√
x2 = |x|.

4.2 It is not. For example, any straight line parallel to the y axis is not a function, it can not
be expressed by the equation y = ax+ b with real a, b.

4.3 No. e linear fuction f(x) = 0 coincides with the x axis and thus the number of
intersections is infinite.
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Answers to some questions

4.4 ϕ =
1 +

√
5

2
.

4.5 1. no, 2. yes, 3. yes, 4. yes.

4.6 1. 3 a −4, 2. 1, −2 a 3, 3. −2 a 2.

4.9 1. π
4
, 2. − 1√

2
.

4.11 Rr {0}.

5.1 x+ 2y − 5 = 0.

5.2 (x, y) = (−1,−1) + t · (2, 3).

5.3 7x− y − 10 = 0.
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Index

assignment, 12
assumption, 11

bound
lower, 28
upper, 28

circle
unit, 47

claim, 11
obvious, 11

coefficient
binomial, 32

complement, 18
condition

necessary, 27
sufficient, 27

conjunction, 26
connectives

logical, 26
corollary, 4
counterexample, 10, 11

definition, 3
difference, 18
discriminant, 42
disjunction, 26
domain, 36

equality, 12, 13
set, 17

equation, 13
of a circle, 57
of a line, 56
of an ellipse, 57

equivalence, 26

factor
root, 44

factorial, 31
field, 20
formulas

addition, 49
double-angle, 49

function, 35
affine, 41
arccosine, 51
arccotangent, 51
arcsine, 50
arctangent, 51
constant, 41
decreasing, 37
exponentiation, 52
graph, 36
increasing, 37
injective, 37
linear, 39
logarithm
of specified base, 52

monotonic, 37
periodic, 49
quadratic, 41
rational, 46
stricly increasing, 37
strictly decreasing, 37
trigonometric, 47

image, 35
image set, 36
implication, 26
index

lower, 16
summation, 14, 27
upper, 16

inequality
triangular, 39

intersection, 17
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Answers to some questions Index

interval, 25

law
associative, 20
distributive, 20

lemma, 4
line, 56

number, 22
parametric equations, 56

logaritmus, 52

maximum
of a set, 25

minimum
of a set, 25

natural domain, 36
negation, 26
number

coprime, 6
irrational, 5
non-coprime, 6
rational, 5

numbers
integers, 19
natural, 18
rational, 19

parabola, 41
part

lower integer, 39
upper integer, 39

point
coordinates, 54

polynomial, 43
degree, 43

power, 43
pre-image, 35
product

cartesian, 18
scalar, 55

proof, 4, 5
by contradiction, 6

proposition, 26

quantifier, 26
existential, 27
universal, 27

root, 45
even, 45
odd, 46

set, 16
bounded, 25
bounded from above, 25
bounded from below, 25
empty, 16

solution, 13
squaring, 41

theorem, 4
binomial, 7
Pythagoras’, 57

triangle
Pascal’s, 32

union, 17
unknown, 13

value
absolute, 38
of a function, 35

vector, 54
components, 55
length, 56
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