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Foreword

The study of the class of computable partial functions (i.e., recursive partial functions)
stands at the intersection of three fields: mathematics, theoretical computer science,
and philosophy.

l Mathematically, computability theory originates from the concept of an algorithm.
It leads to a classification of functions according their inherent complexity.

l For the computer scientist, computability theory shows that quite apart from prac-
tical matters of running time and memory space, there is a purely theoretical limit
to what computer programs can do. This is an important fact, and leads to the ques-
tions: Where is the limit? What is on this side of the limit, and what lies beyond it?

l Computability is relevant to the philosophy of mathematics and, in particular, to
the questions: What is a proof? Does every true sentence have a proof?

Computability theory is not an ancient branch of mathematics; it started in 1936. In
that year, Alonzo Church, Alan Turing, and Emil Post each published fundamental
papers that characterized the class of computable partial functions. Church’s article
introduced what is now called “Church’s thesis” (or the Church–Turing thesis), to
be discussed in Chapter 1. Turing’s article introduced what are now called “Turing
machines.” (1936 was also the year in which The Journal of Symbolic Logic began
publication, under the leadership of Alonzo Church and others. Finally, it was also the
year in which I was born.)



Preface

This book is intended to serve as a textbook for a one-term course on computability
theory (i.e., recursion theory), for upper-division mathematics and computer science
students. And the book is focused on this one topic, to the exclusion of such computer-
science topics as automata theory, context-free languages, and the like. This makes
it possible to get fairly quickly to core results in computability theory, such as the
unsolvability of the halting problem.

The only prerequisite for reading this book is a willingness to tolerate a certain
level of abstraction and rigor. The goal here is to prove theorems, not to calculate
numbers or write computer programs. The book uses standard mathematical jargon;
there is an appendix on “Mathspeak” to explain some of this jargon.

The basic material is covered in Chapters 1–4. After reading those chapters,
Chapters 5, 6, and 7, which are largely independent of each other, can be read in
any order.

Chapter 1 is an informal introduction to the concepts of computability theory. That
is, instead of an emphasis on precise definitions and rigorous proofs, the goal is to
convey an intuitive understanding of the basic concepts. The precision and rigor will
be in the later chapters; first one needs an insight into the nature of the concepts.

Chapters 2 and 3 explore two of the ways in which the concept of effective calcu-
lability can be made precise. The two ways are proven to be equivalent. This allows
the definition of “computable partial function” to be made on the basis of the com-
mon ground. (The alternative phrase, “recursive partial function,” is kept in the back-
ground.)

The interplay between the approaches of Chapters 2 and 3 yields proofs of such
basic results as the unsolvability of the halting problem. The interplay also yields a
proof of the enumeration theorem (without appealing to the reader’s experience with
high-level programming languages).

Chapter 4 presents the properties of recursively enumerable (r.e.) sets. (Note the
shift in terminology here; this time, the phrase “computably enumerable” is kept in
the background. The hope is that the reader will emerge being bilingual.)

Chapter 5 connects computability theory to the Gödel incompleteness theorem.
The heart of the incompleteness theorem lies in the fact that the set of Gödel numbers
of true sentences of arithmetic is a set that is “productive” in the sense defined by Emil
Post. And this fact is squarely within the domain of computability theory.

Chapter 6 introduces relative computability and the degrees of unsolvability.
Chapter 7 introduces polynomial time computability and discusses the “P versus

NP” problem. In this final chapter, not everything receives a complete proof. Instead,
the intent is to give a transition to a later study of computational complexity.



1 The Computability Concept

1.1 The Informal Concept

1.1.1 Decidable Sets

Computability theory, also known as recursion theory, is the area of mathematics
dealing with the concept of an effective procedure – a procedure that can be carried out
by following specific rules. For example, we might ask whether there is some effec-
tive procedure – some algorithm – that, given a sentence about the integers, will decide
whether that sentence is true or false. In other words, is the set of true sentences about
the integers decidable? (We will see later that the answer is negative.) Or for a simpler
example, the set of prime numbers is certainly a decidable set. That is, there are quite
mechanical procedures, which are taught in the schools, for deciding whether or not
any given integer is a prime number. (For a very large number, the procedure taught
in the schools might take a long time.) If we want, we can write a computer program
to execute the procedure. Simpler still, the set of even integers is decidable. We can
write a computer program that, given an integer, will very quickly decide whether or
not it is even. Our goal is to study what decision problems can be solved (in principle)
by a computer program, and what decision problems (if any) cannot.

More generally, consider a set S of natural numbers. (The natural numbers are
0, 1, 2, . . . . In particular, 0 is natural.) We say that S is a decidable set if there exists an
effective procedure that, given any natural number, will eventually end by supplying
us with the answer. “Yes” if the given number is a member of S and “No” if it is not a
member of S.

(Initially, we are going to examine computability in the context of the natural num-
bers. Later, we will see that computability concepts can be readily transferred to the
context of strings of letters from a finite alphabet. In that context, we can consider a
set S of strings, such as the set of equations, like x(y + z) = xy + xz, that hold in the
algebra of real numbers. But to start with, we will consider sets of natural numbers.)

And by an effective procedure here is meant a procedure for which we can give
exact instructions – a program – for carrying out the procedure. Following these
instructions should not demand brilliant insights on the part of the agent (human or
machine) following them. It must be possible, at least in principle, to make the instruc-
tions so explicit that they can be executed by a diligent clerk (who is very good at
following directions but is not too clever) or even a machine (which does not think at
all). That is, it must be possible for our instructions to be mechanically implemented.
(One might imagine a mathematician so brilliant that he or she can look at any sen-
tence of arithmetic and say whether it is true or false. But you cannot ask the clerk to

Computability Theory. DOI: 10.1016/B978-0-12-384958-8.00001-6
Copyright c© 2011 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384958-8.00001-6


2 Computability Theory

do this. And there is no computer program to do this. It is not merely that we have
not succeeded in writing such a program. We can actually prove that such a program
cannot possibly exist!)

Although these instructions must, of course, be finite in length, we impose no upper
bound on their possible length. We do not rule out the possibility that the instructions
might even be absurdly long. (If the number of lines in the instructions exceeds the
number of electrons in the universe, we merely shrug and say, “That’s a pretty long
program.”) We insist only that the instructions – the program – be finitely long, so that
we can communicate them to the person or machine doing the calculations. (There is
no way to give someone all of an infinite object.) Similarly, in order to obtain the most
comprehensive concepts, we impose no bounds on the time that the procedure might
consume before it supplies us with the answer. Nor do we impose a bound on the
amount of storage space (scratch paper) that the procedure might need to use. (The
procedure might, for example, need to utilize very large numbers requiring a substan-
tial amount of space simply to write down.) We merely insist that the procedure give
us the answer eventually, in some finite length of time. What is definitely ruled out is
doing infinitely many steps and then giving the answer.

In Chapter 7, we will consider more restrictive concepts, where the amount of time
is limited in some way, so as to exclude the possibility of ridiculously long execution
times. But initially, we want to avoid such restrictions to obtain the limiting case where
practical limitations on execution time or memory space are removed. It is well known
that in the real world, the speed and capability of computers has been steadily growing.
We want to ignore actual speed and actual capability, and instead we want to ask what
the purely theoretical limits are.

The foregoing description of effective procedures is admittedly vague and impre-
cise. In the following section, we will look at how this vague description can be made
precise – how the concept can be made into a mathematical concept. Nonetheless, the
informal idea of what can be done by effective procedure, that is, what is calculable,
can be very useful. Rigor and precision can wait until the next chapter. First we need
a sense of where we are going.

For example, any finite set of natural numbers must be decidable. The program
for the decision procedure can simply include a list of all the numbers in the set.
Then given a number, the program can check it against the list. Thus, the concept of
decidability is interesting only for infinite sets.

Our description of effective procedures, vague as it is, already shows how limiting
the concept of decidability is. One can, for example, utilize the concepts of countable
and uncountable sets (see the appendix for a summary of these concepts). It is not hard
to see that there are only countably many possible instructions of finite length that one
can write out (using a standard keyboard, say). But there are uncountably many sets
of natural numbers (by Cantor’s diagonal argument). It follows that almost all sets, in
a sense, are undecidable.

The fact that not every set is decidable is relevant to theoretical computer science.
The fact that there is a limit to what can be carried out by effective procedures means
that there is a limit to what can – even in principle – be done by computer programs.
And this raises the questions: What can be done? What cannot?
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Historically, computability theory arose before the development of digital comput-
ers. Computability theory is relevant to certain considerations in mathematical logic.
At the heart of mathematical activity is the proving of theorems. Consider what is
required for a string of symbols to constitute an “acceptable mathematical proof.”
Before we accept a proof, and add the result being proved to our storehouse of mathe-
matical knowledge, we insist that the proof be verifiable. That is, it should be possible
for another mathematician, such as the referee of the article containing the proof, to
check, step by step, the correctness of the proof. Eventually, the referee either con-
cludes that the proof is indeed correct or concludes that the proof contains a gap or
an error and is not yet acceptable. That is, the set of acceptable mathematical proofs –
regarded as strings of symbols – should be decidable. This fact will be seen (in a later
chapter) to have significant consequences for what can and cannot be proved. We con-
clude that computability theory is relevant to the foundations of mathematics. But if
logicians had not invented the computability concept, then computer scientists would
later have done so.

1.1.2 Calculable Functions

Before going on, we should broaden the canvas from considering decidable and
undecidable sets to considering the more general situation of partial functions. Let
N = {0, 1, 2, . . .} be the set of natural numbers. Then, an example of a two-place
function on N is the subtraction function

g(m, n) =

{
m− n if m ≥ n
0 otherwise

(where we have avoided negative numbers). A different subtraction function is the
“partial” function

f (m, n) =

{
m− n if m ≥ n
↑ otherwise

where “↑” indicates that the function is undefined. Thus f (5, 2)= 3, but f (2, 5) is
undefined; the pair 〈2, 5〉 is not in the domain of f .

In general, say that a k-place partial function on N is a function whose domain is
some set of k-tuples of natural numbers and whose values are natural numbers. In other
words, for a k-place partial function f and a k-tuple 〈x1, . . . , xk〉, possibly f (x1, . . . , xk)

is defined (i.e., 〈x1, . . . , xk〉 is in the domain of f ), in which case the function value
f (x1, . . . , xk) is in N, and possibly f (x1, . . . , xk) is undefined (i.e., 〈x1, . . . , xk〉 is not
in the domain of f ).

At one extreme, there are partial functions whose domains are the set Nk of all
k-tuples; such functions are said to be total. (The adjective “partial” covers both the
total and the nontotal functions.) At the other extreme, there is the empty function,
that is, the function that is defined nowhere. The empty function might not seem par-
ticularly useful, but it does count as one of the k-place partial functions.
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For a k-place partial function f , we say that f is an effectively calculable partial
function if there exists an effective procedure with the following property:

l Given a k-tuple Ex in the domain of f , the procedure eventually halts and returns the correct
value for f (Ex).

l Given a k-tuple Ex not in the domain of f , the procedure does not halt and return a value.

(There is one issue here: How can a number be given? To communicate a number x to
the procedure, we send it the numeral for x. Numerals are bits of language, which can
be communicated. Numbers are not. Communication requires language. Nonetheless,
we will continue to speak of being “given numbers m and n” and so forth. But at a
few points, we will need to be more accurate and take account of the fact that what
the procedure is given are numerals. There was a time in the 1960s when, as part
of the “new math,” schoolteachers were encouraged to distinguish carefully between
numbers and numerals. This was a good idea that turned out not to work.)

For example, the partial function for subtraction

f (m, n) =

{
m− n if m ≥ n

↑ otherwise

is effectively calculable, and procedures for calculating it, using base-10 numerals, are
taught in the elementary schools.

The empty function is effectively calculable. The effective procedure for it, given
a k-tuple, does not need to do anything in particular. But it must never halt and return
a value.

The concept of decidability can then be described in terms of functions: For a subset
S of Nk, we can say that S is decidable iff its characteristic function

CS(Ex) =

{
Yes if Ex ∈ S

No if Ex /∈ S

(which is always total) is effectively calculable. Here “Yes” and “No” are some fixed
members of N, such as 1 and 0.

(That word “iff” in the preceding paragraph means “if and only if.” This is a bit of
mathematical jargon that has proved to be so useful that it has become a standard part
of mathspeak.)

Here, if k = 1, then S is a set of numbers. If k = 2, then we have the concept of a
decidable binary relation on numbers, and so forth. Take, for example, the divisibility
relation, that is, the set of pairs 〈m, n〉 such that m divides n evenly. (For definiteness,
assume that 0 divides only itself.) The divisibility relation is decidable because given
m and n, we can carry out the division algorithm we all learned in the fourth grade,
and see whether the remainder is 0 or not.

Example: Any total constant function on N is effectively calculable. Suppose, for
example, f (x) = 36 for all x in N. There is an obvious procedure for calculating f ; it
ignores its input and writes “36” as the output. This may seem a triviality, but compare
it with the next example.
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Example: Define the function F as follows.

F(x) =

{
1 if Goldbach’s conjecture is true

0 if Goldbach’s conjecture is false

Goldbach’s conjecture states that every even integer greater than 2 is the sum of two
primes; for example, 22 = 5+ 17. This conjecture is still an open problem in mathe-
matics. Is this function F effectively calculable? (Choose your answer before reading
the next paragraph.)

Observe that F is a total constant function. (Classical logic enters here: Either there
is an even number that serves as a counterexample or there isn’t.) So as noted in the
preceding example, F is effectively calculable. What, then, is a procedure for comput-
ing F? I don’t know, but I can give you two procedures and be confident that one of
them computes F.

The point of this example is that effective calculability is a property of the function
itself, not a property of some linguistic description used to specify the function. (One
says that the effective calculability property is extensional.) There are many English
phrases that would serve to define F. For a function to be effectively calculable, there
must exist (in the mathematical sense) an effective procedure for computing it. That
is not the same as saying that you hold such a procedure in your hand. If, in the year
2083, some creature in the universe proves (or refutes) Goldbach’s conjecture, then it
does not mean that F will suddenly change from noncalculable to calculable. It was
calculable all along.

There will be, however, situations later in which we will want more than the mere
existence of an effective procedure P; we will want some way of actually finding P,
given some suitable clues. That is for later.

It is very natural to extend these concepts to the situation where we have half of
decidability: Say that S is semidecidable if its “semicharacteristic function”

cS(Ex) =

{
Yes if Ex ∈ S

↑ if Ex /∈ S

is an effectively calculable partial function. Thus, a set S of numbers is semidecidable
if there is an effective procedure for recognizing members of S. We can think of S as
the set that the procedure accepts. And the effective procedure, while it may not be a
decision procedure, is at least an acceptance procedure.

Any decidable set is also semidecidable. If we have an effective procedure that
calculates the characteristic function CS, then we can convert it to an effective proce-
dure that calculates the semicharacteristic function cS. We simply replace each “out-
put No” command by some endless loop. Or more informally, we simply unscrew the
No bulb.

What about the converse? Are there semidecidable sets that are not decidable? We
will see that there are indeed. The trouble with the semicharacteristic function is that it
never produces a No answer. Suppose that we have been calculating cS(Ex) for 37 years,
and the procedure has not yet terminated. Should we give up and conclude that Ex is
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not in S? Or maybe working just another ten minutes would yield the information that
Ex does belong to S. There is, in general, no way to know.

Here is another example of a calculable partial function:

F(n) = the smallest p > n such that both p and p+ 2 are prime

Here it is to be understood that F(n) is undefined if there is no number p as described;
thus F might not be total. For example, F(9) = 11 because both 11 and 13 are prime.
It is not known whether or not F is total. The “twin prime conjecture,” which says that
there are infinitely many pairs of primes that differ by 2, is equivalent to the statement
that F is total. The twin prime conjecture is still an open problem. Nonetheless, we can
be certain that F is effectively calculable. One procedure for calculating F(n) proceeds
as follows. “Given n, first put p = n + 1. Then check whether or not p and p + 2 are
both prime. If they are, then stop and give output p. If not, increment p and continue.”
What if n is huge, say, n = 101010

? On the one hand, if there is a larger prime pair,
then this procedure will find the first one, and halt with the correct output. On the other
hand, if there is no larger prime pair, then the procedure never halts, so it never gives
us an answer. That is all right; because F(n) is undefined, the procedure should not
give us any answer.

Now suppose we modify this example. Consider the total function:

G(n) =

{
F(n) if F(n) ↓

0 otherwise

Here “F(n) ↓” means that F(n) is defined, so that n belongs to the domain of F.
Then the function G is also effectively calculable. That is, there exists a program that
calculates G correctly.

The twin prime conjecture is either true or false: Either the prime pairs go on for-
ever, or there is a largest one. (At this point, classical logic enters once again.) In
the first case, F = G and the effective procedure for F also computes G. In the sec-
ond case, G is eventually constantly 0. And any eventually constant function is cal-
culable (the procedure can utilize a table for the finite part of the function before it
stabilizes).

So in either case, there exists an effective procedure for G. That is not the same as
saying that we know that procedure. This example indicates once again the difference
between knowing that a certain effective procedure exists and having the effective pro-
cedure in our hands (or having convincing reasons for knowing that the procedure in
our hands will work).

One person’s program is another person’s data. This is the principle behind oper-
ating systems (and behind the idea of a stored-program computer). One’s favorite
program is, to the operating system, another piece of data to be received as input and
processed. The operating system is calculating the values of a two-place “universal”
function. We next want to see if these concepts can be applied to our study of calcu-
lable functions. (Historically, the flow of ideas was in exactly the opposite direction!
The following digression expands on this point.)
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Digression: The concept of a general-purpose, stored-program computer is now very
common, but the concept developed slowly over a period of time. The ENIAC
machine, the most important computer of the 1940s, was programmed by setting
switches and inserting cables into plugboards! This is a far cry from treating a pro-
gram like data. It was von Neumann who, in a 1945 technical report, laid out the
crucial ideas for a general-purpose stored-program computer, that is, for a universal
computer. Turing’s 1936 article on what are now called Turing machines had proved
the existence of a “universal Turing machine” to compute the 8 function described
below. When Turing went to Princeton in 1936–37, von Neumann was there and must
have been aware of his work. Apparently, von Neumann’s thinking in 1945 was influ-
enced by Turing’s work of nearly a decade earlier.

Suppose we adopt a fixed method of encoding any set of instructions by a single
natural number. (First, we convert the instructions to a string of 0’s and 1’s – one
always does this with computer programs – and then we regard that string as naming
a natural number under a suitable base-2 notation.) Then the “universal function”

8(w, x) = the result of applying the instructions coded by w to the input x

is an effectively calculable partial function (where it is understood that 8(w, x) is
undefined whenever applying the instructions coded by w to the input x fails to halt
and return an output). Here are the instructions for 8: “Given w and x, decode w to
see what it says to do with x, and then do it.” Of course, the function 8 is not total.
For one thing, when we try to decode w, we might get complete nonsense, so that the
instruction “then do it” leads nowhere. And even if decoding w yields explicit and
comprehensible instructions, applying those instructions to a particular x might never
yield an output.

(The reasoning here will be repeated in Chapter 3, when we will have more concrete
material to deal with. But the guiding ideas will remain the same.)

The two-place partial function 8 is “universal” in the sense that any one-place
effectively calculable partial function f is given by the equation

f (x) = 8(e, x) for all x

where e codes the instructions for f . It will be helpful to introduce a special notation
here: Let [[e]] be the one-place partial function defined by the equation

[[e]](x) = 8(e, x).

That is, [[e]] is the partial function whose instructions are coded by e, with the under-
standing that, because some values of e might not code anything sensible, the function
[[e]] might be the empty function. In any case, [[e]] is the partial function we get from
8, when we hold its first variable fixed at e. Thus,

[[0]], [[1]], [[2]], . . .
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is a complete list (with repetitions) of all the one-place effectively calculable partial
functions. The values of [[e]] are given by the (e+ 1)st row in the following table:

[[0]] 8(0, 0) 8(0, 1) 8(0, 2) 8(0, 3) · · ·
[[1]] 8(1, 0) 8(1, 1) 8(1, 2) 8(1, 3) · · ·
[[2]] 8(2, 0) 8(2, 1) 8(2, 2) 8(2, 3) · · ·
[[3]] 8(3, 0) 8(3, 1) 8(3, 2) 8(3, 3) · · ·
· · · · · · · · · · · · · · ·

Using the universal partial function 8, we can construct an undecidable binary
relation, the halting relation H:

〈w, x〉 ∈ H ⇐⇒ 8(w, x) ↓

⇐⇒ applying the instructions coded by w to input x halts

On the positive side, H is semidecidable. To calculate the semicharacteristic func-
tion cH(w, x), given w and x, we first calculate 8(w, x). If and when this halts and
returns a value, we give output “Yes” and stop.

On the negative side, H is not decidable. To see this, first consider the following
partial function:

f (x) =

{
Yes if 8(x, x)↑

↑ if 8(x, x)↓

(Notice that we are using the classical diagonal construction. Looking at the earlier
table of the values of 8 arranged in a two-dimensional array, one sees that f has been
made by going along the diagonal of that table, taking the entry 8(x, x) found there,
and making sure that f (x) differs from it.)

There are two things to be said about f . First, f cannot possibly be effectively
calculable. Consider any set of instructions that might compute f . Those instructions
have some code number k and hence compute the partial function [[k]]. Could that be
the same as f ? No, f and [[k]] differ at the input k. That is, f has been constructed in
such a way that f (k) differs from [[k]](k); they differ because one is defined and the
other is not. So these instructions cannot correctly compute f ; they produce the wrong
result at the input k. And because k was arbitrary, we are forced to conclude that no set
of instructions can correctly compute f . (This is our first example of a partial function
that is not effectively calculable. There are a great many more, as will be seen.)

Secondly, we can argue that if we had a decision procedure for H, then we could
calculate f . To compute f (x), we first use that decision procedure for H to decide if
(x, x) ∈ H or not. If not, then f (x) = Yes. But if (x, x) ∈ H, then the procedure for
finding f (x) should throw itself into an infinite loop because f (x) is undefined.

Putting these two observations about f together, we conclude that there can be
no decision procedure for H. The fact that H is undecidable is usually expressed by
saying that “the halting problem is unsolvable”; i.e., we cannot in general effectively
determine, given w and x, whether applying the instructions coded by w to the input x
will eventually terminate or will go on forever:
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Unsolvability of the halting problem: The relation

{〈w, x〉 | applying instructions coded by w to input x halts}

is semidecidable but not decidable.

The function f in the preceding argument

f (x) =

{
Yes if 8(x, x)↑
↑ if 8(x, x)↓

is the semicharacteristic function of the set {x |8(x, x)↑}. Because its semicharacter-
istic function is not effectively calculable, we can conclude that this set is not semide-
cidable.

Let K be the complement of this set:

K = {x | 8(x, x) ↓} = {x | [[x]](x) ↓}.

This set is semidecidable. How might we compute cK(x), given x? We try to compute
8(x, x) (which is possible because 8 is an effectively calculable partial function). If
and when the calculation halts and returns an output, we give the output “Yes” and
stop. Until such time, we keep trying. (This argument is the same one that we saw for
the semidecidability of H. And x ∈ K ⇔ 〈x, x〉 ∈ H.)

Kleene’s theorem: A set (or a relation) is decidable if and only if both it and its
complement are semidecidable.

Here if we are working with sets of numbers, then the complement is with respect to
N; if we are working with a k-ary relation, then the complement is with respect to Nk.

Proof. On the one hand, if a set S is decidable, then its complement S is also decid-
able – we simply switch the “Yes” and the “No.” So both S and its complement S are
semidecidable because decidable sets are also semidecidable.

On the other hand, suppose that S is a set for which both cS and cS̄ are effectively
calculable. The idea is to glue together these two halves of a decision procedure to
make a whole one. Say we want to find CS(x), given x. We need to organize our time.
During odd-numbered minutes, we run our program for cS(x). During even-numbered
minutes, we run our program for cS̄(x). Of course, at the end of each minute, we store
away what we have done, so that we can later pick up from where we left off.

Eventually, we must receive a “Yes.” If during an odd-numbered minute, we find
that cS(x) = Yes (this must happen eventually if x ∈ S), then we give output “Yes”
and stop. And if during an even-numbered minute, we find that cS̄(x) = Yes (this must
happen eventually if x /∈ S), then we give output “No” and stop.

(Alternatively, we can imagine working ambidextrously. With the left hand, we
work on calculating cS(x); with the right hand, we work on cS̄(x). Eventually, one
hand discovers the answer.) a
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The set K is an example of a semidecidable set that is not decidable. Its complement
K is not semidecidable; we have seen that its semicharacteristic function f is not effec-
tively calculable.

The connection between effectively calculable partial functions and semidecidable
sets can be further described as follows:

Theorem:

(i) A relation is semidecidable if and only if it is the domain of some effectively
calculable partial function.

(ii) A partial function f is an effectively calculable partial function if and only if
its graph G (i.e., the set of tuples 〈Ex, y〉 such that f (Ex) = y) is a semidecidable
relation.

Proof. For statement (i), one direction is true by definition: Any relation is the domain
of its semicharacteristic function, and for a semidecidable relation, that function is an
effectively calculable partial function.

Conversely, for an effectively calculable partial function, f , we have the natural
semidecision procedure for its domain: Given Ex, we try to compute f (Ex). If and when
we succeed in finding f (Ex), we ignore the value and simply say Yes and halt.

To prove (ii) in one direction, suppose that f is an effectively calculable partial
function. Here is a semidecision procedure for its graph G: Given 〈Ex, y〉, we proceed
to compute f (Ex). If and when we obtain the result, we check to see whether it is y or
not. If the result is indeed y, then we say Yes and halt.

Of course, this procedure fails to give an answer if f (Ex) ↑, which is exactly as it
should be, because in this case, 〈Ex, y〉 is not in the graph.

To prove the other direction of (ii), suppose that we have a semidecision procedure
for the graph G. We seek to compute, given Ex, the value f (Ex), if this is defined. Our plan
is to check 〈Ex, 0〉, 〈Ex, 1〉, . . . , for membership in G. But to budget our time sensibly,
we use a procedure called “dovetailing.” Here is what we do:

1. Spend one minute testing whether 〈Ex, 0〉 ∈ G.
2. Spend two minutes testing whether 〈Ex, 0〉 ∈ G and two minutes testing whether 〈Ex, 1〉 ∈ G.
3. Similarly, spend three minutes on each of 〈Ex, 0〉, 〈Ex, 1〉, and 〈Ex, 2〉.

And so forth. If and when we discover that, in fact, 〈Ex, k〉 ∈ G, then we return the
value k and halt. Observe that whenever f (Ex) ↓, then sooner or later the foregoing pro-
cedure will correctly determine f (Ex) and halt. Of course, if f (Ex)↑, then the procedure
runs forever. a

1.1.3 Church’s Thesis

Although the concept of effective calculability has here been described in somewhat
vague terms, the following section will describe a precise (mathematical) concept of
a “computable partial function.” In fact, it will describe several equivalent ways of
formulating the concept in precise terms. And it will be argued that the mathematical
concept of a computable partial function is the correct formalization of the informal
concept of an effectively calculable partial function. This claim is known as Church’s
thesis or the Church–Turing thesis.
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Church’s thesis, which relates an informal idea to a formal idea, is not itself a
mathematical statement capable of being given a proof. But one can look for evidence
for or against Church’s thesis; it all turns out to be evidence in favor.

One piece of evidence is the absence of counterexamples. That is, any function
examined thus far that mathematicians have felt was effectively calculable, has been
found to be computable.

Stronger evidence stems from the various attempts that different people made inde-
pendently, trying to formalize the idea of effective calculability. Alonzo Church used
λ-calculus; Alan Turing used an idealized computing agent (later called a Turing
machine); Emil Post developed a similar approach. Remarkably, all these attempts
turned out to be equivalent, in that they all defined exactly the same class of functions,
namely the computable partial functions!

The study of effective calculability originated in the 1930s with work in mathe-
matical logic. As noted previously, the subject is related to the concept of an accept-
able proof. More recently, the study of effective calculability has formed an essential
part of theoretical computer science. A prudent computer scientist would surely want
to know that, apart from the difficulties the real world presents, there is a purely theo-
retical limit to calculability.

Exercises

1. Assume that S is a set of natural numbers containing all but finitely many nat-
ural numbers. (That is, S is a cofinite subset of N.) Explain why S must be
decidable.

2. Assume that A and B are decidable sets of natural numbers. Explain why their
intersection A ∩ B is also decidable. (Describe an effective procedure for deter-
mining whether or not a given number is in A ∩ B.)

3. Assume that A and B are decidable sets of natural numbers. Explain why their
union A ∪ B is also decidable.

4. Assume that A and B are semidecidable sets of natural numbers. Explain why
their intersection A ∩ B is also semidecidable.

5. Assume that A and B are semidecidable sets of natural numbers. Explain why
their union A ∪ B is also semidecidable.

6. (a) Assume that R is a decidable binary relation on the natural numbers. That is, it is
a decidable 2-ary relation. Explain why its domain, {x | 〈x, y〉 ∈ R for some y},
is a semidecidable set.

(b) Now suppose that instead of assuming that R is decidable, we assume
only that it is semidecidable. Is it still true that its domain must be semi-
decidable?

7. (a) Assume that f is a one-place total calculable function. Explain why its graph
is a decidable binary relation.

(b) Conversely, show that if the graph of a one-place total function f is decidable,
then f must be calculable.

(c) Now assume that f is a one-place calculable partial function, not necessarily
total. Explain why its domain, {x ∈ N | f (x)↓}, is semidecidable.
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8. Assume that S is a decidable set of natural numbers, and that f is a total effec-
tively calculable function on N. Explain why {x | f (x) ∈ S} is decidable. (This set
is called the inverse image of S under f .)

9. Assume that S is a semidecidable set of natural numbers and that f is an effec-
tively calculable partial function on N. Explain why

{x | f (x) ↓ and f (x) ∈ S}

is semidecidable.
10. In the decimal expansion of π , there might be a string of many consecutive 7’s.

Define the function f so that f (x) = 1 if there is a string of x or more consecutive
7’s and f (x) = 0 otherwise:

f (x) =

{
1 if π has a run of x or more 7’s
0 otherwise.

Explain, without using any special facts about π or any number theory, why f is
effectively calculable.

11. Assume that g is a total nonincreasing function on N (that is, g(x) ≥ g(x+ 1) for
all x). Explain why g must be effectively calculable.

12. Assume that f is a total function on the natural numbers and that f is eventually
periodic. That is, there exist positive numbers m and p such that for all x greater
than m, we have f (x+ p) = f (x). Explain why f is effectively calculable.

13. (a) Assume that f is a total effectively calculable function on the natural numbers.
Explain why the range of f (that is, the set { f (x) | x ∈ N}) is semidecidable.

(b) Now suppose f is an effectively calculable partial function (not necessarily
total). Is it still true that the range must be semidecidable?

14. Assume that f and g are effectively calculable partial functions on N. Explain
why the set

{x | f (x) = g(x) and both are defined}

is semidecidable.

1.2 Formalizations – An Overview

In the preceding section, the concept of effective calculability was described only
very informally. Now we want to make those ideas precise (i.e., make them part of
mathematics). In fact, several approaches to doing this will be described: idealized
computing devices, generative definitions (i.e., the least class containing certain initial
functions and closed under certain constructions), programming languages, and defin-
ability in formal languages. It is a significant fact that these very different approaches
all yield exactly equivalent concepts.

This section gives a general overview of a number of different (but equivalent)
ways of formalizing the concept of effective calculability. Later chapters will develop
a few of these ways in full detail.
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Digression: The 1967 book by Rogers cited in the References demonstrates that the
subject of computability can be developed without adopting any of these formaliza-
tions. And that book was preceded by a 1956 mimeographed preliminary version,
which is where I first saw this subject. A few treasured copies of the mimeographed
edition still exist.

1.2.1 Turing Machines

In early 1935, Alan Turing was a 22-year-old graduate student at King’s College in
Cambridge. Under the guidance of Max Newman, he was working on the problem of
formalizing the concept of effective calculability. In 1936, he learned of the work of
Alonzo Church, at Princeton. Church had also been working on this problem, and in
his 1936 article, “An unsolvable problem of elementary number theory,” he presented
a definite claim that the class of effectively calculable functions should be identified
with the class of functions definable in the lambda calculus, a formal language for
specifying the construction of functions. Church moreover showed that exactly the
same class of functions could be characterized in terms of formal derivability from
equations.

Turing then promptly completed writing his article, in which he presented a very
different approach to characterizing the effectively calculable functions, but one that –
as he proved – yielded once again the same class of functions as Church had proposed.
With Newman’s encouragement, Turing went to Princeton for two years, where he
wrote a Ph.D. dissertation under Alonzo Church.

Turing’s article remains a very readable introduction to his ideas. How might a dili-
gent clerk carry out a calculation, following instructions? He (or she) might organize
the work in a notebook. At any given moment, his attention is focused on a particular
page. Following his instructions, he might alter that page, and then he might turn to
another page. And the notebook is large enough (or the supply of fresh paper is ample
enough) that he never comes to the last page.

The alphabet of symbols available to the clerk must be finite; if there were infinitely
many symbols, then there would be two that were arbitrarily similar and so might be
confused. We can then without loss of generality regard what can be written on one
page of notebook as a single symbol. And we can envision the notebook pages as
being placed side by side, forming a paper tape, consisting of squares, each square
being either blank or printed with a symbol. (For uniformity, we can think of a blank
square as containing the “blank” symbol B.) At each stage of his work, the clerk – or
the mechanical machine – can alter the square under examination, can turn attention
to the next square or the previous one, and can look to the instructions to see what part
of them to follow next. Turing described the latter part as a “change of state of mind.”

Turing wrote, “We may now construct a machine to do the work.” Such a machine
is, of course, now called a Turing machine, a phrase first used by Church in his review
of Turing’s article in The Journal of Symbolic Logic. The machine has a potentially
infinite tape, marked into squares. Initially the given input numeral or word is written
on the tape, which is otherwise blank. The machine is capable of being in any one of
finitely many “states” (the phrase “of mind” being inappropriate for a machine).
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At each step of calculation, depending on its state at the time, the machine can
change the symbol in the square under examination at that time, and can turn its atten-
tion to the square to the left or to the right, and can then change its state to another
state. (The tape stretches endlessly in both directions.)

The program for this Turing machine can be given by a table. Where the pos-
sible states of the machine are q1, . . . , qr, each line of the table is a quintuple
〈qi, Sj, Sk,D, qm〉 which is to be interpreted as directing that whenever the machine
is in state qi and the square under examination contains the symbol Sj, then that sym-
bol should be altered to Sk and the machine should shift its attention to the square to
the left (if D = L) or to the right (if D = R), and should change its state to qm. Possibly
Sj is the “blank” symbol B, meaning the square under examination is blank; possibly
Sk is B, meaning that whatever is in the square is to be erased. For the program to be
unambiguous, it should have no two different quintuples with the same first two com-
ponents. (By relaxing this requirement regarding absence of ambiguity, we obtain the
concept of a nondeterministic Turing machine, which will be useful later, in the dis-
cussion of feasible computability.) One of the states, say, q1, is designated as the initial
state – the state in which the machine begins its calculation. If we start the machine
running in this state, and examining the first square of its input, it might (or might
not), after some number of steps, reach a state and a symbol for which its table lacks a
quintuple having that state and symbol for its first two components. At that point the
machine halts, and we can look at the tape (starting with the square which was then
under examination) to see what the output numeral or word is.

Now suppose that 6 is a finite alphabet (the blank B does not count as a member
of 6). Let 6∗ be the set of all words over this alphabet (that is, 6∗ is the set of all
strings, including the empty string, consisting of members of 6). Suppose that f is
a k-place partial function from 6∗ into 6∗. We will say that f is Turing computable
if there exists a Turing machine M that, when started in its initial state scanning the
first symbol of a k-tuple Ew of words (written on the tape, with a blank square between
words, and with the rest of the tape blank), behaves as follows:

l If f (Ew) ↓ (i.e., if Ew ∈ dom f ) then M eventually halts, and at that time, it is scanning the
leftmost symbol of the word f (Ew) (which is followed by a blank square).

l If f (Ew)↑ (i.e., if Ew /∈ dom f ) thenM never halts.

Example: Take a two-letter alphabet 6 = {a, b}. LetM be the Turing machine given
by the following set of six quintuples, where q1 is designated as the initial state:

〈q1, a, a,R, q1〉

〈q1, b, b,R, q1〉

〈q1,B, a,L, q2〉

〈q2, a, a,L, q2〉

〈q2, b, b,R, q2〉

〈q2,B,B,R, q3〉.

Suppose we start this machine in state q1, scanning the first letter of a word w. The
machines move (in state q1) to the right end of w, where it appends the letter a. Then it
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moves (in state q2) back to the left end of the word, where it halts (in state q3). Thus,
M computes the total function f (w) = wa.

We need to adopt special conventions for handling the empty word λ, which occu-
pies zero squares. This can be done in different ways; the following is the way chosen.
If the machine halts scanning a blank square, then the output word is λ. For a one-
place function f , to compute f (λ), we simply start with a blank tape. For a two-place
function g, to compute g(w, λ), we start with only the word w, scanning the first sym-
bol of w. And to compute g(λ,w), we also start with only the word w on the tape, but
scanning the blank square just to the left of w. And in general, to give a k-place func-
tion the input Ew = 〈u1, . . . , uk〉 consisting of k words of lengths n1, . . . , nk, we start
the machine scanning the first square of the input configuration of length n1 + · · · +

nk + k − 1

(n1 symbols from u1)B(n2 symbols from u2)B · · ·B(nk symbols from uk)

with the rest of the tape blank. Here any ni can be zero; in the extreme case, they can
all be zero.

An obvious drawback of these conventions is that there is no difference between
the pair 〈u, v〉 and the triple 〈u, v, λ〉. Other conventions avoid this drawback, at the
cost of introducing their own idiosyncracies.

The definition of Turing computability can be readily adapted to apply to k-place
partial functions on N. The simplest way to do this is to use base-1 numerals. We
take a one-letter alphabet 6 = {|} whose one letter is the tally mark |. Or to be more
conventional, let 6 = {1}, using the symbol 1 in place of the tally mark. Then the
input configuration for the triple 〈3, 0, 4〉 is

111BB1111.

Then Church’s thesis, also called – particularly in the context of Turing machines –
the Church–Turing thesis, is the claim that this concept of Turing computability is the
correct formalization of the informal concept of effective calculability. Certainly the
definition reflects the ideas of following predetermined instructions, without limita-
tion of the amount of time that might be required. (The name “Church–Turing thesis”
obscures the fact that Church and Turing followed very different paths in reaching
equivalent conclusions.)

Church’s thesis has by now achieved universal acceptance. Kurt Gödel, writing in
1964 about the concept of a “formal system” in logic, involving the idea that the set
of correct deductions must be a decidable set, said that “due to A. M. Turing’s work,
a precise and unquestionably adequate definition of the general concept of formal
system can now be given.” And others agree.

The robustness of the concept of Turing computability is evidenced by the fact
that it is insensitive to certain modifications to the definition of a Turing machine. For
example, we can impose limitations on the size of the alphabet, or we can insist that
the machine never moves to the left of its initial starting point. None of this will affect
that class of Turing computable partial functions.



16 Computability Theory

Turing developed these ideas before the introduction of modern digital computers.
After World War II, Turing played an active role in the development of early com-
puters, and in the emerging field of artificial intelligence. (During the war, he worked
on deciphering the German battlefield code Enigma, militarily important work, which
remained classified until after Turing’s death.) One can speculate as to whether Turing
might have formulated his ideas somewhat differently, if his work had come after the
introduction of digital computers.

Digression: There is an interesting example, here, that goes by the name1 of “the busy
beaver problem.”

Suppose we want a Turing machine, starting on a blank tape, to write as many 1’s
as it can, and then stop. With a limited number of states, how many 1’s can we get?

To make matters more precise, take Turing machines with the alphabet {1} (so the
only symbols are B and 1). We will allow such machines to have n states, plus a halting
state (that can occur as the last member of a quintuple, but not as the first member). For
each n, there are only finitely many essentially different such Turing machines. Some
of them, started on a blank tape, might not halt. For example, the one-state machine

〈q1,B, 1,R, q1〉

keeps writing forever without halting. But among those that do halt, we seek the ones
that write a lot of 1’s.

Define σ(n) to be the largest number of 1’s that can be written by an n-state Turing
machine as described here before it halts. For example, σ(1) = 1, because the one-
state machine

〈q1,B, 1,R, qH〉

(the halting state qH doesn’t count) writes one 1, and none of the other one-state
machines do any better. (There are not so very many one-state machines, and one
can examine all of them in a reasonable length of time.) Let’s agree that σ(0) = 0.
Then σ is a total function. It is also nondecreasing because having an extra state to
work with is never a handicap. Despite the fact that σ(n) is merely the largest member
of a certain finite set, there is no algorithm that lets us, in general, evaluate it.

Example: Here is a two-state candidate:

〈q1,B, 1,R, q2〉

〈q1, 1, 1,L, q2〉

〈q2,B, 1,L, q1〉

〈q2, 1, 1,R, qH〉

Started on a blank tape, this machine writes four consecutive 1’s, and then halts (after
six steps), scanning the third 1. You are invited to verify this by running the machine.
We conclude the σ(2) ≥ 4.

1 This name has given translators much difficulty.
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Rado’s theorem (1962): The function σ is not Turing computable. Moreover, for any
Turing computable total function f , we have f (x) < σ(x) for all sufficiently large x.
That is, σ eventually dominates any Turing computable total function.

Proof. Assume we are given some Turing computable total f . We must show that σ
eventually dominates it. Define (for reasons that may initially appear mysterious) the
function g:

g(x) = max( f (2x), f (2x+ 1))+ 1.

Then g is total and one can show that it is Turing computable. So there is some Turing
machine M with, say, k states that computes it, using the alphabet {1} and base-1
notation. For each x, let Nx be the (x + k)-state Turing machine that first writes x
1’s on the tape, and then imitates M. (The x states let us write x 1’s on the tape in a
straightforward way, and then there are the k states in M.)

Then Nx, when started on a blank tape, writes g(x) 1’s on the tape and halts. So
g(x) ≤ σ(x+ k), by the definition of σ . Thus, we have

f (2x), f (2x+ 1) < g(x) ≤ σ(x+ k),

and if x ≥ k, then

σ(x+ k) ≤ σ(2x) ≤ σ(2x+ 1).

Putting these two lines together, we see that f < σ from 2k on. a

So σ grows faster – eventually – than any Turing computable total function. How
fast does it grow? Among the smaller numbers, σ(2) = 4. (The preceding example
shows that σ(2) ≥ 4. The other inequality is not entirely trivial because there are thou-
sands of two-state machines.) It has also been shown that σ(3) = 6 and σ(4) = 13.
From here on, only lower bounds are known. In 1984, it was found that σ(5) is at least
1915. In 1990, this was raised to 4098. And σ(6) > 3.1 × 1010 566. And σ(7) must
be astronomical. These lower bounds are established by using ingeniously convoluted
coding to make small Turing machines that write that many 1’s and then halt.

Proving further upper bounds would be difficult. In fact, one can show, under
some reasonable assumptions, that upper bounds on σ(n) are provable for only finitely
many n’s.

If we could solve the halting problem, we would then have the following method
for computing σ(n):

l List all the n-state machines.
l Discard those that never halt.
l Run those that do halt.
l Select the highest score.

It is the second step in this method that gives us trouble. (New information on Rado’s σ
function continues to be discovered. Recent news can be obtained from the Web page
maintained by Heiner Marxen, http://www.drb.insel.de/∼heiner/BB.)

http://www.drb.insel.de/$\sim $heiner/BB
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1.2.2 Primitive Recursiveness and Search

For a second formalization of the calculability concept, we will define a certain class
of partial functions on N as the smallest class that contains certain initial functions and
is closed under certain constructions.

For the initial functions, we take the following very simple total functions:

l The zero functions, that is, the constant functions f defined by the equation:

f (x1, . . . , xk) = 0.

There is one such function for each k.
l The successor function S, defined by the equation:

S(x) = x+ 1.

l The projection functions Ik
n from k-dimensions onto the nth coordinate,

Ik
n(x1, . . . , xk) = xn,

where 1 ≤ n ≤ k.

We want to form the closure of the class of initial functions under three construc-
tions: composition, primitive recursion, and search.

A k-place function h is said to be obtained by composition from the n-place func-
tion f and the k-place functions g1, . . . , gn if the equation

h(Ex) = f (g1(Ex), . . . , gn(Ex))

holds for all Ex. In the case of partial functions, it is to be understood here that h(Ex) is
undefined unless g1(Ex), . . . , gn(Ex) are all defined and 〈g1(Ex), . . . , gn(Ex)〉 belongs to the
domain of f .

A (k + 1)-place function h is said to be obtained by primitive recursion from the
k-place function f and the (k + 2)-place function g (where k > 0) if the pair of
equations

h(Ex, 0) = f (Ex)

h(Ex, y+ 1) = g(h(Ex, y), Ex, y)

holds for all Ex and y.
Again, in the case of partial functions, it is to be understood that h(Ex, y + 1) is

undefined unless h(Ex, y) is defined and 〈h(Ex, y), Ex, y〉 is in the domain of g.
Observe that in this situation, knowing the two functions f and g completely

determines the function h. More formally, if h1 and h2 are both obtained by prim-
itive recursion from f and g, then for each Ex, we can show by induction on y that
h1(Ex, y) = h2(Ex, y).

For the k = 0 case, the one-place function h is obtained by primitive recursion from
the two-place function g by using the number m if the pair of equations

h(0) = m

h(y+ 1) = g(h(y), y)

holds for all y.
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Postponing the matter of search, we define a function to be primitive recursive if
it can be built up from zero, successor, and projection functions by the use of compo-
sition and primitive recursion. (See the beginning of Chapter 2 for some examples.)
In other words, the class of primitive recursive functions is the smallest class that
includes our initial functions and is closed under composition and primitive recursion.
(Here saying that a class C is “closed” under composition and primitive recursion
means that whenever a function f is obtained by composition from functions in C or
is obtained by primitive recursion from functions in C, then f itself also belongs to C.)

Clearly all the primitive recursive functions are total. This is because the initial
functions are all total, the composition of total functions is total, and a function
obtained by primitive recursion from total functions will be total.

We say that a k-ary relation R on N is primitive recursive if its characteristic func-
tion is primitive recursive.

One can then show that a great many of the common functions on N are primitive
recursive: addition, multiplication, . . . , the function whose value at m is the (m+ 1)st
prime, . . . . Chapter 2 will carry out the project of showing that many functions are
primitive recursive.

On the one hand, it seems clear that every primitive recursive function should be
regarded as being effectively calculable. (The initial functions are pretty easy. Com-
position presents no big hurdles. Whenever h is obtained by primitive recursion from
effectively calculable f and g, then we see how we could effectively find h(Ex, 99),
by first finding h(Ex, 0) and then working our way up.) On the other hand, the class
of primitive recursive functions cannot possibly comprehend all total calculable func-
tions because we can “diagonalize out” of the class. That is, by suitably indexing the
“family tree” of the primitive recursive functions, we can make a list f0, f1, f2, . . . of
all the one-place primitive recursive functions. Then consider the diagonal function
d(x) = fx(x) + 1. Then d cannot be primitive recursive; it differs from each fx at x.
Nonetheless, if we made our list very tidily, the function d will be effectively calcu-
lable. The conclusion is the class of primitive recursive functions is an extensive but
proper subset of the total calculable functions.

Next, we say that a k-place function h is obtained from the (k+ 1)-place function g
by search, and we write

h(Ex) = µ y[g(Ex, y) = 0]

if for each Ex, the value h(Ex) either is the number y such that g(Ex, y) = 0 and g(Ex, s) is
defined and is nonzero for every s < y, if such a number t exists, or else is undefined,
if no such number t exists. The idea behind this “µ-operator” is the idea of searching
for the least number y that is the solution to an equation, by testing successively y =
0, 1, . . . .

We obtain the general recursive functions by adding search to our closure methods.
That is, a partial function is general recursive if it can be built up from the initial zero,
successor, and projection functions, by use of composition, primitive recursion, and
search (i.e, the µ-operator).

The class of general recursive partial functions on N is (as Turing proved) exactly
the same as the class of Turing computable partial functions. This is a rather striking
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result, in light of the very different ways in which the two definitions were formu-
lated. Turing machines would seem, at first glance, to have little to do with primitive
recursion and search. And yet, we get exactly the same partial functions from the two
approaches. And Church’s thesis, therefore, has the equivalent formulation that the
concept of a general recursive function is the correct formalization of the informal
concept of effective calculability.

What if we try to “diagonalize out” of the class of general recursive functions, as
we did for the primitive recursive functions? As will be argued later, we can again
make a tidy list ϕ0, ϕ1, ϕ2, . . . of all the one-place general recursive partial functions.
And we can define the diagonal function d(x) = ϕx(x)+1. But in this equation, d(x) is
undefined unless ϕx(x) is defined. The diagonal function d is indeed among the general
recursive partial functions, and hence is ϕk for some k, but d(k) must be undefined.
No contradiction results.

The class of primitive recursive functions was defined by Gödel, in his 1931 article
on the incompleteness theorems in logic. Of course, the idea of defining functions on
N by recursion is much older, and reflects the idea that the natural numbers are built
up from the number 0 by repeated application of the successor function. (Dedekind
wrote about this topic.) The theory of the general recursive functions was worked out
primarily by Stephen Kleene, a student of Church.

The use of the word “recursive” in the context of the primitive recursive functions
is entirely reasonable. Gödel, writing in German, had used simply “rekursiv” for the
primitive recursive functions. (It was Rózsa Péter who introduced the term “primitive
recursive.”) But the class of general recursive functions has – as this section shows –
several other characterizations in which recursion (i.e., defining a function in terms of
its other values, or using routines that call themselves) plays no obvious role.

This leads to the question: What to call this class of functions? Having two names
(“Turing computable” and “general recursive”) is an embarrassment of riches, and the
situation will only grow worse. Historically, the name “partial recursive functions”
won out. And relations on N were said to be recursive if their characteristic functions
belonged to the class. The study of such functions was for years called “recursive
function theory,” and then “recursion theory.” But this was more a matter of histori-
cal accident than a matter of reasoned choice. Nonetheless, the terminology became
standard.

But now an effort is being made to change what had been the standard termi-
nology. Accordingly, this book, Computability Theory, speaks of computable partial
functions. And we will call a relation computable if its characteristic function is a
computable function. Thus, the concept of a computable relation corresponds to the
informal notion of a decidable relation. (The manuscript for this book has, however,
been prepared with TeX macros that would facilitate a rapid change in terminology.)

In any case, there is definitely a need to have separate adjectives for the informal
concept (here “calculable” is used for functions, and “decidable” for relations) and the
formally defined concept (here “computable”).

1.2.3 Loop and While Programs

The idea behind the concept of effective calculable functions is that one should be
able to give explicit instructions – a program – for calculating such a function. What



The Computability Concept 21

programming language would be adequate here? Actually, any of the commonly used
programming languages would suffice, if freed from certain practical limitations, such
as the size of the number denoted by a variable. We give here a simple program-
ming language with the property that the programmable functions are exactly the
computable partial functions on N.

The variables of the language are X0,X1,X2, . . . . Although there are infinitely
many variables in the language, any one program, being a finite string of commands,
can have only a finite number of these variables. If we want the language to consist of
words over a finite alphabet, we can replace X3, say, by X′′′.

In running a program, each variable in the program gets assigned a natural number.
There is no limit on how large this number can be. Initially, some of the variables will
contain the input to the function; the language has no “input” commands. Similarly,
the language has no “output” commands; when (and if) the program halts, the value
of X0 is to be the function value.

The commands of the language come in five kinds:

1. Xn ← 0. This is the clear command; its effect is to assign the value 0 to Xn.
2. Xn ← Xn + 1. This is the increment command; its effect is to increase the value assigned

to Xn by one.
3. Xn ← Xm. This is the copy command; its effect is just what the name suggests; in particular,

it leaves the value of Xm unchanged.
4. loop Xn and endloop Xn. These are the loop commands, and they must be used in pairs. That

is, if P is a program – a syntactically correct string of commands – then so is the string:

loop Xn

P
endloop Xn

What this program means is that P is to be executed a certain number k of times. And that
number k is the initial value of Xn, the value assigned to Xn before we start executing P .
Possibly P will change the value of Xn; this has no effect at all on k. If k = 0, then this
string does nothing.

5. while Xn 6= 0 and endwhile Xn 6= 0. These are the while commands; again, they must be
used in pairs, like the loop commands. But there is a difference. The program

while Xn 6= 0
P

endwhile Xn 6= 0

also executes the program P some number k of times. But now k is not determined in
advance; it matters very much how P changes the value of Xn. The number k is the least
number (if any) such that executing P that many times causes Xn to be assigned the value 0.
The program will run forever if there is no such k.

And those are the only commands. A while program is a sequence of commands,
subject only to the requirement that the loop and while commands are used in pairs, as
illustrated. Clearly, this programming language is simple enough to be simulated by
any of the common programming languages if we ignore overflow problems.

A loop program is a while program with no while commands; that is, it has only
clear, increment, copy, and loop commands. Note the important property: A loop
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program always halts, no matter what. But it is easy to make a while program that
never halts.

We say that a k-place partial function f on N is while-computable if there exists
a while program P that, whenever started with a k-tuple Ex assigned to the variables
X1, . . . ,Xk and 0 assigned to the other variables, behaves as follows:

l If f (Ex) is defined, then the program eventually halts, with X0 assigned the value f (Ex).
l If f (Ex) is undefined, then the program never halts.

The loop-computable functions are defined in the analogous way. But there is the
difference that any loop-computable function is total.

Theorem:

(a) A function on N is loop-computable if and only if it is primitive recursive.
(b) A partial function on N is while-computable if and only if it is general recursive.

The proof in one direction, to show that every primitive recursive function is loop-
computable, involves a series of programming exercises. The proof in the other direc-
tion involves coding the status of a program P on input Ex after t steps, and showing
that there are primitive recursive functions enabling us to determine the status after
t + 1 steps, and the terminal status.

Because the class of general recursive partial functions coincides with the class of
Turing computable partial functions, we can conclude from the above theorem that
while-computability coincides with Turing computability.

1.2.4 Register Machines

Here is another programming language. On the one hand, it is extremely simple – even
simpler than the language for loop-while programs. On the other hand, the language
is “unstructured”; it incorporates (in effect) go-to commands. This formalization was
presented by Shepherdson and Sturgis in a 1963 article.

A register machine is to be thought of as a computing device with a finite number
of “registers,” numbered 0, 1, 2, . . . ,K. Each register is capable of storing a natural
number of any magnitude – there is no limit to the size of this number. The opera-
tion of the machine is determined by a program. A program is a finite sequence of
instructions, drawn from the following list:

l “Increment r,” I r (where 0 ≤ r ≤ K): The effect of this instruction is to increase the
contents of register r by 1. The machine then proceeds to the next instruction in the program
(if any).

l “Decrement r,” D r (where 0 ≤ r ≤ K): The effect of this instruction depends on the contents
of register r. If that number is nonzero, it is decreased by 1, and the machine proceeds not
to the next instruction, but to the following one. But if the number in register r is zero, the
machine simply proceeds to the next instruction. In summary, the machine tries to decrement
register r, and if it is successful, then it skips one instruction.
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l “Jump q,” J q (where q is an integer – positive, negative, or zero): All registers are left
unchanged. The machine takes as its next instruction the qth instruction following this one
in the program (if q ≥ 0), or the |q|th instruction preceding this one (if q < 0). The machine
halts if there is no such instruction in the program. An instruction of J 0 results in a loop,
with the machine executing this one instruction over and over again.

And that is all. The language has only these three types of instructions. (Strictly
speaking, in these instructions, r and q are numerals, not numbers. That is, an instruc-
tion should be a sequence of symbols. If we use base-10 numerals, then the alphabet
is {I,D, J, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−}. An instruction is a correctly formed word over
this alphabet.)

Examples:

1. CLEAR 7: a program to clear register 7.

D 7 Try to decrement 7.
J 2 Go back and repeat.
J −2 Halt.

2. MOVE from r to s: a program to move a number from register r to register s (where r 6= s).

CLEAR s. Use the program of the first example.
D r Take 1 from r.
J 3 Halt when zero.
I s Add 1 to s.
J −3 Repeat.

This program has seven instructions altogether. It leaves a zero in register r.
3. ADD 1 to 2 and 3: a program to add register 1 to registers 2 and 3.

D 1
J 4
I 2
I 3
J −4

This program leaves a zero in register 1. It is clear how to adapt the program to add register 1
to more (or fewer) than two registers.

4. COPY from r to s (using t): a program to copy a number from register r to register s (leaving
register r unchanged). We combine the previous examples.

CLEAR s. Use the first example.
MOVE from r to t. Use the second example.

ADD t to r and s. Use the third example.

This program has 15 instructions. It uses a third register, register t. At the end, the contents
for register r are restored. But during execution, register r must be cleared; this is the only
way of determining its contents. (It is assumed here that r, s, and t are distinct.)
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5. (Addition) Say that x and y are in registers 1 and 2. We want x+ y in register 0, and we want
to leave x and y still in registers 1 and 2 at the end.

Register contents
CLEAR 0. 0 x y
MOVE from 1 to 3. 0 0 y x
ADD 3 to 1 and 0. x x y 0
MOVE from 2 to 3. x x 0 y
ADD 3 to 2 and 0. x+ y x y 0

This program has 27 instructions as it is written, but three of them are unnecessary. (In the
fourth line, we begin by clearing register 3, which is already clear.)

Now suppose f is an n-place partial function on N. Possibly, there will be a pro-
gram P such that if we start a register machine (having all the registers to which P
refers) with x1, . . . , xn in registers 1, . . . , n and 0 in the other registers, and we apply
program P , then the following conditions hold:

l If f (x1, . . . , xn) is defined, then the computation eventually terminates with f (x1, . . . , xn) in
register 0. Furthermore, the computation terminates by seeking a (p+1)st instruction, where
p is the length of P .

l If f (x1, . . . , xn) is undefined, then the computation never terminates.

If there is such a program P , we say that P computes f .
Which functions are computable by register-machine programs? The language is

so simple – it appears to be a toy language – that one’s first impression might be that
only very simple functions are computable. This impression is misleading.

Theorem: Let f be a partial function. Then, there is a register-machine program that
computes f if and only if f is a general recursive partial function.

Thus by using register machines, we arrive at exactly the class of general recursive
partial functions, a class we originally defined in terms of primitive recursion and
search.

1.2.5 Definability in Formal Languages

We will briefly sketch several other ways in which the concept of effective calculabil-
ity might be formalized. Details will be left to the imagination.

In 1936, in his article in which he presented what is now known as Church’s thesis,
Alonzo Church utilized a formal system, the λ-calculus. Church had developed this
system as part of his study of the foundations of logic. In particular, for each natural
number, n, there is a formula n̄ of the system denoting n, that is, a numeral for n.
More importantly, formulas could be used to represent the construction of functions.
He defined a two-place function F to be λ-definable if there existed a formula F of
the lambda calculus such that whenever F(m, n) = r, then the formula {F}(m̄, n̄) was
convertible, following the rules of the system, to the formula r̄, and only then. An
analogous definition applied to k-place functions.
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Church’s student Stephen Kleene showed that a function was λ-definable if and
only if it was general recursive. (Church and his student J. B. Rosser also were
involved in the development of this result.) Church wrote in his article, “The fact . . .
that two such widely different and (in the opinion of the author) equally natural defi-
nitions of effective calculability turn out to be equivalent adds to the strength of rea-
sons . . . for believing that they constitute as general a characterization of this notion
as is consistent with the usual intuitive understanding of it.”

Earlier, in 1934, Kurt Gödel, in lectures at Princeton, formulated a concept now
referred to as Gödel–Herbrand computability. He did not, however, at the time propose
the concept as a formalization of the concept of effective calculability. The concept
involved a formal calculus of equations between terms built up from variables and
function symbols. The calculus permitted the passage from an equation A = B to
another equation obtained by substituting for a part C of A or B another term D where
the equation C = D had been derived. If a set E of equations allowed the derivation,
in a suitable sense, of exactly the right values for a function f on N, then E was said to
be a set of recursion equations for f . Once again, it turned out that a set of recursion
equations existed for f if and only if f was a general recursive function.

A rather different approach to characterizing the effectively calculable functions
involves definability by expressions in symbolic logic. A formal language for the arith-
metic of natural numbers might have variables and a numeral for each natural number,
and symbols for the equality relation and for the operations of addition and multi-
plication, at least. Moreover, the language should be able to handle the basic logical
connectives such as “and,” “or,” and “not.” Finally, it should include the “quantifier”
expressions ∀v and ∃v meaning “for all natural numbers v” and “for some natural
number v,” respectively.

For example,

∃s(u1 + s = u2)

might be an expression in the formal language, asserting a property of u1 and u2. The
expression is true (in N with its usual operations) when u1 is assigned 4 and u2 is
assigned 9 (take s = 5). But it is false when u1 is assigned 9 and u2 is assigned 4.
More generally, we can say that the expression defines (in N with its usual operations)
the binary relation “≤” on N.

For another example,

v 6= 0 and ∀x∀y[∃s(v+ s = x) or ∃t(v+ t = y) or v 6= x · y]

might be an expression in the formal language, asserting a property of v. The expres-
sion is false (in N with its usual operation) when v is assigned the number 6 (try x = 2
and y = 3). But the expression is true when v is assigned 7. More generally, the expres-
sion is true when v is assigned a prime number, and only then. We can say that this
expression defines the set of prime numbers (in N with its usual operations).

Say that a k-place partial function f on N is 61-definable if the graph of f (that
is, the (k + 1)-ary relation {〈Ex, y〉 | f (Ex) = y}) can be defined in N and with the
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operations of addition, multiplication, and exponentiation, by an expression of the
following form:

∃v1∃v2 · · · ∃vn(expression without quantifiers)

Then the class of 61-definable partial functions coincides exactly with the class of
partial functions given by the other formalizations of calculability described here.
Moreover, Yuri Matiyasevich showed in 1970 that the operation of exponentiation
was not needed here.

Finally, say that a k-place partial function f on N is representable if there exists
some finitely axiomatizable theory T in a language having a suitable numeral n̄ for
each natural number n, and there exists a formula ϕ of that language such that (for
any natural numbers) f (x1, . . . , xk) = y if and only if ϕ(x̄1, . . . , x̄k, ȳ) is a sentence
deducible in the theory T . Then, once again, the class of representable partial functions
coincides exactly with the class of partial functions given by the other formalizations
of calculability described here.

1.2.6 Church’s Thesis Revisited

In summary, for a k-place partial function f , the following conditions are equivalent:

l The function f is a Turing-computable partial function.
l The function f is a general recursive partial function.
l The partial function f is while-computable.
l The partial function f is computed by some register-machine program.
l The partial function f is λ-definable.
l The partial function f is 61-definable (over the natural numbers with addition, multiplica-

tion, and exponentiation).
l The partial function f is representable (in some finitely axiomatizable theory).

The equivalence of these conditions is surely a remarkable fact! Moreover, it is evi-
dence that the conditions characterize some natural and significant property. Church’s
thesis is the claim that the conditions in fact capture the informal concept of an effec-
tively calculable function.

Definition: A k-place partial function f on the natural numbers is said to be a com-
putable partial function if the foregoing conditions hold.

Then Church’s thesis is the claim that this definition is the one we want.
The situation is somewhat analogous to one in calculus. An intuitively continuous

function (defined on an interval) is one whose graph can be drawn without lifting the
pencil off the paper. But to prove theorems, some formalized counterpart of this con-
cept is needed. And so one gives the usual definition of ε-δ-continuity. Then it is fair
to ask whether the precise concept of ε-δ-continuity is an accurate formalization of
intuitive continuity. If anything, the class of ε-δ-continuous functions is too broad.
It includes nowhere differentiable functions, whose graphs cannot be drawn without
lifting the pencil – there is no way to impart a velocity vector to the pencil. But accu-
rate or not, the class of ε-δ-continuous functions has been found to be a natural and
important class in mathematical analysis.
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Very much the same situation occurs with computability. It is fair to ask whether
the precise concept of a computable partial function is an accurate formalization of the
informal concept of an effectively calculable function. Again, the precisely defined
class appears to be, if anything, too broad, because it includes functions requiring,
for large inputs, absurd amounts of computing time. Computability corresponds to
effective calculability in an idealized world, where length of computation and amount
of memory space are disregarded. But in any event, the class of computable partial
functions has been found to be a natural and important class.

Exercises

15. Give a loop program to compute the following function:

f (x, y, z) =

{
y if x = 0
z if x 6= 0.

16. Let x −· y = max(x − y, 0), the result of subtracting y from x, but with a “floor”
of 0. Give a loop program that computes the two-place function x−· y.

17. Give a loop program that when started with all variables assigned 0, halts with X0
assigned some number greater than 1000.

18. (a) Give a register-machine program that computes the subtraction function,
x−· y = max(x− y, 0), as in Exercise 16.

(b) Give a register-machine program that computes the subtraction partial
function:

f (x, y) =

{
x− y if x ≥ y
↑ if x < y.

19. Give a register-machine program that computes the multiplication function, x · y.
20. Give a register-machine program that computes the function max(x, y).
21. Give a register-machine program that computes the parity function:

f (x) =

{
1 if x is odd
0 if x is even.



2 General Recursive Functions

In the preceding chapter, we saw an overview of several possible formalizations of the
concept of effective calculability. In this chapter, we focus on one of those: primitive
recursiveness and search, which give us the class of general recursive partial functions.
In particular, we develop tools for showing that certain functions are in this class.
These tools will be used in Chapter 3, where we study computability by register-
machine programs.

2.1 Primitive Recursive Functions

The primitive recursive functions have been defined in the preceding chapter as the
functions on N that can be built up from zero functions

f (x1, . . . , xk) = 0,

the successor function

S(x) = x+ 1,

and the projection functions

Ik
n(x1, . . . , xk) = xn

by using (zero or more times) composition

h(Ex) = f (g1(Ex), . . . , gn(Ex))

and primitive recursion

h(Ex, 0) = f (Ex)
h(Ex, y+ 1) = g(h(Ex, y), Ex, y),

where Ex can be empty:

h(0) = m

h(y+ 1) = g(h(y), y).

Example: Suppose we are given the number m = 1 and the function g(w, y) = w ·
(y+ 1). Then the function h obtained by primitive recursion from g by using m is the
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function given by the pair of equations

h(0) = m = 1

h(y+ 1) = g(h(y), y) = h(y) · (y+ 1).

Using this pair of equations, we can proceed to calculate the values of the function h:

h(0) = m = 1

h(1) = g(h(0), 0) = g(1, 0) = 1

h(2) = g(h(1), 1) = g(1, 1) = 2

h(3) = g(h(2), 2) = g(2, 2) = 6

h(4) = g(h(3), 3) = g(6, 3) = 24

And so forth. In order to calculate h(4), we first need to know h(3), and to find that
we need h(2), and so on. The function h in this example is, of course, better known as
the factorial function, h(x) = x!.

It should be pretty clear that given any number m and any two-place function g,
there exists a unique function h obtained by primitive recursion from g by using m.
It is the function h that we calculate as in the preceding example. Similarly, given a
k-place function f and a (k + 2)-place function g, there exists a unique (k + 1)-place
function h that is obtained by primitive recursion from f and g. That is, h is the function
given by the pair of equations

h(Ex, 0) = f (Ex)
h(Ex, y+ 1) = g(h(Ex, y), Ex, y).

Moreover, if f and g are total functions, then h will also be total.

Example: Consider the addition function h(x, y) = x+ y. For any fixed x, its value at
y + 1 (i.e., x + y + 1) is obtainable from its value at y (i.e., x + y) by the simple step
of adding one:

x+ 0 = x

x+ (y+ 1) = (x+ y)+ 1.

This pair of equations shows that addition is obtained by primitive recursion from
the functions f (x) = x and g(w, x, y) = w + 1. These functions f and g are prim-
itive recursive; f is the projection function I1

1 , and g is obtained by composition
from successor and I3

1 . Putting these observations together, we can form a tree show-
ing how addition is built up from the initial functions by composition and primitive
recursion:
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h(x, y) = x + y
rec

I1
1(x) = x

�
��

g(w, x, y) = w + 1
comp

�
�
��

S(x) = x + 1
�
�
�

I3
1(w, x, y) = w
�
�
�

More generally, for any primitive recursive function h, we can use a labeled tree
(“construction tree”) to illustrate exactly how h is built up, as in the example of addi-
tion. At the top (root) vertex, we put h. At each minimal vertex (a leaf), we have an
initial function: the successor function, a zero function, or a projection function. At
each other vertex, we display either an application of composition or an application of
primitive recursion.

An application of composition

h(Ex) = f (g1(Ex), . . . , gn(Ex))

can be illustrated in the tree by a vertex with (n+ 1)-ary branching:

h
comp

f

��
��
��

g1

�
�
�

· · · gn

�
�
�

��

Here f must be an n-place function, and g1, . . . , gn must all have the same number
of places as h.

An application of primitive recursion to obtain a (k + 1)-place function h{
h(Ex, 0) = f (Ex)
h(Ex, y+ 1) = g(h(Ex, y), Ex, y)

can be illustrated by a vertex with binary branching:

h
rec

f

�
�
�

g

�
�
�
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Note that g must have two more places than f , and one more place than h (e.g., if h
is a two-place function, then g must be a three-place function and f must be a one-place
function).

The k = 0 case, where a one-place function h is obtained by primitive recursion
from a two-place function g by using the number m{

h(0) = m

h(x+ 1) = g(h(x), x),

can be illustrated by a vertex with unary branching:

h
rec(m)

g

In both forms of primitive recursion (k > 0 and k = 0), the key feature is that the
value of the function at a number t+ 1 is somehow obtainable from its value at t. The
role of g is to explain how.

Every primitive recursive function is total. We can see this by “structural induc-
tion.” For the basis, all of the initial functions (the zero functions, the successor func-
tion, and the projections functions) are total. For the two inductive steps, we observe
that composition of total functions yields a total function, and primitive recursion
applied to total functions yields a total function. So for any primitive recursive func-
tion, we can work our way up its construction tree. At the leaves of the tree, we have
total functions. And each time we move to a higher vertex, we still have a total func-
tion. Eventually, we come to the root at the top, and conclude that the function being
constructed is total.

Next we want to build up a catalog of basic primitive recursive functions. These
items in the catalog can then be used as “off the shelf” parts for later building up of
other primitive recursive functions.

1. Addition 〈x, y〉 7→ x+ y has already been shown to be primitive recursive.

The symbol “ 7→” is read “maps to.” The symbol gives us a very convenient way
to name functions. For example, the squaring function can be named by the lengthy
phrase “the function that given a number, squares it,” which uses the pronoun “it” for
the number. It is mathematically convenient to use a letter (such as x or t) in place
of this pronoun. This leads us to the names “the function whose value at x is x2” or
“the function whose value at t is t2.” More compactly, these names can be written in
symbols as “x 7→ x2” or “t 7→ t2.” The letter x or t is a dummy variable; we can use
any letter here.

2. Any constant function Ex 7→ k can be obtained by applying composition k times to
the successor function and the zero function Ex 7→ 0. For example, the three-place
function that constantly takes the value 2 can be constructed by the following tree:
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h(x, y, z) = 2
comp

S(u) = u + 1

�
��

g(x, y, z) = 1
comp

�
�
��

S(u) = u + 1
�
�
�

f (x, y, z) = 0
�
�
�

3. For multiplication 〈x, y〉 7→ x× y, we first observe that

x× 0 = 0
x× (y+ 1) = (x× y)+ x.

This shows that multiplication is obtained by primitive recursion from the functions
x 7→ 0 and 〈w, x, y〉 7→ w + x. The latter function is obtained by composition
applied to addition and projection functions.

We can now conclude that any polynomial function with positive coefficients is
primitive recursive. For example, we can see that the function p(x, y) = x2y + 5xy +
3y3 is primitive recursive by repeatedly applying 1, 2, and 3.

4. Exponentiation 〈x, y〉 7→ xy is similar:

x0 = 1

xy+1 = xy × x.

5. Exponentiation 〈x, y〉 7→ yx is obtained from the preceding function by composi-
tion with projection functions. (The functions in items 4 and 5 are different func-
tions; they assign different values to 〈2, 3〉. The fact that they coincide at 〈2, 4〉 is
an accident.)

We should generalize this observation. For example, if f is primitive recursive, and
g is defined by the equation

g(x, y, z) = f (y, 3, x, x)

then g is also primitive recursive, being obtained by composition from f and projec-
tion and constant functions. We will say in this situation that g is obtained from f by
explicit transformation. Explicit transformation permits scrambling variables, repeat-
ing variables, omitting variables, and substituting constants.

6. The factorial function x! satisfies the pair of recursion equations

0! = 1
(x+ 1)! = x!×(x+ 1).

From this pair of equations, it follows that the factorial function is obtained by
primitive recursion (by using 1) from the function g(w, x) = w · (x + 1). (See the
example at the beginning of this chapter.)
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7. The predecessor function pred(x) = x− 1 (except that pred(0) = 0) is obtained by
primitive recursion from I2

2 :

pred (0) = 0

pred (x+ 1) = x.

This pair of equations leads to the tree:

pred
rec(0)

I2
2(w, x) = x

8. Define the proper subtraction function x−· y by the equation x−· y = max(x−y, 0).
This function is primitive recursive:

x−· 0 = x

x−· (y+ 1) = pred(x−· y)

This pair of recursion equations yields the following construction tree:

h(x, y) = x−· y
rec

I1
1(x) = x

�
��

g(w, x, y) = pred(w)
comp

�
�
��

pred(w)
rec(0)

�
��

I2
2(w, x) = x

I3
1(w, x, y) = w
�
�

�

By the way, the symbol −· is sometimes read as “monus.”
9. Assume that f is primitive recursive, and define the functions s and p by the equa-

tions

s(Ex, y) =
∑
t<y

f (Ex, t) and p(Ex, y) =
∏
t<y

f (Ex, t)

(subject to the standard conventions for the empty sum
∑

t<0 f (Ex, t) = 0 and the
empty product

∏
t<0 f (Ex, t) = 1). Then both s and p are primitive recursive. For p,

we have the pair of equations:

p(Ex, 0) = 1

p(Ex, y+ 1) = p(Ex, y) · f (Ex, y)
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10. Define the function z by the equation

z(x) =
{

1 if x = 0
0 if x > 0.

That is, the function z looks to see if its input is zero, and returns Yes (i.e., 1) if
it is zero; otherwise, it returns No (i.e., 0). The function z is primitive recursive.
We can see this from the equation z(x) = 0x. More directly, we can see it from the
equation z(x) = 1 −· x. And even more directly, we can see it from the recursion
equations

z(0) = 1

z(x+ 1) = 0

showing that z is obtained by primitive recursion (by using 1) from the function
g(w, x) = 0.

z
rec(1)

g(w, x) = 0

11. In a similar vein, the function h that checks its two inputs x and y to see whether
or not x ≤ y

h(x, y) =
{

1 if x ≤ y
0 if otherwise

is primitive recursive because h(x, y) = z(x−· y).

Items 10 and 11 can be reformulated in terms of relations (instead of functions).
Suppose that R is a k-ary relation on the natural numbers, that is, R is some set of
k-tuples of natural numbers: R ⊆ Nk. We define R to be a primitive recursive relation
if its characteristic function

CR(x1, . . . , xk) =
{

1 if 〈x1, . . . , xk〉 ∈ R
0 if otherwise

is a primitive recursive function. For example, item 11 states that the ordering relation
{〈x, y〉 | x ≤ y} is a primitive recursive binary relation. And item 10 states that {0} is a
primitive recursive unary relation.

From composition, we derive the substitution rule: If Q is an n-ary primitive recur-
sive relation, and g1, . . . , gn are k-place primitive recursive functions, then the k-ary
relation

{Ex | 〈g1(Ex), . . . , gn(Ex)〉 ∈ Q}
is primitive recursive because its characteristic function is obtained from CQ and
g1, . . . , gn by composition.
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From a relation Q, we can form its complement Q:

Q = {Ex | Ex is not in Q}

From two k-ary relations Q and R (for the same k), we can form their intersection,

Q ∩ R = {Ex | both Ex ∈ Q and Ex ∈ R}

and their union

Q ∪ R = {Ex | either Ex ∈ Q or Ex ∈ R or both}.

We can streamline the notation slightly by writing, instead of Ex ∈ Q, simply Q(Ex).
In this notation,

Q = {Ex | not Q(Ex)},
Q ∩ R = {Ex | both Q(Ex) and R(Ex)},
Q ∪ R = {Ex | either Q(Ex) or R(Ex) or both}.

The following theorem assures us that these constructions preserve primitive recur-
siveness. That is, when applied to primitive recursive relations, they produce primitive
recursive relations. This theorem will be useful in extending our supply of primitive
recursive relations and functions.

Theorem: Assume that Q and R are k-ary primitive recursive relations. Then the fol-
lowing relations are also primitive recursive:

(a) The complement Q of Q:

Q = {Ex | not Q(Ex)}

(b) The intersection Q ∩ R of Q and R:

Q ∩ R = {Ex | both Q(Ex) and R(Ex)}

(c) The union Q ∪ R of Q and R:

Q ∪ R = {Ex | either Q(Ex) or R(Ex) or both}

Proof.

(a)
CQ(Ex) = z(CQ(Ex))

where z is the function from 10. That is, CQ is obtained by composition from functions
known to be primitive recursive. The other parts are proved similarly; we need to make the
characteristic function from primitive recursive parts.
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(b)

CQ∩R(Ex) = CQ(Ex) · CR(Ex)

(c)

CQ∪R(Ex) = pos[CQ(Ex)+ CR(Ex)]

where pos is the function from Exercise 5.
a

For example, we can apply this theorem to conclude that > and = are primitive
recursive relations:

12. The relation {〈x, y〉 | x > y} is primitive recursive because it is the complement
of the ≤ relation from item 11.

13. The relation {〈x, y〉 | x = y} is primitive recursive because it is the intersection of
the ≤ and the ≥ relations, and ≥ is obtained from ≤ by explicit transformation.

It follows from item 13 and the substitution rule that for any primitive recursive
function f , its graph

{〈Ex, y〉 | f (Ex) = y}

is a primitive recursive relation.

Definition by cases: Assume that Q is a primitive recursive k-ary relation, and that
f and g are primitive recursive k-place functions. Then the function h defined by the
equation

h(Ex) =
{

f (Ex) if Q(Ex)
g(Ex) if not Q(Ex)

is also primitive recursive.

Proof. h(Ex) = f (Ex) · CQ(Ex)+ g(Ex) · CQ(Ex). a

This result can be extended to more than two cases; see Exercise 12. For example,
we might want to handle an equation of the form

h(Ex) =


f1(Ex) if Q(Ex) and R(Ex)
f2(Ex) if Q(Ex) and not R(Ex)
f3(Ex) if R(Ex) and not Q(Ex)
f4(Ex) if neither Q(Ex) nor R(Ex)
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or one of the form

h(Ex) =



f1(Ex) if Q1(Ex)
f2(Ex) if Q2(Ex)
· · · · · ·
f9(Ex) if Q9(Ex)
f10(Ex) if none of the above

in a situation in which it is known that no two of Q1, . . . ,Q9 can hold simultaneously.
Moreover, from a k-ary relation Q, we can form

{〈x1, . . . , xk−1, y〉 | for every t < y, 〈x1, . . . , xk−1, t〉 ∈ Q},

which can be written in better notation as

{〈Ex, y〉 | (∀t < y)Q(Ex, t)},

where the symbol ∀ is read “for all.” In the same spirit, we can form

{〈x1, . . . , xk−1, y〉 | for some t < y, 〈x1, . . . , xk−1, t〉 ∈ Q},

which is better written as

{〈Ex, y〉 | (∃t < y)Q(Ex, t)},

where the symbol ∃ is read as “there exists . . . such that.”
Again, these constructions preserve primitive recursiveness:

Theorem: Assume that Q is a (k + 1)-ary primitive recursive relation. Then the fol-
lowing relations are also primitive recursive:

(a)

{〈Ex, y〉 | (∀t < y)Q(Ex, t)}
(b)

{〈Ex, y〉 | (∃t < y)Q(Ex, t)}

Proof.

(a) The value of the characteristic function at 〈Ex, y〉 is∏
t<y

CQ(Ex, t).

Apply item 9.
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(b) The value of the characteristic function at 〈Ex, y〉 is

pos

∑
t<y

CQ(Ex, t)


where pos is the function from Exercise 5. This is primitive recursive by item 9 and
Exercise 5. a

For example, we can apply these results to show that the relation

{〈x, y〉 | (∃q < y+ 1)[x · q = y]}

is primitive recursive. We do this by looking at the way the above line is written, and
then filling in the details. First of all, the ternary relation

R1(x, y, q) ⇐⇒ x · q = y

is obtained from the equality relation by substituting the functions 〈x, y, q〉 7→ x · q
and I3

2 . Secondly, an application of the preceding theorem then shows that the ternary
relation

R2(x, y, z) ⇐⇒ (∃q < z)[x · q = y]

is primitive recursive. Finally, we apply substitution:

(∃q < y+ 1)[x · q = y] ⇐⇒ R2(x, y, y+ 1).

In short, we can show that this relation is primitive recursive by examining the syntac-
tical form of its definition and verifying that it has been built up by using only pieces
that are known to be primitive recursive.

14. The divisibility relation x | y, that is, the relation

{〈x, y〉 | x divides y with 0 remainder},

is primitive recursive. (Here we adopt the convention that 0 divides itself, but it
does not divide any positive integer.) This is because

x | y ⇐⇒ for some quotient q,we have x · q = y

⇐⇒ (∃q ≤ y)[x · q = y]

⇐⇒ (∃q < y+ 1)[x · q = y].

That is, the relation we examined in the foregoing example is nothing but the
divisibility relation!
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In effect, we are building up a certain language such that any function or relation
definable in the language is guaranteed to be primitive recursive. (For divisibility,
the crucial fact was that the expression “(∃q < y + 1)[x · q = y]” belonged to this
language.) This language includes the following:

l Variables: The projection functions are primitive recursive.
l Constants (numerals): The constant functions are primitive recursive.
l Function symbols: We can use symbols for any primitive recursive function in the list we

are building up (+, ×, −· , . . . , with more to come).
l Combinations:

∑
x<y,

∏
x<y, with more to come.

l Relation symbols: We can use symbols for any primitive recursive relation in the list we are
building up (≤,=, |, . . . , with more to come).

l More combinations: “not,” “and,” “or” can be applied to relations.
l Bounded “quantifiers”: ∀x < y and ∃x < y. (The upper bound y is needed here.)

We have theorems assuring us that functions or relations expressible in this language
are certain to be primitive recursive.

For example, we next add the set of primes (as a unary relation) to our list:

15. The set {2, 3, 5, . . .} of prime natural numbers (as a unary relation on N) is prim-
itive recursive. To see this, observe that

x is prime ⇐⇒ 1 < x and (∀u < x)(∀v < x)[uv 6= x],

and the right-hand side is written within the language available to us.

2.1.1 Bounded Search

The search operator (often called minimalization or the µ-operator) provides a useful
way of defining a function in terms of a “search” for the first time a given condition is
satisfied.

Definition: For a (k + 1)-ary relation P, the number (µt < y)P(Ex, t) is defined by the
equation:

(µt < y)P(Ex, t) =
{

the least t such that t < y and P(Ex, t), if any

y if there is no such t

For example, if we let

f (x, y) = µt < y[t is prime and x < t]

then f (6, 4) = 4 and f (6, 8) = f (6, 800) = 7.

Theorem: If P is a primitive recursive relation, then the function

f (Ex, y) = (µt < y)P(Ex, t)

is a primitive recursive function.
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Proof. We will apply primitive recursion. Trivially f (Ex, 0) = 0, so there is no problem
here. The problem to see how f (Ex, y+1) (call this b) depends on f (Ex, y) (call this a):

l If a < y, then b = a. (The search below y succeeded.)
l If a = y and P(Ex, y), then b = y.
l Otherwise, b = y+ 1.

Thus, if we define

g(a, Ex, y) =


a if a < y

y if a 6< y and P(Ex, y)

y+ 1 if a 6< y and not P(Ex, y),

then f is obtained by primitive recursion from the functions Ex 7→ 0 and g. Because P
is a primitive recursive relation, it follows that g is primitive recursive (by definition-
by-cases), and hence f is primitive recursive. a

There is another proof of this theorem, which relies on the following remarkable
equation:

(µt < y)P(Ex, t) =
∑
u<y

∏
t≤u

CP(Ex, t)

A related search operator is bounded maximalization. Define the µ-operator as
follows:

(µt ≤ y)P(Ex, t) =
{

the largest number t such that t ≤ y and P(Ex, t), if any

0 if there is no such t

Theorem: If P is a primitive recursive relation, then the function

f (Ex, y) = (µt ≤ y)P(Ex, t)

is a primitive recursive function.

Proof.

(µt ≤ y)P(Ex, t) = y−· (µs < y)P(Ex, y−· s).

This equation captures the idea of searching down from y. a

Euclid observed that the set of prime numbers is unbounded. Hence the function

h(x) = the smallest prime number larger than x

is total. It is also primitive recursive because

h(x) = µt < (x!+2)[t is prime and x < t].

The upper bound x!+2 suffices because for any prime factor p of x!+1, we have
x < p ≤ x!+1. So any search for a prime larger than x need go no further than x!+1.
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Digression: There is an interesting result in number theory here. “Bertrand’s postulate”
states that for any x > 3, there will always be a prime number p with x < p < 2x− 2.
(Bertrand’s postulate implies that in the previous paragraph, it suffices to use simply
h(x) = µt<(2x+3)[t is prime and x< t].) In 1845, the French mathematician Joseph
Bertrand, using prime number tables, verified this statement for x below three million.
Then in 1850, the Russian P. L. Chebyshev (Tchebychef) proved the result in general.
In 1932, the Hungarian Paul Erdős gave a better proof, which can now be found in
undergraduate number theory textbooks. The origin of

Chebyshev said it
So I’ll say it again

There’s always a prime
Between N and 2N

is unknown, which may be just as well.

Define px to be the (x+ 1)st prime number, so that

p0 = 2, p1 = 3, p2 = 5, p3 = 7, p4 = 11,

and so forth. In other words, px is the xth odd prime, except that p0 = 2. (The prime
number theorem tells us that px grows at a rate something like x ln x, but that is beside
the point.)

16. The function x 7→ px is primitive recursive because we have the recursion
equations

p0 = 2

px+1 = h(px),

where h is the above function that finds the next prime.
It is easy to see that we always have x+1< px; a formal proof can use induction.

We will need methods for encoding a string of numbers by a single number. One
method that is conceptually simple uses powers of primes. We define the “bracket
notation” as follows.

[ ] = 1

[x] = 2x+1

[x, y] = 2x+13y+1

[x, y, z] = 2x+13y+15z+1

· · ·
[x0, x1, . . . , xk] = 2x0+13x1+1 · · · pxk+1

k

For example, [2, 1] = 72 and [2, 1, 0] = 360. Clearly, for any one value of k, the
function

〈x0, x1, . . . , xk〉 7→ [x0, x1, . . . , xk]
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is a primitive recursive (k + 1)-place function. But encoding is useless, unless we
can decode. (The “fundamental theorem of arithmetic” is the statement that every
positive integer has a factorization into primes, unique up to order. For decoding, we
are implicitly exploiting the uniqueness of prime factorization.) Item 17 will give a
primitive recursive decoding function.

Digression: Using powers of primes is by no means the only way to encode a string
of numbers. It is a very convenient method for our present purposes, but there are a
number of other methods. Here is a very different approach:

〈x0, x1, . . . , xk〉 7→ 1 00 · · · 0︸ ︷︷ ︸
x0

1 00 · · · 0︸ ︷︷ ︸
x1

1 · · · · · · 1 00 · · · 0︸ ︷︷ ︸
xk two

That is, a sequence of length n can be coded by the number whose binary representa-
tion has n 1’s. The number of 0’s that follow the ith 1 in the representation corresponds
to the ith component in the sequence.

Here are some examples:

〈0, 3, 2〉 7→ 11000100two = 188

〈2, 1, 0〉 7→ 100101two = 37

〈 〉 7→ 0two = 0

〈7〉 7→ 10000000two = 128

〈0, 0, 0, 0〉 7→ 1111two = 31

These values can be compared with the values yielded by the bracket notation:
[0, 3, 2] = 21 ·34 ·53 = 20, 250, [2, 1, 0] = 23 ·32 ·51 = 360, [ ] = 1, [7] = 28 = 256,
[0, 0, 0, 0] = 2 · 3 · 5 · 7 = 210.

In particular, suppose we want to encode a sequence of two numbers. This method
yields

〈m, n〉 7→ 1 00 · · · 0︸ ︷︷ ︸
m

1 00 · · · 0︸ ︷︷ ︸
n two

= 2m+n+1 + 2n = 2n(2m+1 + 1).

The bracket notation yields simply [m, n] = 2m+1 · 3n+1. Both of these “pairing func-
tions” have the feature that they grow exponentially as m and n increase.

Interestingly, there are polynomial pairing functions, and here is one:

J(m, n) = 1

2
((m+ n)2 + 3m+ n).

The function J is one-to-one, so the pair 〈m, n〉 is recoverable from the value J(m, n).
In fact the function J maps N× N one-to-one onto N.

And where does J come from? Here is a clue. Calculate J(m, n) for all small values
of m and n, say m + n ≤ 4. Then make a chart in the plane, by placing the number
J(m, n) at the point in the plane with coordinates 〈m, n〉. Check if a pattern is emerging.
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17. There is a primitive recursive two-place “decoding” function, whose value at
〈x, y〉 is written (x)y, with the property that whenever y ≤ k,

([x0, x1, . . . , xk])y = xy.

That is,

(code for a sequence)y = the (y+ 1)st term of the sequence.

For example, (72)0 = 2 and (72)1 = 1 because 72 = [2, 1].
First, observe that the exponent of a prime q in the factorization of a positive

integer x is

µe
(

qe+1 - x
)
,

the smallest e for which e + 1 would be too much. We can bound the search at x
because if qe | x, then e < qe ≤ x. That is, the exponent of q in the factorization of x is

(µe < x)
(

qe+1 - x
)
.

Now suppose that prime q is py. We define

(x)∗y = (µe < x)
(

pe+1
y - x

)
so that (x)∗y is the exponent of py in the prime factorization of x.

Secondly, for our decoding function, we need one less than the exponent of the
prime py in the factorization of the sequence code. Accordingly, we define

(x)y = (x)∗y −· 1 = (µe < x)
(

pe+1
y - x

)
−· 1.

The right-hand side of this equation is written in our language, so the function is
primitive recursive. The function tests powers of py until it finds the largest one in the
factorization of x, and then it backs down by 1. If py does not divide x, then (x)y = 0,
harmlessly enough. Also (0)y = 0, but for a different reason.

18. Say that y is a sequence number if either y = [ ] or y = [x0, x1, . . . , xk] for some
k and some x0, x1, . . . , xk. For example, 1 is a sequence number but 50 is not.
The set of sequence numbers is primitive recursive; see Exercise 14. The set of
sequence numbers starts off as {1, 2, 4, 6, 8, 12, . . .}.

19. There is a primitive recursive function lh such that

lh[x0, x1, . . . , xk] = k + 1.

For example, lh(360) = 3. Here “lh” stands for “length.” We define

lh(x) = (µk < x)
(
pk - x

)
.

Thus, for example, lh(50) = 1.
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It is apparent from its definition that this function is primitive recursive. The upper
bound on the µ search is adequate because if pk−1 | x, then (k − 1)+ 1 < pk−1 ≤ x.

If s is a sequence number of positive length, then

(s)lh(s)−· 1
will be the last component of the sequence.

20. There is a two-place primitive recursive function whose value at 〈x, y〉 is called
the restriction of x to y, written x � y, with the property that whenever y ≤ k + 1
then

[x0, x1, . . . , xk] � y = [x0, x1, . . . , xy−1].

That is, the restriction of x to y gives us the first y components of the sequence.
We define

x � y =
∏
i<y

p
(x)∗i
i .

For example, if s is a sequence number, then s � (lh(s) −· 1) will encode the
result of deleting the last item in the sequence, if any.

21. There is a two-place primitive recursive function whose value at 〈x, y〉 is called
the concatenation of x and y, written x ∗ y, with the property that whenever x and
y are sequence numbers, then x ∗ y is the sequence number of length lh(x)+ lh(y)
whose components are first the components of x and then the components of y.
We define

x ∗ y = x ·
∏

i<lh(y)

p
(y)∗i
i+lh(x).

For example, 72∗72 = [2, 1, 2, 1] = 441, 000. If s is a sequence number, then
s ∗ [x] will encode the result of adjoining x to the end of the sequence.

22. We can also define a “capital asterisk” operation. Let

∗t<yat = a0 ∗ a1 ∗ · · · ∗ ay−1

(grouped to the left). If f is a primitive recursive (k + 1)-place function, then so
is the function whose value at 〈Ex, y〉 is ∗t<yf (Ex, t), as can be seen from the pair of
recursion equations:

∗t<0 f (Ex, t) = 1

∗t<y+1 f (Ex, t) = ∗t<y f (Ex, t) ∗ f (Ex, y)

For any (k + 1)-place function f , we define f by the equation

f (Ex, y) = [ f (Ex, 0), f (Ex, 1), . . . , f (Ex, y− 1)]

so that the number f (Ex, y) encodes y values of f , namely the values f (Ex, t) for
all t < y. For example, f (Ex, 0) = [ ] = 1, encoding 0 values. And f (Ex, 2) =
[ f (Ex, 0), f (Ex, 1)]. Clearly f (Ex, y) is always a sequence number of length y.
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23. If f is primitive recursive, then so is f because

f (Ex, y) =
∏
i<y

p f (Ex,i)+1
i .

Now suppose we have a (k + 2)-place function g. Then there exists a unique
function (k + 1)-place f satisfying the equation

f (Ex, y) = g( f (Ex, y), Ex, y)

for all Ex and y. For example,

f (Ex, 0) = g([ ], Ex, 0) = g(1, Ex, 0)

f (Ex, 1) = g([ f (Ex, 0)], Ex, 1)

f (Ex, 2) = g([ f (Ex, 0), f (Ex, 1)], Ex, 2)

and so forth. The function f is determined recursively; we can find f (Ex, y) after
we know f (Ex, t) for all t < y.

24. Assume that g is a primitive recursive (k + 2)-place function, and let f be the
unique (k + 1)-place function for which

f (Ex, y) = g( f (Ex, y), Ex, y)

for all Ex and y. Then f is also primitive recursive.
To see that f is primitive recursive, we first examine f . We have the pair of

recursion equations

f (Ex, 0) = 1

f (Ex, y+ 1) = f (Ex, y) ∗ [g( f (Ex, y), Ex, y)]

from which we see that f is primitive recursive. Secondly, the primitive recursive-
ness of f itself follows from the equation

f (Ex, y) = g( f (Ex, y), Ex, y)

once we know that f is primitive recursive.

The definition of primitive recursion involved defining the value of a function in
terms of its immediately preceding value. Item 24 shows that we get an added bonus:
the value of a function can be defined in terms of all its preceding values.

At this point, we have seen that many of the everyday functions on the natural
numbers are primitive recursive. But the class of primitive recursive functions does
not include all of the functions on N that one would regard as effectively calculable.
W. Ackermann showed how to construct an effectively calculable function that grows
faster than any primitive recursive function. Also, we can “diagonalize out” of the
primitive recursive functions. In rough outline, here is how that would go: Any primi-
tive recursive function is determined by tree, showing how it is built up from initial
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functions by the use of composition and primitive recursion. We can, with some effort,
code such trees by natural numbers. The “universal” function

9(x, y) =
{

f (x) if y codes a tree for a one-place primitive recursive function f

0 otherwise

is effectively calculable (and total). But9(x, x)+1 and 1−· 9(x, x) are total effectively
calculable functions that cannot be primitive recursive. (See also page 19.)

2.2 Search Operation

We obtain the class of general recursive partial functions by allowing functions to be
built up by use of search (in addition to composition and primitive recursion). Search
(also called minimalization) corresponds to an unbounded µ-operator. For a (k + 1)-
place partial function g, we define

µy[g(Ex, y) = 0] =


the least number y such that both g(Ex, y) = 0 and

for all t less than y, the value g(Ex, t) is defined

and is nonzero, if there is any such y

undefined, if there is no such y.

This quantity may be undefined for some (or all) values of Ex, even if g happens to be
a total function.

Example: Assume that we know the following pieces of information about the func-
tion g:

g(0, 0) = 7 g(0, 1) = 0

g(1, 0) ↑ g(1, 1) = 0

Then µy[g(0, y) = 0] is 1, and µy[g(1, y) = 0] is undefined.

A k-place partial function h is said to be obtained from g by search if the equation

h(Ex) = µy[g(Ex, y) = 0]

holds for all Ex, with the usual understanding that for an equation to hold, either both
sides are undefined, or both sides are defined and are equal.

Then we say that a partial function is general recursive if it can be built up from the
zero, successor, and projection functions, where we are allowed to use composition,
primitive recursion, and search.

The collection of general recursive partial functions includes all of the primitive
recursive functions (which are all total), and more. As an extreme example, the one-
place empty function (i.e., the function with empty domain) is a general recursive
partial function; it is obtained by search from the constant function g(x, y) = 3.



48 Computability Theory

9A. If f is a general recursive partial function, then so are the functions s and p:

s(Ex, y) =
∑
t<y

f (Ex, t) and p(Ex, y) =
∏
t<y

f (Ex, t)

For any particular Ex, these functions are defined either for all y, or for a finite
initial segment of the natural numbers.

We define a relation R to be a general recursive relation if its characteristic function
CR (which by definition is always total) is a general recursive function. As a special
case of search, whenever R is a (k+ 1)-ary general recursive relation, then the k-place
function h defined by the equation

h(Ex) = µy R(Ex, y)

is a general recursive partial function.
We again have a substitution rule: Whenever Q is an n-ary general recursive

relation, and g1, . . . , gn are k-place total general recursive functions, then the k-ary
relation

{Ex | 〈g1(Ex), . . . , gn(Ex)〉 ∈ Q}
is general recursive because its characteristic function is obtained from CQ and
g1, . . . , gn by composition. But this does not necessarily hold if the gi functions are
nontotal. In that case, composition does not give us the full CQ, but a nontotal sub-
function of it.

For example, for any total general recursive function f , its graph

{〈Ex, y〉 | f (Ex) = y}
is a general recursive relation. (Similarly, the graph of any primitive recursive function
will be a primitive recursive relation.) We will see later that this can fail in the case of
a nontotal function.

Theorem:
(d) If Q and R are k-ary general recursive relations, then so are Q, Q∩R, and Q∪R.
(e) If Q is a (k + 1)-ary general recursive relation, then so are the relations

{〈Ex, y〉 | (∀t < y)Q(Ex, t)} and {〈Ex, y〉 | (∃t < y)Q(Ex, t)}.
The proof is unchanged.
Definition-by-cases continues to hold, but we need to be more careful with its proof.

Suppose that g is a k-place general recursive partial function, and that Q is a k-ary
general recursive relation. Define gQ by the equation

gQ(Ex) =
{

g(Ex) if Q(Ex)
0 if not Q(Ex).

Then gQ is also a general recursive partial function. But we cannot write simply
gQ(Ex) = g(Ex) · CQ(Ex) because there may be some Ex that are not in the domain of
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g (so the right-hand side will be undefined) and not in Q (so the left-hand side will
be 0). Instead, we can first use primitive recursion to construct the function

G(Ex, 0) = 0

G(Ex, y+ 1) = g(Ex),

which is like g except that it has a “on–off switch.” Then we have the equation

gQ(Ex) = G(Ex,CQ(Ex)).

showing that gQ is a general recursive partial function.
Now if we also have another k-place general recursive partial function f , and we

define

h(Ex) =
{

f (Ex) if Q(Ex)
g(Ex) if not Q(Ex)

then h is a general recursive partial function because h(Ex) = f Q(Ex)+ gQ(Ex).
24A. Assume that g is a general recursive partial (k + 2)-place function, and let f be

the unique (k + 1)-place function for which

f (Ex, y) = g( f (Ex, y), Ex, y)

for all Ex and y. (If g is nontotal, then it is possible that for some values of Ex,
the quantity f (Ex, y) will be defined only for finitely many y’s.) Then f is also a
general recursive partial function.

The proof is as before.

It was argued earlier that the collection of primitive recursive functions cannot
contain all of the effectively calculable total functions. But Church’s thesis implies that
the collection of general recursive partial functions does contain all of them, as well
as the effectively calculable nontotal functions. As indicated informally on page 20,
it is not possible to “diagonalize out” of the collection of general recursive partial
functions.

Exercises

0. Do you understand primitive recursion? Are you positive? If you are positive, go
to Exercise 1.

1. Subtract 1. Go to Exercise 0.
2. Give an example of a nontotal function g such that the function h obtained from

g by search

h(x) = µy[g(x, y) = 0]

is total.
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3. Give a construction tree in full for multiplication (item 3).
4. Show that the squaring function f (x)= x2 is primitive recursive by giving a con-

struction tree showing in detail how it can be built up from initial functions by
the use of composition and primitive recursion. (At the leaves of the tree, you
must have only initial functions; e.g., if you want to use addition, you must con-
struct it.)

5. Show that the function

pos(x) =
{

1 if x > 0

0 if x = 0

is primitive recursive by giving a construction tree.
6. Show that the parity function

Codd(x) =
{

1 if x is odd
0 if x is even

is primitive recursive by giving a construction tree.
7. Show that the function 〈x, y〉 7→ |x− y| is primitive recursive.
8. Show that the function 〈x, y〉 7→ max(x, y) is primitive recursive.
9. Show that the function 〈x, y〉 7→ min(x, y) is primitive recursive.

10. Show that there is a primitive recursive function div such that whenever y > 0,
then

div(x, y) = bx/yc.

(Here bzc is the largest natural number that is ≤ z, i.e., the result of rounding z
down to a natural number.)

11. Show that there is a primitive recursive function rm such that whenever y > 0,
then

rm(x, y) = the remainder when x is divided by y.

12. Extend definition by cases (pages 37 and 48) to definition by many (mutually
exclusive) cases.

13. Use Bertrand’s postulate to show (by induction) that px ≤ 2x+1, and that equality
holds only for x = 0.

14. Prove item 18: The set of sequence numbers is primitive recursive.
15. Show that (x)y = (µe ≤ x) pe+1

y | x.
16. Show that lh(x) = (µt ≤ x) pt−· 1 | x, for a sequence number x.
17. Assume that R is a finite k-ary relation on N (i.e., R is a finite subset of Nk). Show

that R is primitive recursive.
18. Assume that f is an eventually constant one-place function (i.e., there is some m

such that f (x+ 1) = f (x) for all x ≤ m). Show that f is primitive recursive.
19. Show that the function g(x) = d√x e is primitive recursive. (Here dze is the result

of rounding z up to a natural number.)
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20. (a) Assume that f is a primitive recursive one-place function that is strictly
increasing (i.e., f (x+1)> f (x) for all x). Show that the range of f is a primitive
recursive set.

(b) Assume that g is a primitive recursive one-place function that is nondecreasing
(i.e., g(x + 1) ≥ g(x) for all x) and unbounded. Show that the range of g is a
general recursive set.

21. Assume that h is a finite k-place function (i.e., the domain of h consists of only
finitely many k-tuples). Show that h is a general recursive partial function.

22. Is 3 a sequence number? What is lh(3)? Find (1 ∗ 3) ∗ 6 and 1 ∗ (3 ∗ 6).
23. Show that ∗ is associative on sequence numbers. That is, show that if r, s, and t

are sequence numbers, then (r ∗ s) ∗ t = r ∗ (s ∗ t).
24. Establish the following facts.

(a) x+ 1 < px.
(b) (y)k ≤ y, and equality holds iff y = 0.
(c) lh x ≤ x, and equality holds iff x = 0.
(d) x � i ≤ x if x > 0.
(e) lh(x � i) is the smaller of i and lh x.



3 Programs and Machines

In this chapter, we focus on another way of formalizing the concept of effective cal-
culability, namely register-machine programs. Our first goal is to show that all general
recursive partial functions are also computable by register machines. This fact will
allow us to apply our work in Chapter 2 to see that a great many everyday functions
are register-machine computable. Using this, we will be able to construct a universal
program, that is, a program to compute the partial function 8(w, x) = the result of
applying the program coded by w to the input x.

3.1 Register Machines

Recall from Chapter 1 that a register-machine program is a finite sequence of instruc-
tions of the following types:

l “Increment r,” I r (where r is a numeral for a natural number): The effect of this instruc-
tion is to increase the contents of register r by 1. The machine then proceeds to the next
instruction in the program (if any).

l “Decrement r,” D r (where r is a numeral for a natural number): The effect of this instruction
depends on the contents of register r. If that number is nonzero, it is decreased by 1 and the
machine proceeds not to the next instruction, but to the following one. But if the number
in register r is zero, the machine simply proceeds to the next instruction. In summary, the
machines tries to decrement register r, and if it is successful, then it skips one instruction.

l “Jump q,” J q (where q is a numeral for an integer in Z): All registers are left unchanged.
The machine takes as its next instruction the qth instruction following this one in the program
(if q ≥ 0), or the |q|th instruction preceding this one (if q < 0). The machine halts if there is
no such instruction in the program. An instruction of J 0 results in a loop, with the machine
executing this one instruction over and over again.

Now suppose f is an n-place partial function on N. Possibly there will be a program
P such that if we start a register machine (having all the registers to which P refers)
with x1, . . . , xn in registers 1, . . . , n and 0 in the other registers, and we apply program
P , then the following conditions hold:

l If f (x1, . . . , xn) is defined, then the computation eventually terminates with f (x1, . . . , xn) in
register 0. Furthermore, the computation terminates by seeking a (p+1)st instruction, where
p is the length of P .

l If f (x1, . . . , xn) is undefined, then the computation never terminates.

If there is such a programP , we say thatP computes f . (Notice when when we start
a program running, there are three possibilities: (i) it might run forever; (ii) it might
come to a “good” halt, by seeking the first instruction that isn’t there; (iii) it might
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come to a “bad” halt, either by trying to jump back to somewhere before the start of
the program or by trying to go forward to a nonexistent instruction other than the first
such one. In our definition of “P computes f ,” we have elected to rule out bad halts.
This will be a convenience in running programs end-to-end.)

For example, the addition function x+y is computed by a register-machine program
given in Chapter 1. Moreover, in Chapter 1, we saw a few basic subroutines:

CLEAR r (clear register r)
MOVE from r to s (register r is cleared)
COPY from r to s using t (register r is unchanged)

These subroutines have length 3, 7, and 15, respectively.
For a trivial example, the n-place constantly zero function is computed both by the

empty program and by our three-line program to clear register 0:

D 0 Try to decrement 0.
J 2

�
J −2 Go back and repeat.

�

Halt.

(The arrows are to help us see what the program does.) Moreover, by adding some
increment instructions, we can see that any total constant function is computed by
some register program.

The one-place successor function S(x) = x + 1 is computed by the program that
moves the contents of register 1 (call this number [1]) to register 0 and then increments
the number:

D 1 Take 1 from [1].
J 3 Exit when zero.

�

I 0 Add 1 to [0].
J −3 Repeat.

�

I 0 Add 1 to [0].

The projection function Ik
n is computed by the seven-line program that moves the

contents of register n to register 0.
Next, we want to show that the class of partial functions computed by register-

machine programs is closed under composition. That is, we want to know that when-
ever we have register-machine programs computing f , g1, . . . , gn and

h(Ex) = f (g1(Ex), . . . , gn(Ex)),

then we can produce a program for h. This involves stringing several programs
together. But care must be taken to be sure that one program does not trip over garbage
left by an earlier program and does not erase data needed by a later program.

We know what it means for P to compute f : when we provide P with ideal condi-
tions (the input in registers 1, . . . , k, the other registers empty), then P will return (in
register 0) the function value, if it is defined.

But we need a program that is less fussy. What if conditions are not ideal? Sup-
pose the input is in registers r1, . . . , rk, where these are any k distinct numbers (not
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necessarily consecutive, and not necessarily in increasing order). And suppose we do
not want to promise that the other registers are empty. Moreover, we want a program
that does not erase or tamper with the contents of the first s registers, for some large
number s – we want the information in those registers to be kept safe.

Here is what we want, formulated as a definition:

Definition: Suppose that f is a k-place partial function, Q is a program, r1, . . . , rk are
distinct natural numbers, and s and t are natural numbers. Then, we say that Q com-
putes f from r1, . . . , rk to t preserving s if whenever we start a register machine (with
enough registers) with programQ and with a1, . . . , ak in registers r1, . . . , rk, then, no
matter what is in the other registers initially, we have the following end results:

l If f (a1, . . . , ak) is defined, then the computation eventually comes to a good halt (that is,
it halts by seeking the first nonexistent instruction, the (q + 1)st instruction, where q is
the length of Q), with the value f (a1, . . . , ak) in register t. Moreover, the first s registers,
registers 0, 1, . . . , s − 1, contain the same numbers they held initially, except possibly for
register t.

l If f (a1, . . . , ak) is undefined, then the computation never halts.

As a special case, we can say that if Q computes f from 1, . . . , k to 0 preserving
0, then Q computes f (in the sense defined originally). The converse is not quite true
because of the matter of whether registers are initially empty.

The following theorem says that we can have what the preceding definition asks for.

Lemma: Assume that the program P computes the k-place partial function f . Let
r1, . . . , rk be distinct natural numbers; let t and s be natural numbers. Then, we can
find a program Q that computes f from r1, . . . , rk to t preserving s.

Proof. Let M be the largest address in P (that is, the largest number such that some
increment or decrement instruction in P addresses register M). Probably M > k; if not
then increase M to be k + 1. Let j be the largest of the numbers s, r1, . . . , rk. Here is
program Q:

COPY r1 to j+ 1 using j+ 2
COPY r2 to j+ 2 using j+ 3

· · ·
COPY rk to j+ k using j+ k + 1

CLEAR j
CLEAR j+ k + 1
CLEAR j+ k + 2

· · ·
CLEAR j+M

P relocated by j
MOVE from j to t (if j 6= t)

Here, “relocated by j” means that j is added to the address of all increment and decre-
ment instructions. Thus, the relocated program operates on registers j, j+1, . . . , j+M
exactly as P operated on registers 0, 1, . . . ,M. Since P calculates f , the relocated
program will leave f (a1, . . . , ak), if defined, in register j. The program Q then moves
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it to register t. Except for register t, the program leaves registers 0, 1, . . . , j − 1
unchanged. The following map illustrates how Q uses the registers:

register 0 untouched
register 1 untouched

...

register j− 1 untouched
register j output
register j+ 1 input

...

register j+ k input
register j+ k + 1 work space

...

register j+M work space a
a

The lemma will be a useful tool whenever we need to glue different programs
together. As our first application of this lemma, we can show that the class of register-
machine computable partial functions is closed under composition.

Theorem: The class of register-machine computable partial functions is closed under
composition. That is, whenever we have register-machine programs that compute par-
tial functions f , g1, . . . , gn from which h is obtained by composition, then we can make
a program that computes the partial function h.

Proof. Suppose that the k-place partial function h is obtained by composition from f
and g1, . . . , gn:

h(Ex) = f (g1(Ex), . . . , gn(Ex)).

Further suppose that we have programs that compute f , g1, . . . , gn. We want to make
a program that computes h. Here it is:

Calculate g1 from 1, . . . , k to k + 1, preserving k + 1.
Calculate g2 from 1, . . . , k to k + 2, preserving k + 2.
. . .

Calculate gn from 1, . . . , k to k + n, preserving k + n.
Calculate f from k + 1, . . . , k + n to 0, preserving 0.

Here, we rely on the lemma to provide the components of the program. Observe that
for the program to halt, we need g1(Ex), . . . , gn(Ex) to be defined, and we need f to be
defined at 〈g1(Ex), . . . , gn(Ex)〉. a
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For example, suppose that h is given by the equation

h(x, y, z) = f (g(z, y), 7, x)

and we have register programs for f and g. It follows from the preceding theorem that
h is register-machine computable. We can write

h(x, y, z) = f (g
(

I3
3(x, y, z), I3

2(x, y, z)
)
,K7(x, y, z), I3

1(x, y, z)

(where K7 is a constant function) and apply the theorem twice, first to get
g(I3

3(x, y, z), I3
2(x, y, z)) and then to get h. The moral of this example is that we can

freely put the variables where we want and apply composition with projection func-
tions to justify what we have done. In particular, if

h(x1, x2, . . . , xm) = f ( , , . . . , ),

where each blank is filled by some xi or some constant, then from a program for f we
can obtain a program for h.

Still, this chapter has not yet produced a program for a single “interesting” function.
For that, we need one more closure result: closure under primitive recursion. That is,
we want to know that if h is obtained from f and g by primitive recursion

h(Ex, 0) = f (Ex)
h(Ex, y+ 1) = g(h(Ex, y), Ex, y)

and we have register programs for f and g, then we can get a program for h. Or in the
case where Ex is empty

h(0) = m

h(y+ 1) = g(h(y), y)

(for some number m) and we have a program for g, then we want to know that we can
get a program for h.

It will then follow that all primitive recursive functions (in particular, the ones
in Chapter 2) are register-machine computable. And so finally, we will see that the
class of register-machine computable functions includes much more than the simplis-
tic examples we started with.

Theorem: The class of register-machine computable partial functions is closed under
primitive recursion.

Proof. Assume that h is the partial (n+ 1)-place function obtained by primitive recur-
sion from the partial functions f and g:

h(Ex, 0) = f (Ex)
h(Ex, y+ 1) = g(h(Ex, y), Ex, y)



58 Computability Theory

Assume that we have register programs for f and g. We need to make a program for h.
The program will start with x1, . . . , xn, y in registers 1, 2, . . . , n, n+1. The program

will put h(Ex, t) in register 0 first for t = 0, then for t = 1, and so forth up to t = y.
The number t is kept in register n + 2, which initially contains 0. The following map
illustrates this usage:

register 0 h(Ex, t)
register 1 x1

...

register n xn

register n+ 1 y− t
register n+ 2 t
register n+ 3 work space

...

Here is the program:

Calculate f from 1, . . . , n to 0, preserving n 3
D n 1 Begin loop.
J 3 Halt when done.

Calculate g from 0, 1, . . . , n, n 2 to 0, preserving n 3
I n 2 t : t 1
J 3) Repeat loop.

Halt.

Here ? is the length of the program being used for g.
To see the correctness of this program, we establish the following:
Claim: Whenever we reach the D n + 1 instruction (at the beginning of the loop),

after executing the loop k times,

l register 0 contains h(Ex, k),
l register n+ 1 contains y− k,
l register n+ 2 contains k.

The claim, stating “loop invariants,” is proved by induction (as is usual, for pro-
grams with loops) on k.

For k = 0, when we reach D n+ 1 without having executed the loop at all, register
0 contains f (Ex), which is h(Ex, 0), register n+ 1 is untouched so it still contains y, and
register n+ 2 is still 0.

Now for the inductive step. In the (k+ 1)st pass through the loop, we decremented
register n + 1 (by the inductive hypothesis it previously contained y − k, so now it is
y − (k + 1)), we incremented register n + 2 (it previously contained k, so now it is
k + 1), and in register 0, we put g(h(Ex, k), Ex, k), which is indeed h(Ex, k + 1).

So by induction, the claim holds every time we start the loop. The program halts
when we start the loop with 0 in register n+ 1. At this point, we have done the loop y
times (by the claim), and register 0 contains h(Ex, y), as desired.
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The program is easily modified for the case where Ex is empty. We want to use the
registers as follows:

register 0 h(t)
register 1 y− t
register 2 t
register 3 work space

...

Here is the program:

I 0
· · · (m times)

I 0
D 1 Begin loop.
J �+ 3 Halt when done.

�

Calculate g from 0, 2 to 0, preserving 3
I 2 t := t + 1
J −(�+ 3) Repeat loop.

�

Halt.

The correctness argument continues to be applicable, with n = 0. a

Gathering together the results thus far, we have the following conclusion.

Theorem: Every primitive recursive function is register-machine computable.

This theorem promises register-machine programs for all the primitive recursive
functions from the previous chapter. But of course, we can do better:

Theorem: Every general recursive partial function is register-machine computable.

Proof. We need to add the µ-operator

h(Ex) = µy[g(Ex, y) = 0].

We use the obvious program:

Calculate g from 1, . . . , n, 0 to n + 1, preserving n + 2
D n + 1 Are we there yet?
J 3 Halt.

�

I 0 y := y + 1
J −(� + 3) Try again.

�

Halt.
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The program uses registers as follows:

register 0 y
register 1 x1

...

register n xn

register n+ 1 g(Ex, y)
register n+ 2 work space

...

Of course, this program might never halt. a

This theorem gives half of a significant fact that formalizing the effective calcula-
bility concept by means of general recursiveness and formalizing the effective calcu-
lability concept by means of register machines lead to exactly the same class of partial
functions. We will come to the other half soon. In particular, the theorem illustrates
that register machines are capable of doing much more than might have been apparent
initially from their very simple definition.

3.2 A Universal Program

In Chapter 1, it was argued that the “universal” partial function

8(e, x) = the result of applying the program coded by e to input x

should be a computable partial function. We now plan to verify this fact in the case of
register-machine programs.

The first step is to make the phrase “program coded by e” meaningful, by adopting
a particular coding.

First, to each instruction c, we will assign a number #c (called its Gödel number),
as follows:

#I r = [0, r]

#D r = [1, r]

#J q = [2, q] if q ≥ 0

#J q = [3, |q|] if q < 0

Here [x, y] = 2x+1 · 3y+1, as in the preceding chapter. In fact, we will utilize all of
the sequence-coding machinery developed there. For example, #I 0 = [0, 0] = 6.
And the instruction J −1 has the Gödel number [3, 1] = 144. Observe that applying
( )0 to the Gödel number of an instruction, we find out what type of instruction it is
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(increment, decrement, or jump). And by applying ( )1 to the Gödel number of an
instruction, we find the address of the register or the size of the jump.

Next, to a program c0, . . . , cm (i.e., a finite string of instructions), we assign its
Gödel number

[#c0, . . . , #cm].

To the empty program, we assign the Gödel number 1. For example, the one-line
program I 0 has the Gödel number [6] = 27 = 128. And the one-line program J−1
has the Gödel number [ [3, 1] ] = 2145.

For example, what is 8(128, 7)? First, we decode 128 = [6] = [#I 0]. Next, we
apply this program to 7, obtaining an output of 1. We conclude that 8(128, 7) = 1.
The function 8 is not total; 8(225, 7) is undefined. We have not yet clarified what
8(e, x) should be when e is not the Gödel number of any program; we will take care
of that matter shortly.

Digression: We could have kept these numbers smaller by using a more efficient
coding technique. A program is a string of symbols over an alphabet containing the
symbols I, D, J, −, and whatever digits we use for the numerals specifying register
numbers and jump lengths. As a program, J −1 is a word of length 3, in contrast to
2145 which, written out in base 10, takes 44 digits.

Suppose we use base-6 numerals to specify register numbers and jump lengths. For
these numerals, we need the digits 0, 1, 2, 3, 4, and 5. So a program can be viewed as
a word over the 10-letter alphabet

{I,D, J,−, 0, 1, 2, 3, 4, 5}.

One very natural way to code words over this alphabet is to use “decadic notation.”
That is, a word over a 10-letter alphabet is a numeral, and it names a number via
a base-10 notation, albeit a notation somewhat different from the standard base-10
notation. For more about decadic notation, see the Appendix A3. But for our present
purposes, efficiency of coding is not required.

In a similar spirit, we can next encode the contents of all the registers into a single
number. Suppose that at some instant in time, the number zi is in register i, for each i.
This information we encode into the memory number

2z0 · 3z1 · . . . · pzi
i · . . . =

∏
i

pzi
i .

This “infinite product” is finite because at any instant, only finitely many of the reg-
isters will be nonzero. (We deliberately did not use zi + 1 in the exponent here.) Of
course, any positive integer can be viewed as a memory number; we can take its prime
factorization and read off the contents of each register. For example, a memory num-
ber of 243 tells us that register 1 contains 5 and the other registers are 0, because
243 = 35.
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With this coding in hand, we proceed to the second step, of constructing func-
tions (which will turn out to be primitive recursive) for simulating the execution of a
register-machine program.

One of these will be the “mem” function, which will specify how the memory
number is changed by the execution of an instruction. That is, suppose that at some
point, the register contents are given by the memory number m and then we execute the
instruction with Gödel number c. We want mem(m, c) to be the new memory number,
after the instruction is executed.

mem(m, c) =


m · p(c)1 if (c)0 = 0 and c 6= 0 (increment)

bm/p(c)1c if (c)0 = 1 and p(c)1 | m (decrement)

m otherwise.

For example, mem(m, 6) = 2m for any number m. This is because 6 is the Gödel
number of the instruction I 0, and executing this instruction increments the exponent
of 2 in m’s prime factorization. What is mem(m, 12)? 12 is the Gödel number of the
instruction D 0. If m is even, then mem(m, 12) = m/2, which decrements the exponent
of 2 in m’s prime factorization. But if m is odd, then mem(m, 12) = m.

Observe that this equation for the mem function is expressed entirely within the
language we have built up for primitive recursiveness. That is, simply from the form
of the equation, we see that mem is a primitive recursive function. It is built up using
definition by cases, the prime-counting function pn, . . . . And because we know that all
primitive recursive functions are register-machine computable, we know we can make
a register-machine program that computes mem.

Next suppose we have a program with Gödel number

e = [#c0, . . . , #cm].

So lh e = m + 1, the number of instructions in the program. We want to think about
the location counter, which keeps track of where we are in the program. If the loca-
tion counter is 0, then we are about to execute c0, the first instruction. More gen-
erally, if the location counter is k, then we are about to execute ck, the (k + 1)st
instruction. If the location counter is lh e, then the program has come to a good
halt, by seeking the first nonexistent instruction. (A location counter greater than lh e
would correspond to a bad halt, seeking a nonexistent instruction later than the first
such.)

We want to define a function “loc” that gives the value of the location counter. That
is, if the location counter is now k, then we want loc(k,m, e) to be the new value of the
location counter after we execute ck, the (k+ 1)st instruction, where m is the memory
number.

What does this function need to do? First, it needs to find (e)k = #ck, the Gödel
number of ck. This number is a pair

(e)k = [((e)k)0, ((e)k)1],
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where ((e)k)0 is 0, 1, 2, or 3. If ((e)k)0 = 1, then we have a decrement instruction, and
it will be necessary to check the memory number to see if the decrement is successful
or not. Here is the function written out in full:

loc(k,m, e) =



k if k ≥ lh e (already halted)
k + 2 if ((e)k)0 = 1 and

p((e)k)1 | m and (decrement)
k + 2 ≤ lh e

min(k + ((e)k)1, lh e) if ((e)k)0 = 2 (jump forward)
k −· ((e)k)1 if ((e)k)0 = 3 and

((e)k)1 ≤ k ( jump back)
lh e if ((e)k)0 = 3 and

((e)k)1 > k (bad jump)
k + 1 otherwise (default)

For example, what is loc(0,m, 128)? Here k = 0, so we are at the very beginning
of the program. And e = 128, which we need to decode. Since e = 128 = 27,
we see that we have a one-line program (that is, lh(e) = 1). The one instruction
has Gödel number (e)0 = 6. We see that ((e)0)0 = 0, so we have an increment
instruction. And ((e)0)1 = 0, so the register in question is register 0. (In other words,
6 = #I 0.) In the above equation, it is the last line (the “default” line) that applies:
loc(0,m, 128) = k + 1 = 0+ 1 = 1. The new value of the location counter is 1. This
is just as it should be; having executed the I 0 instruction, we push the location counter
up one.

And next we come to loc(1, 2m, 128). But the program has already halted. In the
above equation, it is now the first line that is applicable. That is, because 1 = k ≥
lh e = 1, we obtain loc(1, 2m, 128) = 1.

The equation may be a bit unwieldy, but each piece of the equation does the natural
thing: skip, jump forward, jump back, or go on to the next instruction, as the case may
be. (If the program in question is trying to make a bad jump, either to a point before
the beginning of the program or to a point later than the first nonexistent instruction,
then the loc function generously tries to make the situation appear to be a little better
than it really is.)

Again, from looking at the form of the equation, we realize that the loc function
is primitive recursive. And being primitive recursive, it is therefore computable by
a register program. (In particular, loc is a total function. Even if e is not the Gödel
number of a program at all, loc(k,m, e) will be defined. That is, if we put garbage into
the loc function, then we get garbage out, but at least we get something out). And it is
not hard to see that we always have loc(k,m, e) ≤ max(k, lh e).

Now, we are ready to describe our universal program (that computes 8). In com-
puting 8(e, x), initially e is in register 1 and x is in register 2, and the other registers
are blank. The program will keep the location counter k in register 3 (initially 0), the
memory number m in register 4, and the Gödel number (e)k of the next instruction in
register 5.
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register 0 number of remaining instructions
register 1 program e
register 2 input x
register 3 location k
register 4 memory m
register 5 instruction (e)k
register 6 work space

...

Here is our universal program, described in nine or ten lines:

Calculate 3x from 2 to 4, preserving 4 Initialize memory.
Calculate (lh e) k from 1, 3 to 0, preserving 5 Start loop here.

D 0 Done?
J Exit loop.

Calculate (e)k from 1, 3 to 5, preserving 5 Get command.
Calculate loc from 3, 4, 1 to 3, preserving 6 Update location.
Calculate mem from 4, 5 to 4, preserving 6 Update memory.

J Start loop again.
Calculate (m)*

0 from 4 to 0, preserving 0 Extract output.
Halt.

(Here (m)∗0 = µt < m[2t+1 - m], the exponent of 2 in the prime factorization of m.)
This program, given x and e, decodes e to see what it says to do with x, and then does
it (to paraphrase what was said on page 7).

First, consider the case where e is the Gödel number of a program P that computes
a one-place partial function f . Then, the universal program will mimic the operation
of P on input x. If f (x) is defined, then the universal program will halt with f (x) in
register 0; if f (x) is undefined, then the universal program will not halt. (What we have
done is to make explicit just what “executing” a program P involves.)

Secondly, consider what happens if e is the Gödel number of a program P that does
not compute any partial function. This can happen if P has some bad jumps (i.e., a
jump to a nonexistent instruction other than the first such one). Again, the universal
program will mimic the operation of P on input x. If a bad jump is encountered, the
universal program will halt (by setting the location counter to lh e). But the universal
program will come to a good halt (with output (m)∗0, where m is the memory number
at the time).

Thirdly, it may be that e is not the Gödel number of a program at all. The universal
program will nonetheless start running. After all, both mem and loc are total functions.
Maybe at the conclusion of some loop, the location counter will happen to equal lh e.
Then, the universal program will halt (by seeking the first nonexistent instruction).
And maybe that will never happen.

The point is that the universal program computes some partial two-place function
8. Here, 8(e, x) is whatever the universal program gives us, if and when it halts on
input e and x.
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Because 8 is a register-machine computable partial function, it follows that for
any fixed e, the one-place function x 7→ 8(e, x) is register-machine computable (one
program for it puts the constant e into register 2 and then runs the universal program).
Call this function [[e]]:

[[e]](x) = 8(e, x).

That is, [[e]](x) is whatever this universal program produces (if anything), given the
input 〈e, x〉.

Then, if e is the Gödel number of a program that computes a one-place partial
function f , we can conclude that [[e]] = f . And if e is some other number (either
the number of a program that does not compute a partial function or perhaps not the
Gödel number of any program at all), then we can say at least that [[e]] is some register-
machine computable partial function.

Whenever e is a number for which [[e]] is the function f , we will say that e is
an index of f . Thus, the indices of computable partial function f include the Gödel
numbers of programs that compute f and also include any other numbers for which
[[e]] just happens to be the function f (that is, 8(e, x) = f (x) for all x).

In summary, we now have the following result.

Enumeration theorem:
(i) 8 is a register-machine computable two-place partial function.

(ii) For each number e, [[e]] is a register-machine computable one-place partial
function.

(iii) Each one-place register-machine computable partial function is [[e]] for some
number e.

Thus,

[[0]], [[1]], [[2]], . . .

is a complete list (with repetitions) of all the one-place register-machine computable
partial functions, and only those.

It is straightforward to generalize these ideas from one-place partial functions to
n-place partial functions. Our universal programs start with e, x1, x2, . . . , xn in reg-
isters 1, 2, . . . , n, n + 1 and with 0 in the other registers. The program will keep the
location counter k in register n + 2, the memory number m in register n + 3, and the
Gödel number (e)k of the next instruction in register n+ 4. Here it is:

Calculate 3x1 5x2 · · · pxn
n from 2, 3, . . . , n+ 1 to n+ 3, preserving n+ 3

Calculate (lh e)−· k from 1, n+ 2 to 0, preserving n+ 4
D 0
J �

�

Calculate (e)k from n, n+ 2 to n+ 3, preserving n+ 3
Calculate loc from n+ 2, n+ 3, n+ 1 to n+ 2, preserving n+ 5
Calculate mem from n+ 3, n+ 4 to n+ 3, preserving n+ 5

J − � �

�

Calculate (m)∗0 from n+ 3 to 0, preserving 0
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This program computes an (n + 1)-place partial function 8(n). For each fixed e,
define the n-place partial function [[e]](n) by the equation

[[e]](n)(x1, x2, . . . xn) = 8(n)(e, x1, x2, . . . , xn).

Enumeration theorem:
(i) 8(n) is a register-machine computable (n+ 1)-place partial function.

(ii) For each number e, [[e]](n) is a register-machine computable n-place partial
function.

(iii) Each n-place register-machine computable partial function is [[e]](n) for some
number e.

Thus,

[[0]](n), [[1]](n), [[2]](n), . . .

is a complete list (with repetitions) of all the n-place register-machine computable
partial functions, and only those.

One significant benefit of having universal functions is that we can apply diagonal-
ization to them. The diagonal function

d(x) = [[x]](x)+ 1

is a register-machine computable partial function (being obtained from 8, I1
1 , and S

by composition). And so d = [[e]] for some number e. What can we say about d(e)?
We have the equation

d(e) = [[e]](e)+ 1 = d(e)+ 1,

but “=” means that either both sides are undefined or both sides are defined and are
equal. We can conclude the d(e) must be undefined, lest 0 = 1.

(Another diagonal function

d̂(x) = 1−· [[x]](x)

would serve just as well here. And d̂ has the added advantage of being bounded by 1.)
By contrast, suppose we attempt to change d into a total function:

D(x) =
{

[[x]](x)+ 1 if this is defined

0 otherwise

Then, D is not register-machine computable. We cannot possibly have D = [[e]]
because either [[e]](e) is defined and D(e) is larger by 1 or else [[e]](e) is undefined
and D(e) = 0. In fact, the same argument yields a slightly stronger statement.

Theorem:
(a) There is no total register-machine computable function that extends the diagonal

function d(x) = [[x]](x)+ 1.
(b) There is no total register-machine computable function that extends the diagonal

function d̂(x) = 1−· [[x]](x).
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Let K be the domain of the diagonal function:

K = {x | [[x]](x) ↓}.

The semicharacteristic function of K

cK(x) =
{

1 if x ∈ K

↑ if x /∈ K

is a register-machine computable partial function. To compute cK(x), we first try to
compute [[x]](x); if and when we succeed, we give output 1. Or in equation form,
cK(x) = 1+ 0 · [[x]](x).

But now consider the full characteristic function of K:

CK(x) =
{

1 if x ∈ K

0 if x /∈ K.

Theorem: CK is not register-machine computable.

Proof. Suppose that, to the contrary, CK was register-machine computable. Then, the
above diagonal function D would be computed by the following program:

Calculate CK(x) from 1 to 0, preserving 2 Decide if x ∈ K.
D 0 Yes?
J � + 1 Halt.

�
Calaculate d(x) from 1 to 0, preserving 2

Halt.

where ? is the length of the program used for d. a

Unsolvability of the halting problem: The total function

H(x, y) =
{

1 if [[x]](y) ↓
0 if [[x]](y) ↑

is not register-machine computable.

Proof. CK(x) = H(x, x). a

In terms of binary relations, this result says that the characteristic function of

{〈x, y〉 | [[x]](y) ↓}

(which is the domain of 8) is not register-machine computable. Its semicharacteristic
function is register-machine computable, as in the case of K.
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What we are doing here is retracing some of the material that appeared in Chapter 1
in informal terms, but now formalized by using register machines as our model of
computability, and by exploiting the development in Chapter 2 of general recursive
functions.

We can extract even more from these ideas, if we add a “clock.” That is, instead of
looking at 8(e, x), we will add a third variable for time t and determine, for a triple
〈e, x, t〉, where the calculation of the program with Gödel number e and input x stands
after t steps. More specifically, we want to determine both the location counter and the
memory number after t steps.

The pair

[location counter,memory number]

gives us a “snapshot” showing the status of the calculation. So what we want is a
“snap” function such that snap(e, x, t) gives the snapshot after t steps.

For a start, what is snap(e, x, 0)? No steps have been executed, so nothing has
happened yet. The location counter is 0, and the memory number is 3x:

snap(e, x, 0) = [0, 3x],

which happens to be 2·3(3x+1). For example, a snapshot of 162 tells us that the location
counter is 0, register 1 contains 1, and the other registers are 0. (This holds because
162 = 2 · 81 = 2 · 33+1 = [0, 3].)

Now suppose we know, for some number t of steps, the snapshot

snap(e, x, t) = [k,m].

What comes next? The next instruction to execute is (e)k, if k < lh e. The memory
number will change from m to mem(m, (e)k). The location counter will change from
k to loc(k,m, e). Putting these pieces together gives us the equation:

snap(e, x, t + 1) = [loc(k,m, e),mem(m, (e)k)].

Or noting that k = (snap(e, x, t))0 and m = (snap(e, x, t))1 yields the equation:

snap(e, x, t + 1) =
[loc((snap(e, x, t))0, (snap(e, x, t))1, e),mem((snap(e, x, t))1, (e)(snap(e,x,t))0)].

So we now have a pair of recursion equations for snap:

snap(e, x, 0) = [0, 3x]
snap(e, x, t + 1) =
[loc((snap(e, x, t))0, (snap(e, x, t))1, e),mem((snap(e, x, t))1, (e)(snap(e,x,t))0)].

Moreover, the recursion equations use only known primitive recursive pieces. We con-
clude that the snap function is primitive recursive (and hence register-machine com-
putable).

Observe that snap is a total function. Even if e is the Gödel number of a weird pro-
gram, or even if e is not the Gödel number of a program at all, the quantity snap(e, x, t)
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is defined for all x and t. Compare this with the universal program for 8(e, x). In both
cases, we are starting with a memory number of 3x and a location counter of 0 and
then applying the functions mem and loc over and over. But for snap(e, x, t), we get
to stop after t steps.

Of course, we are particularly interested in the case where e is indeed the Gödel
number of a program P that computes a partial function f . In this case, whenever
x ∈ dom f , then sooner or later we will reach a snapshot where the location counter
says the computation has halted:

(snap(e, x, t))0 ≥ lh e.

We might think of this situation as a cause for celebration. Accordingly, we define the
ternary relation T

T = {〈e, x, t〉 | (snap(e, x, t))0 ≥ lh e},

or in other words,

T(e, x, t) ⇐⇒ (snap(e, x, t))0 ≥ lh e

⇐⇒ [[e]](x)↓ in ≤ t steps.

We observe that the relation T is primitive recursive. And the partial function

〈e, x〉 7→ µt T(e, x, t)

7→ µt ([[e]](x)↓ in ≤ t steps)

measures the running time of e at x (where the running time is undefined when the
computation goes on forever).

In general, we cannot put an upper bound on the µ-operator here. And by the
unsolvability of the halting problem, we do not in general know when the search for
t will succeed and when it will go on forever. Nonetheless, we can at least assert
that the running-time function is a general recursive partial function because it is
obtained by applying search to a primitive recursive relation. (It is certainly not a total
function.)

The “terminal snapshot” is snap(e, x, µt T(e, x, t)), if this is defined at all. (We can
think of this as limt→∞ snap(e, x, t), a limit that might or might not exist. Once we
reach the terminal snapshot, if we do, then the snap function stops changing – the
functions mem and loc have been constructed in such a way as to make sure of this.)
From the terminal snapshot, we can apply ( )1 to obtain the terminal memory number.
And then, we can apply to that quantity the function ( )∗0 to obtain the contents of
register 0 at termination. And that is the output of the calculation. Thus, we obtain the
following conclusion:

Normal form theorem: For any x and e,

[[e]](x) = 8(e, x) = ((snap(e, x, µt T(e, x, t)))1)
∗
0

= ((snap(e, x, µt[(snap(e, x, t))0 ≥ lh e]))1)∗0
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where as usual “=” means that either both sides are undefined or else both sides are
defined and equal.

In other words, we can break down the calculation of [[e]](x) into four steps:

l Find thalt = µt T(e, x, t).
l Find the terminal snapshot snaphalt = snap(e, x, thalt).
l Find the memory number mhalt = (snaphalt)1.
l Find the output value (mhalt)

∗
0.

The first step uses a general recursive function; the other steps use primitive recursive
functions.

It is straightforward to extend these ideas to functions of more than one variable:
snap(2)(e, x1, x2, t) is obtained by starting with

snap(2)(e, x1, x2, 0) = [0, 3x1 · 5x2 ]

and proceeding as before. We define the (n+ 2)-ary relation T(n)

T(n)(e, Ex, t) ⇐⇒ (snap(n)(e, Ex, t))0 ≥ lh e

⇐⇒ [[e]](n)(Ex)↓ in ≤ t steps.

Again we observe that the relation T(n) is primitive recursive.

Normal form theorem: For any n, e, and Ex,

[[e]](n)(Ex) = 8(n)(e, Ex) = ((snap(n)(e, Ex, µt T(n)(e, Ex, t)))1)
∗
0

= ((snap(n)(Ex, e, µt[(snap(n)(e, Ex, t))0 ≥ lh e]))1)
∗
0.

Looking at the right-hand side in this equation, we observe that it defines a general
recursive partial function. In fact, everything on the right side is primitive recursive,
except for the single application of the µ-operator. Hence, we have the following:

Corollary: Every register-machine computable partial function is general recursive.

Putting this corollary together with an earlier theorem, we conclude that the class
of register-machine computable partial functions is exactly the same as the class of
general recursive functions. This result is a welcome byproduct of our analysis of
register-machine computations.

The methods used here to obtain the equivalence of general recursiveness to
register-machine computability are adaptable to obtaining equivalence between other
formalizations of effective calculability that were described in Chapter 1. For example,
to show that Turing machines compute at least as many functions as the other
approaches give us, it suffices to show first that Turing machines can compute the zero,
successor, and projection functions; and secondly that the class of Turing-computable
partial functions is closed under composition, primitive recursion, and search. In the
other direction, to show that Turing machines compute at most the functions given by
the other approaches, we can code the Turing machines in a suitable way, construct a
universal Turing machine, and prove a normal form theorem. There are textbooks that
do exactly that.
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As another consequence of the normal form theorem, we can represent the domain
of the partial function [[e]] in the following form:

x ∈ dom [[e]] ⇐⇒ ∃t[(snap(e, x, t))0 ≥ lh e]

⇐⇒ ∃t T(e, x, t)

Ex ∈ dom [[e]](n) ⇐⇒ ∃t[(snap(n)(e, Ex, t))0 ≥ lh e]

⇐⇒ ∃t T(n)(e, Ex, t)

On the right, we have a primitive recursive relation, prefixed by an (unbounded) “∃t”
quantifier.

Digression: The relation T (or more generally, T(n)) that we have constructed is closely
related to what is generally called “the Kleene T-predicate.” There are technical dif-
ferences, however.

Exercises

1. Give a register-machine program that computes the function

Z(x) =
{

1 if x = 0
0 if x > 0.

2. (a) Show that the set of Gödel numbers of instructions is a primitive recursive set.
(b) Show that the set of Gödel numbers of programs is a primitive recursive set.

3. Determine [[0]](x) for all values of x for which this is defined. (Note that 0 is not
the Gödel number of any program.)

4. We know that the one-place function that is constantly equal to k is computable.
Show that there is a primitive recursive function f such that [[f (k)]] is that function.
That is, we need the equation [[f (k)]](x) = k to hold for all k and x.

5. Show that the partial function

time(e, x) = µt T(e, x, t)

is not bounded by any total computable function. That is, show that there is no
total computable function F with the property that

time(e, x) ≤ F(e, x)

whenever the left side is defined.
6. Assume that h is a primitive recursive function and e is the Gödel number of a

program such that

[[e]](x)↓ in ≤ h(x) steps

for all x. Show that the function [[e]] is primitive recursive. (That is, a program that
runs in primitive recursive time always computes a primitive recursive function.)

7. Explain why, for a calculation that eventually halts, all the snapshots that arise in
the course of the calculation must be distinct, prior to the terminal snapshot.
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3.3 Register Machines Over Words1

The inputs to effective procedures are not really numbers, but numerals – strings of
symbols. For example, the input to a Turing machine consists of a string of symbols
written on consecutive squares of its tape. The register machines we have been con-
sidering up to now can be thought of as working with “base-1” numerals, where the
numeral for 7 is the string

|||||||

of seven tally marks. In base-1 notation, the increment and decrement commands are
the natural ones to use.

But suppose that we wanted our machines to work with binary numerals. In this
case, each register would contain some string (possibly empty) of 0’s and 1’s. Now
the increment command seems less natural; changing 111 to 1000 is a big change, in
some sense – every symbol changes.

We want to extend the register-machine concept to the situation where each register
contains a string (possibly empty) of symbols from a q-letter alphabet

6 = {a1, . . . , aq}.

Actually, the alphabet is an ordered set,

6 = 〈a1, . . . , aq〉

because alphabetical order will matter.
For the machines we have been considering up to now, q = 1 and 6 = 〈 | 〉. For

binary notation, we would use q = 2 and 6 = 〈0, 1〉.
To simplify the exposition, we will fix a particular size of alphabet, namely q = 3,

where6 = 〈a, b, c〉. But it will be clear how to adjust the concepts to larger or smaller
values of q.

The commands, as before, are of three types: increment, decrement, and jump:

l “Increment register r by a,” Ia r (where r is a numeral for a natural number): The effect
of this instruction is to prefix the letter a to the (left) end of the word in register r. If the
register was previously empty, then it will now contain the one-letter word a. The machine
then proceeds to the next instruction in the program (if any).

l “Increment register r by b,” Ib r (where r is a numeral for a natural number): The effect of
this instruction is the same, but it prefixes the letter b to the (left) end of the word in register r.

l “Increment register r by c,” Ic r (where r is a numeral for a natural number): This instruction
prefixes the letter c.

l “Decrement register r,” D r (where r is a numeral for a natural number): The effect of
this instruction depends on the contents of register r. If the word in register r is empty,
the machine simply proceeds to the next instruction, without changing the contents of the
register. But if the word is nonempty, then the last (rightmost) letter is deleted. And what the
machine does next depends on that deleted letter.

1 This material will be needed in Chapter 7.
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l If the deleted letter was a, then the machine skips one instruction and goes to the next one
after that (if any).

l If the deleted letter was b, then the machine skips two instructions and goes to the next
one after that (if any).

l If the deleted letter was c, then the machine skips three instructions and goes to the next
one after that (if any).

In summary, the machines tries to delete the last letter in register r, and if it is successful,
then it skips the appropriate number of instructions.

l “Jump n,” J n (where n is a numeral for an integer in Z): All registers are left unchanged. The
machine takes as its next instruction the nth instruction following this one in the program (if
n ≥ 0), or the |n|th instruction preceding this one (if n < 0). The machine halts if there is
no such instruction in the program. An instruction of J 0 results in a loop, with the machine
executing this one instruction over and over again.

Observe that in the case of a one-letter alphabet, the preceding list of commands is
the same list we considered before.

Example: The five-line program (call it CLEAR 3)

D 3 Delete last letter.
J 4 Halt when done.

�

J −2 Go back and repeat.�

J −3 Go back and repeat.�

J −4 Go back and repeat.

�

Halt.

will clear whatever is in register 3.

Example: The following program will take the word in register 1 and prefix it to
whatever was in register 2. So if register 2 was empty, this program will simply move
the word from register 1 to register 2. In any case, the concatenation of the words in
registers 1 and 2 will be placed in register 2. At the end, register 1 will be empty.

D 1 Try to decrement 1.
J 9 Halt when done.

�

J 4 Deleted a.

�

J 5 Deleted b.

�

Ic 2 Deleted c.
J −5 Go back and repeat.�

Ia 2 Move a.
J −7 Go back and repeat.�

Ib 2 Move b.
J −9 Go back and repeat.

�

Halt.

This program consists of 10 instructions. Call it PREFIX 1 to 2.

We can use this program to do a “right increment,” that is, to append a letter to a
given word. Assume we know that register 7 is empty. Then, the following program
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will append the letter b to the right end of whatever word is in register 0:

Ib 7

PREFIX 0 to 7

PREFIX 7 to 0

Call this APPEND b to 0. It consists of 21 instructions. In using this program, we need
to know of an empty register (in this example, register 7).

Now suppose we think of the words over our alphabet as being numerals, that is,
as naming numbers. Because we have a three-letter alphabet, we treat words as base-3
numerals. More specifically, we use triadic notation, where the letters a, b, and c name
1, 2, and 3, respectively:

v(a) = 1, v(b) = 2, v(c) = 3.

Then, the general rule is that a k-letter word

sksk−1 · · · s1

names v(sk)3k−1 + v(sk−1)3k−2 + · · · + v(s2)3+ v(s1), and the empty word λ names
0. Then, we obtain a one-to-one correspondence between the set of all words and the
set of natural numbers. (See Appendix A3 for a discussion of these numerals.) Here is
a list of the first few numerals:

Numeral Number
λ 0
a 1
b 2
c 3

aa 4
ab 5
ac 6
ba 7
bb 8
bc 9
ca 10
cb 11
cc 12

aaa 13
aab 14
· · · · · ·

How do we add one in triadic notation? We look at the rightmost letter in the
numeral. If that letter is a or b, then we simply increase it to the next letter. But if
the rightmost letter is c, then we replace it by a (this lowers the number by 2), and we
carry 1 to the left (which raises the number by 3). Here are some examples:

bca+ a = bcb, ccc+ a = aaaa, acc+ a = baa.

Let’s make a register-machine program to do this. That is, we want a program that
computes the successor function, in triadic notation.



Programs and Machines 75

Assume the given word (the given numeral) is in register 1, and that register 0 is
initially empty.

D 1 Take low-order digit.
J 9 Numeral was empty.

�

J 4 The letter was a.

�

J 5 The letter was b.

�

Ia 0 Insert a.
J −5 Carry 1.

�

Ib 0 Increase a to b.
J 4 Done.

�

Ic 0 Increase b to c.
J 2 Done.�

Ia 0 Insert a.
PREFIX 1 to 0 Copy other digits.

Halt.

This program leaves the output in register 0, with register 1 empty. Call it ADD1 from
1 to 0.

Subtracting one (that is, computing the predecessor function) is very similar, except
that instead of carrying to the left, we borrow from the left. And of course, we cannot
subtract from λ, the numeral for 0.

Here are some examples:

bcb− a = bca, baa− a = acc, aaaa− a = ccc.

In general, we look at the rightmost digit. If it is b or c, then we simply lower it to
a or b, respectively, and we are done. But if it is a, then we replace it by c and borrow
one from the left.

Assume the given word (the given numeral) is in register 1, and that register 0 is
initially empty.

D 1 Take low-order digit.
J 20 Numeral was empty.
J 6 The letter was a.
J 3 The letter was b.
Ib 0 Decrease c to b.
J 5 Done.
Ia 0 Decrease b to a.
J 3 Done.
Ic 0 Insert c.
J 9 Borrow 1.

PREFIX 1 to 0 Copy other digits.
J 5 Really done.
D 0 Erase last c.
J 3 Input was empty.
J 2 Can’t get here.
J 1 Can’t get here.

Halt.
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This program leaves the output in register 0, with register 1 empty. Call it SUB1 from
1 to 0. If applied to the empty word, the output is also empty.

Theorem: Every n-place general recursive partial function f is register-machine com-
putable in the following sense. There is a program P such that if we start a register
machine with the triadic numerals for x1, . . . , xn in registers 1, . . . , n and λ in the
other registers and we apply program P , then the following conditions hold:

l If f (x1, . . . , xn) is defined, then the computation eventually terminates with the tri-
adic numeral for f (x1, . . . , xn) in register 0. Furthermore, the computation termi-
nates by seeking a (p+ 1)st instruction, where p is the length of P .

l If f (x1, . . . , xn) is undefined, then the computation never terminates.

The proof is much as in the base-1 case, mutatis mutandis. The zero functions
are computed by the empty program and by many others. The successor function is
computed by ADD1 from 1 to 0. The projection function Ik

n is computed by PREFIX
n to 0.

Closure under composition is a matter of good organization and careful bookkeep-
ing. For closure under primitive recursion, we use both the SUB1 program and the
ADD1 program. Closure under the µ-operator uses the ADD1 program.

Tools for writing and evaluating register-machine programs over a two-letter
alphabet have been made available on the Web by Lawrence Moss; see http://
www.indiana.edu/∼iulg/trm. The alphabet used there is {1, #}.

Exercises

8. Modify the program PREFIX 1 to 2 for a two-letter alphabet 6 = 〈a, b〉.
9. Give a program that takes the first (i.e., leftmost) symbol (if any) from the word

in register 2 and puts it into register 1 (assumed to be initially empty). At the end,
register 2 should be empty.

10. Give a program (call it REVERSE 1 to 0) that takes the input word in register
1 and copies it into register 0, backwards. That is, the letters in the output word
must be the same as the letters in the input word, but in the opposite order.

11. Modify the program REVERSE 1 to 0 from the previous exercise for a two-letter
alphabet 6 = 〈a, b〉.

12. Give a program that takes the last (i.e., rightmost) letter from the word in register
1 and prefixes it to the left of the word in register 0. But at the end, the word in
register 1 is to be unchanged.

13. Modify the program ADD1 from 1 to 0 for a two-letter alphabet 6 = 〈a, b〉.
14. Modify the program SUB1 from 1 to 0 for a two-letter alphabet 6 = 〈a, b〉.

3.4 Binary Arithmetic

Addition and multiplication are primitive recursive functions. So by a recent theorem,
there are programs to compute them (in triadic notation). But the proof to that theorem

http://www.indiana.edu/~iulg/trm
http://www.indiana.edu/~iulg/trm
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yields very slow programs. The program for addition would calculate x + y by going
through a loop y times, adding 1 to x each time it executes the loop. If y is a huge
number, this is going to take a huge amount of time; it is going to take an amount of
time proportional to y.

The way we learned to add in second grade is a great deal faster. We start by adding
the low-order digits of x and y. This gives us the low-order digit of the sum, and tells
us whether or not we need to carry a digit. Then, we keep going until we are done.
The amount of time will be roughly proportional to the length of the numeral for y.

Let’s look at this a little more carefully. But changing the scene, we take the two-
letter alphabet 6 = 〈0, 1〉, and we use standard binary numerals (not dyadic numer-
als). So for addition, we need a binary adder. If y is a 100-bit number (i.e., |y| = 100,
where |y| is the number of bits in the binary numeral for the number y), we expect to
go through the program’s loop 100 times. But a 100-bit number is at the very least 299,
and we definitely do not want to go through the program’s loop 299 times.

In outline, we know how a binary adder works. Initially, x is in register 1 (in binary),
y is in register 2 (in binary), and the other registers contain the empty word λ. The
(k + 1)st time through the main loop (initially k = 0), register 0 will contain the k
low-order bits of the sum, registers 1 and 2 will contain x and y except for their k
low-order bits, and register 3 will contain either 1 (to show a carry bit) or λ (to show
there is no carry bit).

How long will this program take? Each time through the loop, we shorten the words
in registers 1 and 2 by one bit. So the number of times we go through the loop is
bounded by min(|x|, |y|), the length of the shorter input numeral. Once we exit the
main loop, the leftover bits from the longer input numeral need to be prefixed to the
sum numeral. So the number of steps to obtain the sum will be

constant × max(|x|, |y|),

where the constant depends on the program, but will be less than the length of the
program.

Now what about multiplication? Again, it would be much too slow to compute xy
by adding x to itself y times. In the third grade, we all learned a much faster algorithm.
This algorithm involves going through a certain loop a number of times equal to |y|,
the length of y. Each time through the loop, we either do nothing (if the bit in y is 0)
or add x – suitably shifted – to the sum being accumulated (if the bit in y is 1).

We could code this algorithm into a suitable program. But instead, let’s leap to
the real point: the program will produce xy (in binary) in a number of steps that is
bounded by

constant × |y| × max(|x|, |y|)

for some constant.



4 Recursive Enumerability

First of all, let’s summarize some of the results of the preceding chapters and establish
the terminology that will be used henceforth.

We have seen that the class of general recursive partial functions is exactly the
same as the class of register-machine computable partial functions. The fact that two
such different approaches yield the same class of functions is evidence that we have
here a “natural” class. The members of this class will be called computable partial
functions (or recursive partial functions – the two names are both in common use).
The adjective “partial” covers both the total and nontotal functions; it can be omitted
in cases where we know that the function is total. Church’s thesis is the assertion that
the concept of being a computable partial function is the correct formalization of the
informal idea of being an effectively calculable partial function.

The class of computable partial functions includes all of the primitive recursive
functions. Moreover, the class is closed under composition, the µ-operator, and defi-
nition by cases, among other things.

We define a relation R on N to be a computable relation (or a recursive relation) if
its characteristic function (which is always total) is a computable function. The class
of computable relations includes all of the primitive recursive relations. Moreover, the
class is closed under unions, intersections, complements, and bounded quantification.
Church’s thesis tells us that the concept of being a computable relation corresponds to
the informal idea of being a decidable relation.

Moreover, we have found the following basic result.

Enumeration theorem: For each positive n, there is an (n + 1)-place computable
partial function8(n) with the property that for every n-place computable partial func-
tion f , there exists a number e such that

8(n)(e, Ex) = f (Ex)

for all n-tuples Ex, where “=” has the usual meaning – either both sides are undefined
or they are both defined and are the same.

Consequently, we can let [[e]](n) be the n-place partial function defined by the
equation

[[e]](n)(Ex) = 8(n)(e, Ex)

and obtain a complete enumeration (with repetitions)

[[0]](n), [[1]](n), [[2]](n), . . .

Computability Theory. DOI: 10.1016/B978-0-12-384958-8.00004-1
Copyright c© 2011 Elsevier Inc. All rights reserved.
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of all of the n-place computable partial functions. When n= 1, we can omit the super-
script.

The enumeration theorem lets us define the “diagonal” partial function

d(x) = [[x]](x)+ 1.

This is a one-place computable partial function; its domain is the set

K = {x | [[x]](x) ↓}.

Because the diagonal function d is a computable partial function, we know that
d = [[e]] for some index e. That is, [[x]](x) + 1 = d(x) = [[e]](x) for all x. In par-
ticular, taking x = e, we have [[e]](e)+ 1 = d(e) = [[e]](e). This looks like bad news;
we almost have proved that 1 = 0. But remember that “=” means that either both
sides are defined and equal, or both sides are undefined. Here it must be the latter. A
modification of the argument gives us the following result.

Theorem: The diagonal function d has no extension to a computable total function.
(That is, there is no computable total function f with the property that whenever d(x)
is defined then f (x) = d(x).)

Proof. Suppose that [[e]] is a computable partial function extending d. (Maybe it even
is d.) We will show that e /∈ dom [[e]], thereby showing that [[e]] is not total.

If to the contrary e ∈ dom [[e]], then e ∈ K and d(e) ↓. But then, we have

[[e]](e) = d(e) because [[e]] extends d

= [[e]](e)+ 1 by the definition of d

and these are defined. Hence 0 = 1, a contradiction. a

The same argument would apply to the function d̂(x) = 1−· [[x]](x).

Corollary: The set K is not a computable set.

Proof. The function

f (x) =

{
d(x) if x ∈ K

0 if x /∈ K

is a total extension of d and therefore is not a computable function. But if K were
a computable set, then f would have been a computable function (by definition by
cases). a

Unsolvability of the halting problem: The relation

H = {〈x, y〉 | [[x]](y) ↓}

is not a computable relation.
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Proof. We have x ∈ K ⇐⇒ 〈x, x〉 ∈ H. a

Thus the halting problem, despite being a precisely formulated problem, is unsolv-
able. We will see other such problems (i.e., other noncomputable relations). Moreover,
there are unsolvable problems in other parts of mathematics. In Chapter 5, we will see
that the problem of deciding, given a sentence in arithmetic, whether it is true or false,
is unsolvable.

Digression: “Hilbert’s tenth problem” is the problem of deciding, given a polynomial
equation in many variables with integer coefficients, whether or not it has a solution
in the integers. (For example, the equation x2

= 9y2
+ 18y + 28 has the solution

x = 10, y = 2, but the equation x2
= 9y2

+ 18y+ 10 has no solution in the integers.)
It is now known (through work of Martin Davis, Yuri Matiyasevich, Hilary Putnam,
and Julia Robinson) that this problem is unsolvable.

For a very different example, in symbolic logic, the problem of deciding, given
a formula in symbolic logic, whether or not it is true under all interpretations of its
symbols, is an unsolvable problem. This result is known as Church’s theorem.

In contrast to the halting problem, the ternary relation

{〈x, y, t〉 | [[x]](y) ↓ in ≤ t steps}

is primitive recursive:

[[x]](y) ↓ in ≤ t steps ⇐⇒ (snap(x, y, t))0 ≥ lh x

Call this ternary relation T , so that

T(x, y, t) ⇐⇒ [[x]](y)↓ in ≤ t steps

⇐⇒ (snap(x, y, t))0 ≥ lh x.

And here we can replace y by Ey. That is, for each n, we define the (n+ 2)-ary T(n) as

T(n)(x, Ey, t) ⇐⇒ [[x]](n)(Ey)↓ in ≤ t steps

⇐⇒ (snap(n)(x, Ey, t))0 ≥ lh x.

and this relation is primitive recursive. (The relation is closely related to one that is
often called “the Kleene T-predicate.”)

4.1 Recursively Enumerable Relations

The set K, while noncomputable, is not all bad. Although we lack a decision procedure
for it, we do have an “acceptance” procedure. That is, its semicharacteristic function

cK(x) =

{
1 if x ∈ K

↑ if x /∈ K
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is a computable partial function because

cK(x) = 0 · µt T(x, x, t)+ 1.

(Here we are exploiting the fact that the product 0 · µt T(x, x, t) is undefined unless
both factors are defined.) So despite the fact that K is not a decidable set, it is at least
semidecidable.

We will be interested in other such sets. The following theorem lists four ways of
characterizing them.

Theorem: For an m-ary relation R on N, the following conditions are equivalent:

(a) The semicharacteristic function of R

cR(Ex) =

{
1 if Ex ∈ R

↑ if Ex /∈ R

is a computable partial function. (Informally, this condition tells us that we have
an effective “acceptance procedure” for R, so that R is an effectively recognizable
relation.)

(b) R is the domain of some computable partial function.
(c) For some (m+ 1)-ary computable relation Q,

Ex ∈ R ⇐⇒ ∃y Q(Ex, y).

(We say that R is a61 relation if this condition holds. We can think of y as provid-
ing “evidence” that Ex belongs to R. Geometrically, we can view R as the projection
of the relation Q from Nm+1 to Nm.)

(d) For some k and some (m+ k)-ary computable relation Q,

Ex ∈ R ⇐⇒ ∃y1 · · · ∃yk Q(Ex, y1, . . . , yk).

Proof. To show equivalence of the conditions, it suffices to obtain four implications,
forming a loop. But instead, we will obtain six.

(a)⇒ (b): Easy; R = dom cR.
(b) ⇒ (a): c dom f (Ex) = 0 · f (Ex) + 1. That is, whenever f is a computable partial

function, then the function mapping Ex to 0 · f (Ex) + 1 is a computable partial function
with the same domain and with range at most {1}. (By the rules for composition of
partial functions, a product such as 0 · f (Ex) is defined only if both factors are defined.)

(b)⇒ (c): Assume that R is the domain of the computable partial function [[e]](n).
Apply the normal form theorem:

Ex ∈ dom [[e]](n) ⇐⇒ ∃t [[[e]](n)(Ex)↓ in ≤ t steps]

⇐⇒ ∃t T(n)(e, Ex, t)

This shows a bit more than (c) states: It shows that in (c), we can get Q to be not only
computable but even primitive recursive. And later on, we will want to make use of
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this extra bit of information. (Here the “evidence” that Ex belongs to R is the time at
which we discover the fact.)

(c)⇒ (b): Assume that R(Ex)⇔ ∃y Q(Ex, y) and define

f (Ex) = µy Q(Ex, y).

Then f is a computable partial function, and its domain is R.
(c)⇒ (d): Obvious.
(d)⇒ (c): We use the following technique to “collapse quantifiers”:

∃y1 · · · ∃yk Q(Ex, y1, . . . , yk) ⇐⇒ ∃y Q(Ex, (y)1, . . . , (y)k).

The (m+ 1)-ary relation

{〈Ex, y〉 | Q(Ex, (y)1, . . . , (y)k)}

is computable by the substitution property from page 48. a

If R meets the conditions listed in this theorem, we say that R is recursively enu-
merable, abbreviated r.e., or that R is computably enumerable, abbreviated c.e. Both
the “r.e.” and the “c.e.” terminologies are in common use. When said aloud, the phrase
“r.e.” is more euphonious than the phrase “c.e.” is. Church’s thesis tells us the concept
of being a recursively enumerable relation corresponds to the informal idea of being a
semidecidable relation. Whenever x belongs to an r.e. set We, then we can effectively
verify this fact by running program number e on input x until it halts, as it eventually
must. (But if x /∈ We, this procedure will run forever, leaving us waiting in vain for an
answer, never sure whether to give up or to wait just a bit more.)

For example, any computable relation (and by now, we know many of these) is
also recursively enumerable. (It might be a good idea to stop and check that for a
computable relation R, each of the conditions (a)–(d) of the preceding theorem holds.)
Beyond that, the set K is a recursively enumerable set, and the halting relation H is a
recursively enumerable binary relation. (Right?)

The enumeration theorem gives us an enumeration of the r.e. relations. That is,
define

W(n)
e = dom [[e]](n).

Then

W(n)
0 , W(n)

1 , W(n)
2 , . . .

is a complete list (with repetitions) of all the recursively enumerable n-ary relations.
As usual, when n = 1, we can omit the superscript. Thus,

W0, W1, W2, . . .

is a complete list of all the recursively enumerable sets of natural numbers.
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For a nonexample, consider the set

K = {x | [[x]](x) ↑}.

This is the complement of an r.e. set (such sets are sometimes called co-r.e. sets), but
the set K is not recursively enumerable.

Proposition: For any recursively enumerable subset We of K, we have e ∈ K \ We

(i.e., e ∈ K but e /∈ We).

That is, whenever We ⊆ K, then the number e itself is a witness to the fact that
equality does not hold. So the proposition immediately implies that K is not r.e.

Proof. We have We ⊆ K. It is not possible to have e ∈ K because that would imply
that e ∈ We ⊆ K. Hence, we can be sure that e ∈ K. And from that we get e /∈ We. a

We

e

K

K

The fact that K is not r.e. also follows from the following result.

Kleene’s theorem: A relation is computable if and only if both it and its complement
are recursively enumerable.

We have encountered this theorem before; see page 9. The result appeared in a 1943
article by Kleene; it was observed independently by Post and by Andrzej Mostowski.

Proof. In the one direction, assume that R is a computable relation. Then we know that
its complement (with respect to Nn) R is also a computable relation. And because
all computable relations are also r.e., it follows that both R and R are recursively
enumerable.

For the more serious direction, we assume that R is an n-ary relation such that both
R and R are recursively enumerable. Thus each is61: For some (n+1)-ary computable
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relations P and Q, we have both

Ex ∈ R ⇐⇒ ∃y P(Ex, y) and

Ex ∈ R ⇐⇒ ∃y Q(Ex, y).

Let

f (Ex) = µy[either P(Ex, y) or Q(Ex, y)].

Thus f searches for evidence, one way or the other. Then f is computable and total
(because there always is such a number y). And

Ex ∈ R ⇐⇒ P(Ex, f (Ex))

which tells us that R is a computable relation (by using substitution). a

Example: We know that the halting relation H

〈x, y〉 ∈ H ⇐⇒ [[x]](y) ↓

is not computable. But H is a recursively enumerable relation because

[[x]](y) ↓ ⇐⇒ ∃t T(x, y, t).

Applying Kleene’s theorem, we can conclude that the nonhalting relation H

〈x, y〉 ∈ H ⇐⇒ [[x]](y) ↑

is not recursively enumerable.

It is not hard to see that the union of two n-ary recursively enumerable relations is
again recursively enumerable. And the same is true for intersections. (See Exercise 4.)
But the complement of an r.e. relation is not r.e., unless the relation is computable.

For an n-place partial function f , its graph is the (n+ 1)-ary relation

{〈Ex, y〉 | f (Ex) = y}.

In fact, a standard procedure is to define a function to be a set of ordered pairs with
a certain single-valuedness property. In this approach, a function simply is its graph.
We will ignore this point.

Theorem: A partial function is a computable partial function if and only if its graph
is a recursively enumerable relation.

We observed earlier (page 48) that the graph of a total computable function is a
computable relation. This can fail in the nontotal case; for example, the graph of cK ,
the semicharacteristic function of K, is a noncomputable binary relation because

x ∈ K ⇐⇒ 〈x, 1〉 ∈ the graph of cK .
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Proof. In one direction, assume that f is a partial function whose graph is the 61
relation

{〈Ex, y〉 | ∃z R(Ex, y, z)},

where R is a computable relation. Then given Ex, we need a “two-dimensional” search:
we want to locate both the answer y and the evidence z. The µ-operator does the
search; the dimensionality is easy to deal with:

f (Ex) = (µt R(Ex, (t)0, (t)1))0

That is, we search for y and z, and then we ignore z and return y. This equation shows
that f is a computable partial function.

In the other direction, consider the computable partial function [[e]](n). We apply
the normal form theorem:

〈Ex, y〉 ∈ the graph of [[e]](n) ⇐⇒ ∃t[[[e]](n)(Ex) = y in ≤ t steps]

⇐⇒ ∃t[T(n)(e, Ex, t) and

((snap(e, Ex, t)1))
∗

0 = y]

Observe that this relation is 61. a

if f is
total

f is a computable
partial function

graph of f
is r.e.

graph of f is
computable

In the foregoing proof, we have made use of the fact that

T(n)(e, Ex, t) and ((snap(e, Ex, t)1))
∗

0 = y

is a primitive recursive condition on e, Ex, t, y that says “[[e]](n)(Ex) = y in ≤ t steps.”
The fact that this condition is primitive recursive will be useful later as well.

We know that the domain of a computable partial function is r.e. The same is true
of the range.

Theorem: The range of any computable partial function is a recursively enumerable
subset of N.
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Proof 1. The range of a function f is the set

{y | ∃Ex 〈Ex, y〉 ∈ the graph of f }.

By the preceding theorem, we can express the graph of f as a 61 relation

{〈Ex, y〉 | ∃t Q(Ex, y, t)},

where Q is a computable relation. Then

y ∈ ran f ⇐⇒ ∃Ex ∃t Q(Ex, y, t),

which shows that the range is r.e. a

Proof 2. The same argument can be condensed into one line:

y ∈ ran f ⇐⇒ ∃Ex ∃t[ f (Ex) = y in ≤ t steps].
a

What is especially “enumerable” about recursively enumerable sets? The following
theorem (which also provides a converse to the preceding theorem) gives an answer.

Theorem: A subset of N is recursively enumerable if and only if it either is empty or
is the range of a total computable one-place function.

Proof. In one direction, the preceding theorem applies: The range of a total computable
one-place function is r.e., as is the range of any computable partial function. And the
empty set is both computable and recursively enumerable.

It is the other direction that requires proof. Assume that A is a nonempty com-
putable enumerable subset of N; say c is some particular member of A. Then, A is
61; say

x ∈ A ⇐⇒ ∃y Q(x, y)

for computable Q. Then a two-place function with range equal to A is the function f2:

f2(x, y) =

{
x if Q(x, y)

c otherwise.

But we want a one-place function. Define

f (t) =

{
(t)0 if Q((t)0, (t)1)

c otherwise.

(Informally, if t says to us, “I have found a member of A and here it is and here is
the evidence,” then we act accordingly.) Then f is a total computable function (by
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definition-by-cases) and its range is A. In fact, because we can get Q to be primitive
recursive, we can get f to be a primitive recursive function. (In particular, this shows
that the range of a primitive recursive function need not be a primitive recursive set,
or even a computable set.) a

In this theorem (in the more interesting direction), we have

A = { f (0), f (1), f (2), . . .}.

That is, the function f gives us an effective enumeration of the set A. (Julia Robinson
suggested using the word “listable” instead of “enumerable.”) It is not, in general,
possible to get f to enumerate the members of A in increasing order, unless A is com-
putable. (See the exercises.)

The preceding theorems show that

ran [[0]], ran [[1]], ran [[2]], . . .

give a complete list (with repetitions) of exactly the recursively enumerable subsets of
N. The advantage of using the domain instead of the range (as we did in defining We)
is that it extends to recursively enumerable relations that are subsets of Nk for larger k.

Among the computable partial functions, the ones that are total have a particular
“user-friendly” status: When you give an input to a total function, you get back an
output. Define the set

Tot = {e | [[e]] is total}

of indices of total one-place computable functions. This is not a computable set, as
shown in the exercises. And moreover, it is not even a recursively enumerable set.
The following theorem proves an even stronger fact.

Theorem: Assume that A is a recursively enumerable subset of Tot. Then, there is
some total one-place computable function that does not equal [[a]] for any number a
belonging to A.

Proof. We can obviously assume that A is nonempty. Hence, by the preceding theorem,
A is the range of some total computable one-place function g. Define the following
function:

f (x) = [[g(x)]](x)+ 1.

(Alternatively, we can just as well use f (x) = 1 −· [[g(x)]](x).) This is a computable
partial function. Moreover, it is total, because g(x) ∈ Tot for all x. Could f equal [[a]]
for some a in A? We know that a = g(t) for some t. But then,

[[a]](t) = [[g(t)]](t) and f (t) = [[g(t)]](t)+ 1

and these are defined. So f cannot be the same as [[a]]; the two functions differ at t. a
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To illustrate this theorem, suppose that you are teaching a beginning programming
course. Your students keep turning in programs for nontotal functions, which you
find annoying. So you give them a set of rules such that the rule-following programs
always compute total functions. Assume that the set of rule-following programs is
computable, or at least recursively enumerable (so we can recognize a rule-following
program, when we see one). Then it follows from the above theorem that some total
function will have no rule-following program. That is, imposing the rules has had
the unintended side effect of limiting the class of total programmable functions. (Pro-
gramming rules may, indeed, be a good thing. But one should be aware that there is a
cost – there may be some total functions that can be programmed only by breaking the
rules.)

For a second illustration, suppose we have a program that we are pretty sure com-
putes a total function. But to be certain, we want a correctness proof. Will there nec-
essarily be a proof that the program halts on all possible inputs?

This question leads us to ask: What is a proof? Because a proof should be a finite
string of symbols, we can code a proof by a number, in much the same way as we
coded programs by numbers. Suppose that we have formalized a notion of “proof of
totality” in such a way that the following two assumptions are met.

1. Proofs don’t lie. That is, whenever there exists a proof that program number y is total, then
[[y]] is really total.

2. We can effectively recognize proofs. That is, the relation

{(y, z) | z codes a proof that program y is total}

is recursively enumerable. (The idea behind this assumption is that if a proof is to convince
someone, then that person must at the very least be able to verify the proof in an effective
way.)

Then apply the theorem to the set

B = {y | ∃z(z codes a proof that program y is total)}

of provably total programs (in this proof system). By the first assumption, B ⊆ Tot. By
the second assumption, B is recursively enumerable. We conclude that there exist total
computable functions such that no programs for those functions are provably total in
this system!

(The fact that Tot is not r.e. implies that some total programs are not provably
total in the system. The result here is stronger. It states that there are computable total
functions all of whose programs fail to be provably total in the system.)

There is a connection here to Gödel’s incompleteness theorem, which we will
encounter in Chapter 5.

Next we want to show that the class of recursively enumerable relations is closed
under substitution of computable functions.

Proposition:
(a) If A is a recursively enumerable subset of N and f is a total computable function,

then {x | f (x) ∈ A} is also recursively enumerable.
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(b) If R is a recursively enumerable n-ary relation and f1, . . . , fn are total computable
m-place functions, then the m-ary relation

{Ex | R( f1(Ex), . . . , fn(Ex))}

is also recursively enumerable.

In fact, the functions here do not even need to be total, if, for example, {x | f (x) ∈
A} is understood as the set of x’s for which f (x) is defined and belongs to A. So let’s
restate the proposition of greater generality. We write “f (x)↓” to indicate that f (x) is
defined (i.e., x ∈ dom f ).

Proposition:
(a) If A is a recursively enumerable subset of N and f is a computable partial function,

then {x | f (x)↓ and f (x) ∈ A} is also recursively enumerable.
(b) If R is a recursively enumerable n-ary relation and f1, . . . , fn are computable

partial m-place functions, then the m-ary relation

{Ex | 〈 f1(Ex), . . . , fn(Ex)〉↓ and belongs to R}

is also recursively enumerable.

Proof. (b) We know that the semicharacteristic function cR of R is a computable partial
function. The semicharacteristic function of the new relation is

Ex 7→ cR( f1(Ex), . . . , fn(Ex)),

which is a composition of computable partial functions. a

But note that for a computable set A and a computable partial function f , the set
{x | f (x)↓ and f (x) ∈ A} is not computable, in general. For example, if A = N, then
this set is simply the domain of f , which might not be computable.

For a computable relation Q and a computable partial function g, we have seen that
the partial function gQ defined by cases

gQ(Ex) =

{
g(Ex) if Ex ∈ Q

0 if Ex /∈ Q

is again a computable partial function. If we weaken the assumption on Q to assume
only that Q is recursively enumerable, then gQ might fail to be a computable partial
function (for example, if Q = K and g(x) = 1). But we do have the following result.

Proposition (Definition by semicases): Assume that g is a computable partial n-place
function and Q is a recursively enumerable n-ary relation. Then the function

(g � Q)(Ex) =

{
g(Ex) if Ex ∈ Q

↑ if Ex /∈ Q

is a computable partial function.



Recursive Enumerability 91

Note that (g � Q)(Ex) is undefined unless both Ex ∈ Q and g(Ex) ↓. Informally, the
procedure for computing (g � Q)(Ex) involves first trying to verify that Ex ∈ Q, and then
computing g(Ex).

Proof 1. (g � Q)(Ex) = g(Ex)+ 0 · cQ(Ex). a

Proof 2. (g � Q)(Ex) = y ⇔ Ex ∈ Q and g(Ex) = y, so the graph of g � Q is the inter-
section of two (n+ 1)-ary r.e. relations. a

All of the noncomputable sets are noncomputable, but some are more noncom-
putable than others. One way to make sense out of that statement is to look at ways in
which membership questions about one set might be “reduced” to membership ques-
tions about another.

More specifically, for sets A and B of natural numbers, we say that A is many-one
reducible to B (in symbols, A ≤m B) if there exists some total computable function
such that

x ∈ A ⇐⇒ f (x) ∈ B

for all x. That is, the function f is, in a sense, effectively reducing the question whether
x ∈ A to a question about B.

Note that if A ≤m B, then it is automatically true that A ≤m B, by using the same
function.

Digression: The name “many-one reducible” in not particularly informative. The
name “mapping reducible” has been suggested as an alternative. And it retains the
feature of starting with the letter “m” so that the symbol ≤m does not need to be
altered.

Proposition: Assume that A and B are sets of natural numbers with A ≤m B.

(a) If B is a computable set, then A is also computable.
(b) If B is recursively enumerable, then A is also recursively enumerable.

Proof. Part (a) is a substitution rule, which we already have seen back on page 48:
A = {x | f (x) ∈ B}.

Part (b) follows from an earlier proposition. If f is a computable function that many-
one reduces A to B, then

A = {x | f (x) ∈ B},

and so if B is recursively enumerable, then so is A. a

For example, in order to show that some set is not recursively enumerable, it
suffices to show that K is many-one reducible to it.
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Exercises

1. Obviously Tot ⊆ K. Show that there is no computable set A with Tot ⊆ A ⊆ K.
Suggestion: Consider the function defined by the equation:

f (x) =

{
[[x]](x)+ 1 if x ∈ A

0 if x /∈ A.

2. (a) Assume that f is a total computable one-place nondecreasing function (that is,
f (x) ≤ f (x + 1) for all x). Further assume that the range of f is infinite. Show
that the range of f is a computable set.

(b) Suppose that in part (a), we drop the assumption that the range is infinite. Show
that the same conclusion still holds.

3. Assume that A is an infinite recursively enumerable set of natural numbers. Show
that there is a total computable strictly increasing function g (that is, g(x) < g(x+
1) for all x) whose range is included in A. (It follows from this exercise that every
infinite recursively enumerable set has an infinite computable subset.)

4. (a) Show that the intersection of two n-ary recursively enumerable relations is
again recursively enumerable.

(b) Show that the union of two n-ary recursively enumerable relations is again
recursively enumerable.

5. Assume that f is a total computable function. Show that⋃
n∈N

Wf (n)

is recursively enumerable. (That is, a computably indexed union of r.e. sets is r.e.)
6. (a) Show that there is a computable partial function f such that whenever Wx 6= ∅,

then f (x)↓ and f (x) ∈ Wx. (That is, the function f finds some member of Wx,
provided there is a member.)

(b) Assume that R is a recursively enumerable binary relation. Construct a com-
putable partial function f such that whenever ∃y R(x, y), then f (x) ↓ and
R(x, f (x)). (That is, the function f finds some y such that R(x, y), provided there
is one.)

7. Show that the set {x | [[x]](x) = 0} (i.e., the set of x’s for which [[x]](x) is defined
and equals 0) is recursively enumerable but not computable.

8. Let

A = {x | [[x]](x) = 0} and B = {x | [[x]](x) = 1}.

(a) Show that A and B are disjoint r.e. sets.
(b) Show that A and B are computably inseparable, that is, there is no computable

set D with A ⊆ D and B ⊆ D. Suggestion: Suppose we had such a set D; let d
be an index of its characteristic function. What can you say about [[d]](d)?

9. Give an alternative proof of Kleene’s theorem as follows. Assume that R is a rela-
tion for which both R and R are recursively enumerable. Show that CR, the charac-
teristic function of R, has a recursively enumerable graph.
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4.2 Parameters

Next we want to turn our attention to the subject of calculating programs. That is,
suppose we want a program that will meet some particular need. Possibly we have a
good reason to know that a program exists that meets the need. But we might want
more than that; we might want actually to find such a program.

For example, we know that every total constant function is computable. (As noted
in item 2 in Chapter 2, every such function is primitive recursive.) But even more is
true. Given a constant k, we can actually compute an index of the one-place function
that is constantly equal to k. See Exercise 4 in Chapter 3.

For another example, we have recently seen that the range of any computable partial
one-place function [[e]] is an r.e. set, and therefore is Wy for some y. That is, there exists
some index y of a function whose domain is the set we want. But a stronger fact is true:
Given e, we can actually compute such a number y. (We will see a proof of this later.)
That is, there is a computable function f such that

ran [[e]] = Wf (e)

for every e.
For a third example, suppose we have a two-place computable partial function f .

Then, clearly the one-place function g obtained by holding the second variable fixed
as a parameter, say,

g(x) = f (x, 3),

is a computable partial function; we have merely applied composition with a com-
putable (and constant) function. Or in terms of register machines, we can make a
program for g that increments register 2 three times, and then follows the program
for f .

But by standing back and looking at the previous paragraph, we perceive a more
subtle fact. We were able to find explicitly a program for g, given the parameter 3 and
a program for f . So there should be a computable function ρ that, given an index e for
f and given the parameter 3, will compute an index of the function g:

f (x, 3) = [[ρ(e, 3)]](x)

Not only does there exist a program to compute g, but, given the parameter 3, we can
actually lay our hands on such a program.

Parameter theorem: There is a primitive recursive function ρ such that the equation

[[e]](2)(x, y) = [[ρ(e, y)]](x)

holds for all e, x, and y. (Here equality has the usual meaning: either both sides are
undefined, or both sides are defined and are the same.) Moreover, ρ is one-to-one.
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The idea is that if we have a computable partial two-place function [[e]](2), and we
want to hold the last variable fixed as a parameter, then ρ will actually calculate an
index for the resulting one-place function.

Proof, first try. The program that increments register 2 exactly y times has the Gödel
number

[#I2, #I2, . . . , #I2].

The Gödel number of the instruction I2 is [0, 2] = 21
· 33
= 54. So the Gödel number

of the program incrementing register 2 exactly y times is

[54, 54, . . . , 54] =
∏
t<y

p55
t ,

which is a primitive recursive function of y; call it k2(y). This suggests that we might
be able to take

ρ(e, y) = k2(y) ∗ e

using the concatenation function ∗ from item 21 in Chapter 2. This will indeed work
for “nice” values of e. But difficulties can arise if e is the Gödel number of a program
that makes bad negative jumps (i.e., jumps to a point before the start of the program).
Also, when e is not the Gödel number of a program at all, then we are less certain that
this equation for ρ will give us the theorem that we are after.

Proof, second try. There is a way to circumvent the difficulties that arise in the first try.
We use a universal function instead. The universal partial function

8(2)(e, x, y) = [[e]](2)(x, y)

is a computable partial function; fix some register-machine program Q that computes
it. (By the way we defined the verb “computes,” the program Q always either runs
forever or comes to a good halt. Thus, we can avoid the difficulties mentioned earlier.)
Define

ρ(e, y) = k2(y) ∗ k3(e) ∗ q,

where q is the Gödel number of the program Q. Here k3 is the function like k2, but it
uses register 3. Clearly ρ is primitive recursive. (Here q is a fixed constant.)

To check that ρ works, let’s calculate [[ρ(e, y)]](x). Here ρ(e, y) is the Gödel num-
ber of a program, and we know what that program does, given the input x:

l First it inserts y into register 2.
l Secondly, it inserts e into register 3.
l Finally, it runsQ to try to find 8(2)(e, x, y) = [[e]](2)(x, y), if this is defined.
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That is, we get exactly [[e]](2)(x, y) if this is defined, and we get nothing if this is
undefined. So the equation

[[e]](2)(x, y) = [[ρ(e, y)]](x)

holds.
The function ρ is one-to-one because different values of e and y will result in dif-

ferent programs, and hence different Gödel numbers. a

As an example of an application of the parameter theorem, we can “uniformize”
an earlier result. We have seen that the range of any computable partial function [[r]]
is an r.e. set. The “uniformized” version of this statement is that there is some total
computable (in fact, primitive recursive) function f such that

ran [[r]] = Wf (r)

for every r. That is, the function f goes out and finds an “r.e. index” for the range
of [[r]].

We know that

y ∈ ran [[r]] ⇐⇒ ∃x[[r]](x) = y

⇐⇒ ∃x∃t[[r]](x) = y in t steps.

Look at the function that searches for x and t here:

g(y, r) = µs[[[r]]((s)0) = y in (s)1 steps].

Then g is a computable partial function, so it is [[e]](2) for some e. Parameterize out r:

[[ρ(e, r)]](y) = [[e]](2)(y, r) = g(y, r) = µs[[[r]]((s)0) = y in (s)1 steps].

This quantity is defined if and only if there is some s to be found, which happens if
and only if y ∈ ran [[r]]. That is,

ran [[r]] = Wρ(e,r),

which is what we wanted.
Here is another application of the parameter theorem:

Lemma: Assume that S is an r.e. set of natural numbers, and that f is a computable
partial one-place function. Then there is a one-to-one primitive recursive function g
such that for any y:

(i) If y ∈ S, then [[g(y)]] is the partial function f .
(ii) If y /∈ S, then [[g(y)]] is the empty function, that is, the function that is undefined

for all inputs.
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So the function g produces indices of functions. In fact, g(y) is an index either for f
or for the empty function. And which of these two alternatives occurs is determined
by whether or not y ∈ S.

The proof involves looking at the two-place partial function

h(x, y) =

{
f (x) if y ∈ S

↑ if y /∈ S,

which can be computed by the one-line instruction,

“First verify that y ∈ S and secondly find f (x).”

The point is that given y, we can effectively find the above one-line instruction. There
is a primitive recursive function that, given y, produces the above line with the value
y filled in. The actual proof cleans this argument up.

Proof. Applying definition by semicases, we obtain a two-place computable partial
function h:

h(x, y) =

{
f (x) if y ∈ S

↑ if y /∈ S.

So h is [[e]](2) for some number e. Now parameterize out the y. We get

[[ρ(e, y)]](x) = [[e]](2)(x, y) =

{
f (x) if y ∈ S

↑ if y /∈ S.

Now let g(y) = ρ(e, y) for this number e. Then g is primitive recursive, one-to-one,
and

[[g(y)]](x) = [[ρ(e, y)]](x) =

{
f (x) if y ∈ S

↑ if y /∈ S.

Thus, the partial function [[g(y)]] either is f (if y ∈ S) or else is the empty function (if
y /∈ S). a

Application: We can show that K ≤m Tot. In the lemma, take S to be K and take f to
be the identity function I1

1 (or any total computable function). We obtain a primitive
recursive function g such that whenever y ∈ K, then g(y) ∈ Tot because g(y) is an
index of the total function I1

1 . And whenever y /∈ K, then g(y) /∈ Tot because g(y) is
an index of the empty function, which is certainly not total.

It follows that K ≤m Tot under this function g. And so automatically K ≤m Tot
under the same function. Consequently, Tot is not recursively enumerable. (We saw
earlier that Tot itself is not recursively enumerable.)
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Similarly, the set of indices of the empty function

{e | [[e]] is empty} = {e | We = ∅}

is not recursively enumerable because K is many-one reducible to it by the same
function g.

Application: We can show that S ≤m K for any r.e. set S. Apply the lemma where f
again is I1

1 or some other total computable function. We obtain a one-to-one primitive
recursive function g such that for any y,

y ∈ S⇒ [[g(y)]] total⇒ g(y) ∈ K

y /∈ S⇒ [[g(y)]] empty ⇒ g(y) /∈ K.

Thus, S ≤m K under g.

Definition: A complete recursively enumerable set is a recursively enumerable subset
C of N with the property that

A ≤m C

for every recursively enumerable subset A of N.

The preceding application proves the following result.

Proposition: The set K is a complete recursively enumerable set.

Here is another complete r.e. set obtained in a more direct way:

C = {x | (x)0 ∈ W(x)1}

Then, C is recursively enumerable because

x ∈ C ⇐⇒ ∃t T((x)1, (x)0, t).

And C is complete because

x ∈ Wa ⇐⇒ [x, a] ∈ C.

We can “vectorize” the parameter theorem as follows. (In this form, the theorem is
commonly called the “S-m-n theorem,” for no very good reason.)

Parameter theorem: For each m and n, there is an (n+ 1)-place primitive recursive
function ρmn such that the equation

[[e]](m+n)(Ex, Ey) = [[ρmn(e, Ey)]]
(m)(Ex)
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for all e, all m-tuples Ex, and all n-tuples Ey. (Here equality has the usual meaning:
either both sides are undefined, or both sides are defined and are the same.) Moreover,
ρmn is one-to-one.

Proof. We proceed as before. Here Ex is 〈x1, . . . , xm〉 and Ey is 〈y1, . . . , yn〉.

ρmn(e, y1, . . . , yn) = km+1(y1) ∗ · · · ∗ km+n(yn) ∗ km+n+1(e) ∗ q,

where q is the Gödel number of our program that computes 8(m+n). (Here m, n, and q
are fixed; e, Ex, and Ey are the variables.) a

For example, we have long known that the composition f ◦ g of two computable
partial functions is a computable partial function. But now, we can obtain a “uniform”
version of that statement: There is a total computable function h such that

[[h(x, y)]] = [[x]] ◦ [[y]]

for all x and y. That is, not only does a program for the composition exist, but also we
can effectively find it.

The property we need h to satisfy is

[[h(x, y)]](t) = [[x]]([[y]](t))

for all t. So look at the right-hand side as a function of all the variables: it is a com-
putable partial function of t, x, and y. So there is some e for which

[[e]](3)(t, x, y) = [[x]]([[y]](t))

for all t, x, and y. We proceed to parameterize out the x and y:

[[e]](3)(t, x, y) = [[ρ12(e, x, y)]](t).

So we can take h(x, y) = ρ12(e, x, y) for this e. Then h is a primitive recursive
function.

The following result was published by H. Gordon Rice in 1953; it is due indepen-
dently to Vladimir Uspensky.

Rice’s theorem: Let C be a set of one-place computable partial functions and let
IC = {e | [[e]] ∈ C} be the set of all indices of members of C. Then IC is noncomputable
except in the two trivial cases: C = ∅ (in which case, IC = ∅) or C is the set of all
one-place computable partial functions (in which case, IC = N).

Proof. First we look to see where the empty function (the function that is undefined
everywhere), call it ∅, is.

Case I: The empty function ∅ is not in C. We are given that C has some function in it;
say ψ ∈ C. We can apply a recent lemma to obtain a computable total function g with
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the following properties:

(i) Whenever y ∈ K, then [[g(y)]] is the function ψ .
(ii) Whenever y /∈ K, then [[g(y)]] is the empty function ∅.

Then K ≤m IC under the function g:

y ∈ K ⇐⇒ g(y) ∈ IC .

Hence IC is not computable.

Case II: The empty function ∅ is in C. We proceed much as before. We are given that
not everything is in C; say ψ is a computable partial function not in C. As before, we
can get a computable total function g with the following properties:

(i) Whenever y ∈ K, then [[g(y)]] is the function ψ .
(ii) Whenever y ∈ K, then [[g(y)]] is the empty function ∅.

Then K ≤m IC under the function g:

y ∈ K ⇐⇒ g(y) ∈ IC .

Hence, IC is not recursively enumerable. a

In more informal terms, we can restate Rice’s theorem as follows: Assume we have
in mind some property of one-place computable partial functions. Further assume that
this property is nontrivial, in the sense that at least one computable partial function has
the property, but not all do. Then, we can conclude that the problem of determining
whether or not a given number is the index of a partial function with the property is
undecidable.

For example, suppose we focus attention on a particular computable function, such
as the doubling function x 7→ 2x. The doubling function can be computed by a very
simple program, but it is also computed by some convoluted programs. Rice’s theorem
tells us that we cannot always decide whether a given number is an index of the dou-
bling function or not. (And in particular, this shows that the doubling function has
infinitely many indices, which is not surprising.)

For another example, Rice’s theorem shows that

{x | Wx is the set of primes}

is not computable. We take C to be the set of computable partial functions f for which
dom f is the set of primes.

Our proof of Rice’s theorem actually shows a bit more than the theorem states. On
the one hand, it shows that when the empty function is in C, then IC is not r.e. And on
the other hand, it shows that if the empty function is not in C, then K ≤m IC and hence
IC is not r.e. (that is, IC is not “co-r.e.”; it is not the complement of an r.e. set).

For example, taking C to be the collection of total computable functions, we have
IC = Tot. Because the empty function is not total, we see once again that Tot is not
co-r.e.
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Another consequence of the parameter theorem is the following result, which is
due to Kleene.

Recursion theorem: For any computable partial function g, we can find an e such
that

[[e]](x) = g(e, x)

for all x.

Again, x can be replaced by an n-tuple Ex. The proof of the recursion theorem is
very much like the argument generally used in logic to prove Gödel’s incompleteness
theorem; see Exercise 20. We will not pursue any of these topics right now.

Exercises

10. We know that the product f · g of computable partial functions is a computable
partial function. Show that there is a total computable function h such that the
equation

[[h(x, y)]](t) = [[x]](t) · [[y]](t)

holds for all t, x, and y.
11. We know that the union of two recursively enumerable sets is recursively enu-

merable. Show that there is a total computable function g, such that

Wg(x,y) = Wx ∪Wy

for all x and y.
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12. Show that

{t | [[t]](0) = 0} ≤m {y | [[y]](0) = 7}.

13. (a) Show that K ≤m {x | Wx is infinite}.
(b) Show that K ≤m {x | Wx is finite}.

14. Show that Tot ≤m {y | Wy is infinite}.
15. Show that the binary relation Q defined by the condition

〈x, y〉 ∈ Q ⇐⇒ [[x]] and [[y]] are the same function

is not computable. (This says, roughly, that the problem of determining, given
two programs, if they compute the same function, is undecidable.)

16. Let f be some fixed computable partial function. Let If be its set of indices:

If = {x | [[x]] = f }

(a) Show that If is never a computable set. Remark: Suppose you are teaching a
programming class, and you assign to your students the problem of writing a
program for f . Then the set of correct answers to this problem is an undecid-
able set!

(b) Further assume that f is total. Show that Tot ≤ If .
17. Show that the binary relation R defined by the condition

〈x, y〉 ∈ R ⇐⇒ Wx = Wy

is not computable.
18. (a) Prove a uniformized version of Exercise 2(a). That is, show that there is a

primitive recursive function g such that whenever [[e]] is nondecreasing with
infinite range, then g(e) is an index for the characteristic function of ran [[e]].

(b) Show that Exercise 2(b) does not uniformize, even if we add the assumption
that the range is finite. That is, show that there cannot be a computable partial
function g such that whenever [[e]] is nondecreasing with finite range, then
g(e)↓ and g(e) is an index for the characteristic function of ran [[e]]. Sugges-
tion: Look at the characteristic function of {〈t, x〉 | T(x, x, t)} as a function
of t.

19. Show that there is no computable partial function h such that whenever the set Wy

is computable, then h(y)↓ and h(y) is an index for the characteristic function of
Wy. This shows that knowing an acceptance procedure for a set, plus knowing that
the set is actually decidable, does not in general lead us to a decision procedure
for the set. Suggestion: Look at the function

f (u, x) =

{
µt T(x, x, t) if u = 0

↑ if u > 0.
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20. (a) Using the parameter theorem, show that there is a primitive recursive function
δ such that the equation

[[δ(y)]](x) = [[y]]2(x, y)

for all x and y. (Here equality means that either both sides are undefined, or
both are defined and are the same.)

(b) Now assume that g is a two-place partial computable function. Then the func-
tion

〈x, y〉 7→ g(δ(y), x)

is a computable partial function; let q be an index of it, and let e = δ(q). Show
that for this e,

[[e]](x) = g(e, x)

for all x, thereby proving the recursion theorem.
21. Show that there is a program so narcissistic that it outputs only its own Gödel

number. That is, show that for some number e, the equation

[[e]](x) = e

holds for all x.
22. Let S = {x | [[x]](3) = 24}. Is S a computable set? Is S r.e.? Is S r.e.?
23. Show that the set

{x | [[x]](t) ↑ for all t ≤ 900}

is not r.e.
24. Show that there is no computable partial function f such that whenever Wx is

nonempty, then f (x) is defined and is the least member of Wx.



5 Connections to Logic

In this chapter,1 we want to connect concepts of computability with concepts of defin-
ability. The idea of definability comes from logic. Roughly speaking, one can specify
a language and then study what sets or relations might have exact definitions that can
be formulated in that language.

In our case, we will take a language for the arithmetic of natural numbers (that is,
number theory). One goal will be to show that every computable set is definable in
this language.

This connection between computability and definability has some interesting con-
sequences. For one, it will show that the set of true sentences of arithmetic is very far
from being a computable set. And for another, we will come to Gödel’s (first) incom-
pleteness theorem. This theorem says that starting from any computable set of true
axioms, one cannot possibly hope to derive all the true sentences of arithmetic.

Historically, Gödel’s incompleteness theorem (1931) preceded by five years the
beginnings of computability theory. But there is an advantage to running history back-
wards and looking at Gödel’s theorem from the point of view of computability theory.

First, however, we want to build on our characterization of recursively enumerable
sets as being the 61 sets. The notation “61” already suggests that there ought be a
generalization to 62 and then to 6n.

5.1 Arithmetical Hierarchy

We have defined (on page 82) a relation R on the natural numbers to be 61 if for some
computable relation Q, we have

Et ∈ R ⇐⇒ ∃x Q(Et, x)

for all Et. That is, a 61 relation might not be computable, but it is only one quantifier
away from computability. We now want to extend this measurement of “distance away
from computability.”

Define R to be 51 if for some computable relation Q, we have

Et ∈ R ⇐⇒ ∀x Q(Et, x)

for all Et. For example, the set K is a 51 set because

e ∈ K ⇐⇒ ∀y T(e, e, y),

1 Chapters 5, 6, and 7 are largely independent and can be read in any order.
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where T is the ternary relation

T(x, v, t) ⇐⇒ [[x]](v)↓ in ≤ t steps,

which we know is primitive recursive. Another example of a 51 set is the set
{x | Wx = ∅} of indices of the empty function. This is 51 because

Wx = ∅ ⇐⇒ ∀v∀t not T(x, v, t),

and we know how to collapse ∀∀ into a single ∀:

Wx = ∅ ⇐⇒ ∀s not T(x, (s)0, (s)1).

In general, we can say that a relation is 51 if and only if it is the complement of a
61 relation. This holds because of the principles

not ∃x ⇐⇒ ∀x not and not ∀x ⇐⇒ ∃x not,

sometimes called De Morgan’s laws. (That is, saying that there does not exist a solu-
tion for x is equivalent to saying that every x fails to be a solution. And saying that not
all x’s have a property is equivalent to saying that there exists some counterexample x
lacking the property.) Using these laws, we have for a 61 relation R,

Et ∈ R ⇐⇒ not ∃x Q(Et, x) for computable Q

⇐⇒ ∀x not Q(Et, x)

⇐⇒ ∀x Q(Et, x)

so that R is 51. Similarly, the complement of a 51 relation is 61.
To use yet another Greek letter, say that R is 11 if it is both 61 and 51. Kleene’s

theorem tells us that R is 11 if and only if it is a computable relation. For example,
the set {x | Wx = ∅} is 51 by the above, it is not computable by Rice’s theorem, and
hence, it is not 61.

We now extend these ideas and define 6n and 5n for each n:

Classification Defining condition
61 ∃x Q(Et, x)
51 ∀x Q(Et, x)
62 ∃y∀x Q(Et, x, y)
52 ∀y∃x Q(Et, x, y)
63 ∃z∀y∃x Q(Et, x, y, z)
53 ∀z∃y∀x Q(Et, x, y, z)

where Q is a computable relation. And so forth. (It has been estimated that the human
mind cannot grasp the meaning of more than five alternating quantifiers.) We further
define a relation to be 1n if it is both 6n and 5n.

For example, the set Tot of indices of total computable functions on N is a 52 set
because

x ∈ Tot ⇐⇒ ∀v∃t T(x, v, t),



Connections to Logic 105

where as before T is the ternary relation

T(x, v, t) ⇐⇒ [[x]](v)↓ in ≤ t steps,

which we know is primitive recursive. (More generally, T(n) was defined to be the
(n+ 2)-ary relation

T(n)(x, Ev, t) ⇐⇒ [[x]](n)(Ev)↓ in ≤ t steps

⇐⇒ (snap(n)(Ev, x, t))0 ≥ lh x,

which we know is primitive recursive.) So the set Tot is at least within two quantifiers
of computability.

We can also formulate these definitions by recursion on n. R is 6n+1 if we have

Et ∈ R ⇐⇒ ∃x Q(Et, x)

for all Et, for some 5n relation Q. Dually, R is 5n+1 if we have

Et ∈ R ⇐⇒ ∀x Q(Et, x)

for all Et, where Q is 6n. Starting from the concepts of 61 and 51, we can use these
clauses to characterize 62,52, 63, . . . .

Observation:
(a) The complement of a 6n relation is 5n.
(b) The complement of a 5n relation is 6n.

Proof. We use induction on n. We have already seen the argument for n = 1.

Suppose, as the inductive hypothesis, both (a) and (b) hold when n = k, and con-
sider a 6k+1 relation R

Et ∈ R ⇐⇒ ∃x Q(Et, x),

where Q is 5k. Then, we have

Et ∈ R ⇐⇒ not ∃x Q(Et, x)

⇐⇒ ∀x not Q(Et, x) by De Morgan’s laws

⇐⇒ ∀x Q(Et, x)

and by the inductive hypotheses, Q is 6k, and hence R is 5k+1.
Similarly, the complement of a 5k+1 relation is 6k+1. So by induction, the obser-

vation holds for all n ≥ 1. a

For example, the set Tot of indices of nontotal functions is 62:

e ∈ Tot ⇐⇒ ∃v∀t T(e, v, t),
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Any 51 relation is also 62 and 52 because we can use “vacuous” quantifiers:

∀y Q(Ex, y)} ⇐⇒ ∃z∀y Q1(Ex, y, z)

⇐⇒ ∀z∃y Q2(Ex, y, z),

where

Q1(Ex, y, z)⇔ Q(Ex, y) and Q2(Ex, y, z)⇔ Q(Ex, z).

Extending the use of vacuous quantifiers, we come to the following result.

Proposition:
(a) Any 6n relation is also 1n+1.
(b) Any 5n relation is also 1n+1.

Thus, letting the noun 6k denote the collection of all 6k relations, we have the
chains:

61 ⊆ 62 ⊆ 63 ⊆ · · ·

51 ⊆ 52 ⊆ 53 ⊆ · · ·

We say that these chains define the arithmetical hierarchy. But there will be many
relations that fall outside this hierarchy (i.e., some relations are not 6n or 5n for
any n).

Undefinable sets

PN

∑1

∑2 ∏2

∏1

Δ1

Δ2

The following proposition supplies closure results under union, intersection, and
substitution of total computable functions.
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Proposition: Assume that Q and R are k-ary relations on the natural numbers.

(a) If Q and R are both6n relations, then both Q∪R and Q∩R are also6n relations.
(b) If Q and R are both5n relations, then both Q∪R and Q∩R are also5n relations.

Further assume that f1, . . . , fk are m-place total computable functions.
(c) If R is a 6n relation, then {Ex | R( f1(Ex), . . . , fk(Ex))} is also a 6n relation.
(d) If R is a 5n relation, then {Ex | R( f1(Ex), . . . , fk(Ex))} is also a 5n relation.

Like the earlier observation concerning complements, this proposition can be ver-
ified by using induction on n. But in place of De Morgan’s laws, we employ the fol-
lowing quantifier manipulation rules:

∃x M(x) and ∃y N(y) ⇐⇒ ∃x∃y[M(x) and N(y)]

∃x M(x) or ∃y N(y) ⇐⇒ ∃z[M(z) or N(z)]

∀x M(x) or ∀y N(y) ⇐⇒ ∀x∀y[M(x) or N(y)]

∀x M(x) and ∀y N(y) ⇐⇒ ∀z[M(z) and N(z)]

To see the correctness of the third rule, think about how the condition on the left side,
∀x M(x) or ∀y N(y), could fail. It fails if and only if there is both some counterexample
x∗ for which not M(x∗) and some counterexample y∗ for which not N(y∗). Under what
situations does the condition on the right side, ∀x∀y[M(x) or N(y)], fail? It fails if and
only if there is some counterexample 〈x∗, y∗〉 for which the condition in brackets fails
so that neither M(x∗) nor N(y∗). And that is exactly the same situation under which
the left side failed.

Proof. Parts (c) and (d) follow from known substitution rules. To prove parts (a)
and (b), we use induction on n. Suppose, as the inductive hypothesis, that part (b)
holds when n = k, and consider two 6k+1 relations Q and R:

Et ∈ R ⇐⇒ ∃x M(Et, x) where M is 5k

Et ∈ Q ⇐⇒ ∃y N(Et, y) where N is 5k

Then, we have

Et ∈ R ∪ Q ⇐⇒ Et ∈ R or Et ∈ Q

⇐⇒ ∃x M(Et, x) or ∃y N(Et, y)

⇐⇒ ∃z[M(Et, z) or N(Et, z)]

⇐⇒ ∃z[〈Et, z〉 ∈ M ∪ N].

By the inductive hypothesis, M∪N is5k, and hence, R∪Q is6k+1. A similar argument
shows that R ∩ Q is also 6k+1. Thus part (a) holds for n = k + 1.

Similarly, supposing that part (a) holds when n = k, we find that part (b) holds for
n = k + 1.
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What about the basis for the induction? The easiest approach is to take both “60”
and “50” to mean simply computable. We know that the class of computable relations
is closed under union and intersection, so parts (a) and (b) hold when n = 0. a

Part (c) is already familiar in the case n = 1; see page 89. Looking at complements
will give us part (d) when n = 1. Then, induction on n gives us parts (c) and (d) in
general.

Corollary: Let A and B be sets of numbers with A ≤m B.

(a) If B is 6n, then A is also 6n.
(b) If B is 5n, then A is also 5n.

Proof. Assume that A ≤m B under f . Then A = {x | f (x) ∈ B}. Apply parts (c) and (d)
of the preceding proposition. a

This corollary provides us with a method for showing that a set is not 6n or that it
is not 5n. We already know that to show that a set B is not r.e., one possible strategy is
to try showing that K ≤m B. (Don’t we?) The corollary extends the method. Whenever
we have a set S that is known not to be 6n, then we can show that another set B is not
6n if we can obtain S ≤m B.

But to apply this method, we first need that initial set S that is known not to be 6n.
Read on.

For the 61 relations, we have from page 82 the “normal form” result: whenever R
is an n-ary61 relation, then R is the domain W(n)

e of some computable partial function
[[e]](n). Hence for this e,

R = W(n)
e = {Ex | ∃t T(n)(e, Ex, t)}.

We want to extend this idea. First, consider a 51 relation R. Its complement R is
61, so we can say that for some e,

Ex ∈ R ⇐⇒ Ex /∈ R

⇐⇒ not ∃t T(n)(e, Ex, t) by the above

⇐⇒ ∀t not T(n)(e, Ex, t) by De Morgan

⇐⇒ ∀t T
(n)
(e, Ex, t).

We conclude that any 51 relation R can be written, for some number e, in the form

R = {Ex | ∀t T
(n)
(e, Ex, t)}

(and of course conversely any relation of this form is 51).
Next, consider a 52 relation R. We know that

Ex ∈ R ⇐⇒ ∀y Q(Ex, y)
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for some 61 relation Q. Using our preceding normal form for 61, we see that for
some e,

Ex ∈ R ⇐⇒ ∀y∃t T(n+1)(e, Ex, y, t).

We thus obtain the normal form for a 52 relation R:

R = {Ex | ∀y∃t T(n+1)(e, Ex, y, t)}

for some number e.
Keep going. For a 62 relation R, we have

Ex ∈ R ⇐⇒ ∃y Q(Ex, y)

for some 51 relation Q. Using our preceding normal form for 51, we see that for
some e,

Ex ∈ R ⇐⇒ ∃y∀t T
(n+1)

(e, Ex, y, t).

For a 63 relation R, we have

Ex ∈ R ⇐⇒ ∃z Q(Ex, z)

for some 52 relation Q. Using our normal form for 52, we see that for some e,

Ex ∈ R ⇐⇒ ∃z∀y∃t T(n+2)(e, Ex, y, z, t).

One more. For a 53 relation R, we have

Ex ∈ R ⇐⇒ ∀z Q(Ex, z)

for some 62 relation Q. Using our normal form for 62, we see that for some e,

Ex ∈ R ⇐⇒ ∀z∃y∀t T
(n+2)

(e, Ex, y, t).

Let’s collect what we have in a table:

61 {Ex | ∃t T(n)(e, Ex, t)}

51 {Ex | ∀t T
(n)
(e, Ex, t)}

62 {Ex | ∃y∀t T
(n+1)

(e, Ex, y, t)}
52 {Ex | ∀y∃t T(n+1)(e, Ex, y, t)}
63 {Ex | ∃z∀y∃t T(n+2)(e, Ex, y, z, t)}

53 {Ex | ∀z∃y∀t T
(n+2)

(e, Ex, y, z, t)}
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And so forth and so on. (This table emphasizes that for any fixed k and n, there
are only countably many 6n k-ary relations and only countably many 5n k-ary
relations. The last line in the table shows that each 53 relation has the form
{Ex | ∀z∃y∀t T

(n+2)
(e, Ex, y, z, t)} for some e. Taking the various possible values of e

e = 0, e = 1, e = 2, . . .

we get a complete list, with repetitions, of all the 53 k-ary relations. Moreover,
because a countable union of countable sets is countable, we can go a step further
and say that only countably many relations can be in the arithmetical hierarchy at all.
Because PN (the power set of N) is uncountable, there is a sense in which “most”
relations fall outside the arithmetical hierarchy. See Appendix A2 for a summary of
facts about countable sets.)

An advantage to having such “normal form” results is that we can diagonalize out
of them. Recall that when we wanted a 61 set that was not 51, we used the set K
defined by the condition

x ∈ K ⇐⇒ [[x]](x)↓ ⇐⇒ ∃t T(x, x, t).

Imitating this construction, define the 52 set S by the condition

x ∈ S ⇐⇒ ∀y∃t T(2)(x, x, y, t).

Is it possible that this set S is also 62? If so, then by our normal form results, it would
have to be, for some number e, the set

Ve = {x | ∃y∀t T
(2)
(e, x, y, t)}.

But S and Ve cannot be the same set because they differ at the number e:

e /∈ Ve ⇐⇒ not ∃y∀t T
(2)
(e, e, y, t)

⇐⇒ ∀y∃t not T
(2)
(e, e, y, t)

⇐⇒ ∀y∃t T(2)(e, e, y, t)

⇐⇒ e ∈ S

so e belongs to one and only one of the two sets S and Ve.
We conclude that S is 52 but not 62. So its complement S is 62 but not 52. We

can generalize the construction of S to obtain the following result.

Hierarchy theorem: For each positive integer n, there is some set that is 6n but not
5n, and there is some set that is 5n but not 6n.

Example: We know that the set Tot of indices of total functions is 52. We can now
show that it is not 62. Take S to be the above set that is52 but not 62. By Exercise 3,
we have S ≤m Tot. Now apply the earlier corollary: Tot cannot be 62, lest S be 62.
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Exercises

1. (a) Show that {x | Wx is infinite} is 52.
(b) Show that {x | Wx is infinite} is 53.

2. Show that {x | Wx is a computable set} is 63.
3. Show that every 52 set of natural numbers is many-one reducible to Tot.

Suggestion: For a set {x | ∀u∃v R(x, u, v)}, look at the function 〈u, x〉 7→
µv R(x, u, v) and apply the parameter theorem.

4. Show that the binary relation {〈x, y〉 | Wx ⊆ Wy} is a 52 relation.
5. Let Z be the set of indices for the function that is constantly zero:

Z = {t | [[t]](x) = 0 for all x}

(a) Show that Z is 52.
(b) Show that Z is not 51.
(c) Show that Z is not even 62.

5.2 Definability in Arithmetic

A number is prime if it is greater than 1 and is not the product of two smaller numbers.
That sentence reflects a certain property of the set of primes: the set of primes is
definable in arithmetic. What other sets are definable in arithmetic? What sets are not?

Before tackling either of these questions, we need to be more explicit about what
counts as “arithmetic.” We want to establish a certain language so that we can then
consider what is expressible in that language and what is not.

The study of definability in formal languages is an important part of logic. What
we do here is to take an initial look at one such situation.

The language we want incorporates the following seven elements.

l A symbol 0 to name zero. We need to start somewhere.
l A symbol S for the successor function (that is, the function S(x) = x + 1). The string S0

names 1, the string SS0 names 2, and so forth. For each natural number n, we have a numeral
SS · · · S0 naming n; call this numeral n̄. For example, 4̄ is the string SSSS0.

l Symbols for addition, multiplication, and exponentiation. (Everyday notation uses + and
× for addition and multiplication, but lacks a symbol for exponentiation. The practice of
writing xy curiously avoids having a symbol for the exponentiation operation.)

l Symbols for comparing numbers: =, <, ≤.
And then some infrastructure.

l Variables x1, x2, x3, . . . and u, v,w, . . .. There are enough variables that we will never run
out. (This is only part of the story. Actually, it is important to make the total supply of sym-
bols finite. So what the language really has is one or two variables and a prime symbol, ′. That
way we can make all the variables x′, x′′, x′′′, . . . we need, with just a few basic symbols.)

l Connective words “and,” “or,” “not,” “if . . . then,” and “if and only if.” Also parentheses, so
we don’t get confused.

l Quantifiers over N: ∀v and ∃v (for a variable v of our choice), to express “for every natural
number” and “for some natural number.”

And that is all.
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Example: In the language, we can say

S0 < x1 and not ∃u∃v(u < x1 and v < x1 and u · v = x1),

which expresses “x1 is prime.” If we are told what number the variable x1 names, then
we can try to say whether this expression – call it π(x1) – is true or false. Or better, if
we replace the variable x1 by a numeral SS · · · S0, we get a sentence that is either true
or false. That is, π(SSS0) is true, but π(SSSS0) is false. Or to use the abbreviations for
numerals, π(3̄) is true, but π(4̄) is false.

Example: Fermat’s Last Theorem can be written as a sentence in the language.

Nonexample: The language does not incorporate a way to say “for every set of natural
numbers.” It has no way to refer to real numbers in general or to points and lines. It
talks only of natural numbers, their sums, their products, and so forth.

Definition: A set S of natural numbers is definable in arithmetic by an expres-
sion α(x1) (of the language of arithmetic) if the following conditions hold for each
number n:

(i) If n ∈ S, then α(n̄) is a true sentence.
(ii) If n /∈ S, then α(n̄) is a false sentence.

Example: The set of primes is definable in arithmetic by the expression π(x1)we have
just seen.

Example: The set of odd numbers is defined in arithmetic by the expression ∃y x1 =

y+ y+ S0. (There are several claims being made here. First, this expression is indeed
in the language of arithmetic; it employs only features from our given list. Secondly,
for any odd number n, the result of replacing x1 by n̄ is a true sentence. And thirdly,
for any even number n, the result of replacing x1 by n̄ is a false sentence.)

Nonexample: There must be many sets that are not definable in arithmetic. There are
uncountably many subsets of N, by Cantor’s theorem. But only countably many can
be definable in arithmetic. This is because there can be only countably many defining
expressions. Each expression is a finite string of symbols, drawn from a finite alphabet,
and there are only countably many such strings.

The definability concept extends naturally to relations on N.

Definition: A k-ary relation R on natural numbers is definable in arithmetic by an
expression α(x1, . . . , xk) (of the language of arithmetic) if the following conditions
hold for each k-tuple of numbers 〈n1, . . . , nk〉:

(i) If 〈n1, . . . , nk〉 ∈ R, then α(n̄1, . . . , n̄k) is a true sentence.
(ii) If 〈n1, . . . , nk〉 /∈ R, then α(n̄1, . . . , n̄k) is a false sentence.

Example: The divisibility relation (which is a binary relation) is defined in arithmetic
by the expression ∃y x1 · y = x2. Call this expression δ(x1, x2). Then, δ(7̄, 9̄1), which
is the sentence ∃y 7̄ · y = 9̄1, is true, because we can take y = 13.

Example: Let A be the binary relation of being “adjacent primes.” That is, 〈p, q〉 ∈
A⇔ both p and q are prime and p < q and there is no prime in between. (For example,
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〈3, 7〉 /∈ A and 〈13, 17〉 ∈ A.) Then, A is defined in arithmetic by the expression:

π(x1) and π(x2) and x1 < x2 and not ∃z(π(z) and x1 < z < x2),

where π(x1) is the earlier expression defining the primes.

Our goal is to show that every relation that is 6n or 5n (for any n) is definable
in arithmetic. A more immediate goal is to show that the graph of every primitive
recursive function is definable in arithmetic.

Example: The graph of the one-place function f (t) = bt/2c is a binary relation and is
defined in arithmetic by the expression

x2 + x2 = x1 or x2 + x2 + S0 = x1.

The initial functions present no difficulties:

1. The k-place function that is constantly 0 has a graph that is defined in arithmetic by the
expression xk+1 = 0.

2. The successor function (which is one-place) has a graph that is defined in arithmetic by the
expression x2 = Sx1.

3. The projection function Ik
m (where 1 ≤ m ≤ k) has a graph that is defined in arithmetic by

the expression xk+1 = xm.

Now for a more serious matter.

Theorem: The class of functions with graphs definable in arithmetic is closed under
composition. That is, if f and g1, . . . , gk all have graphs definable in arithmetic and
if h is given by the equation h(Et) = f (g1(Et), . . . , gk(Et)), then the graph of h is also
definable in arithmetic.

Proof (for two-place functions). Assume the following:
The graph of f is defined in arithmetic by the expression ϕ(x1, x2, x3).
The graph of g1 is defined in arithmetic by the expression γ1(x1, x2, x3).
The graph of g2 is defined in arithmetic by the expression γ2(x1, x2, x3).

And let h(p, q) = f (g1(p, q), g2(p, q)). We claim that h is defined in arithmetic by
the following expression:

∃y1∃y2[γ1(x1, x2, y1) and γ2(x1, x2, y2) and ϕ(y1, y2, x3)].

Call this expression σ(x1, x2, x3). If h(a, b) = c, then σ(ā, b̄, c̄) is a true sentence
because we can assign g1(a, b) to y1 and g2(a, b) to y2.

Conversely, suppose that σ(ā, b̄, c̄) is a true sentence. So there must be numbers
assigned to y1 and y2 making the expression true. The number assigned to y1 must have
been g1(a, b) to make γ1(ā, b̄, y1) true. Similarly, the number assigned to y2 must have
been g2(a, b) to make γ2(ā, b̄, y2) true. Consequently, c must be f (g1(a, b), g2(a, b))
to make ϕ(y1, y2, c̄) true. a

It remains to show closure under primitive recursion. Toward that end, we
will employ the following two lemmas regarding two specific primitive recursive
functions.
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Lemma: The graph of the function t 7→ pt (where pt is the (t + 1)st prime number) is
definable in arithmetic.

Proof. We already have an expression δ(x1, x2) defining in arithmetic the divisibility
relation and an expression α(x1, x2) defining in arithmetic the relation of being adja-
cent primes.

First, consider the relation Q for which

〈b, c〉 ∈ Q ⇐⇒ b is prime and c = 203152
· · · b�

where � is the number for which b = p�. For example, 〈5, 75〉 ∈ Q because 5 = p2
and 75 = 203152. Here are the first four members of Q:

Q = {〈2, 1〉, 〈3, 3〉, 〈5, 75〉, 〈7, 25725〉, . . .}.

In general, we can say that 〈b, c〉 ∈ Q if and only if b is prime and

(i) 2 - c,
(ii) for any adjacent primes q and r with q < r ≤ b, we have

q j
| c ⇐⇒ r j+1

| c

for all j, and
(iii) no prime larger than b divides c.

Translating these conditions into the language of arithmetic, we obtain an expression
defining Q:

π(x1) and not δ(SS0, x2) and
∀u∀v[if (α(u, v) and v ≤ x1), then ∀w(δ(uw, x2) if and only if δ(vSw, x2))]
and not ∃z(π(z) and x1 < z and δ(z, x2))

Call this expression θ(x1, x2).
Secondly, observe that pa = b if and only if b is prime, and, where c is the unique

number for which 〈b, c〉 ∈ Q, we have ba
| c and ba+1 - c. (For example, p2 = 5

because 5 is prime, 52
| 75, and 53 - 75.) Thus, the expression

π(x2) and ∃y[θ(x2, y) and δ(xx1
2 , y) and not δ(xSx1

2 , y)]

defines the graph of the function t 7→ pt in arithmetic. a

Lemma: The graph of the decoding function 〈s, t〉 7→ (s)t is definable in arithmetic.

Proof. The key fact is that

(s)t =


0 if s = 0
0 if pt - s
the e for which pe+1

t | s and pe+2
t - s otherwise.
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Using the expression δ(x1, x2) for divisibility and the expression ψ(x1, x2) for the
graph of t 7→ pt, we can make the expression

(x1 = 0 and x3 = 0) or
∃y(ψ(x2, y) and not δ(y, x1) and x3 = 0) or
∃y(ψ(x2, y) and δ(ySx3 , x1) and not δ(ySSx3 , x1)),

which defines the graph of 〈s, t〉 7→ (s)t in arithmetic. (Every number divides 0, so
there is no danger that the three clauses might overlap.) a

Theorem: The class of functions with graphs definable in arithmetic is closed under
primitive recursion. That is, if f and g have graphs definable in arithmetic, and if h is
given by the recursion equations

h(Er, 0) = f (Er) and h(Er, t + 1) = g(h(Er, t), Er, t),

then the graph of h is also definable in arithmetic.

Proof. The key fact is that h(Er, t) = q if and only if there exists some number s with
the following three properties:

(i) (s)0 = f (Er).
(ii) (s)j+1 = g((s)j, Er, j) for each j, unless j ≥ t.

(iii) (s)t = q.

(In one direction, if we have the equation h(Er, t) = q, then taking

s = [h(Er, 0), h(Er, 1), . . . , h(Er, t)],

we see that (i), (ii), and (iii) all hold. In the other direction, suppose that s is a number
satisfying (i), (ii), and (iii). Then, by induction of j, we see that (s)j = h(Er, j) for j ≤ t.
In particular, (s)t = q = h(Er, t).)

For notational simplicity, suppose that Er is a single number r. We are given an
expression ϕ(x1, x2) defining the graph of f and an expression γ (x1, x2, x3, x4) defin-
ing the graph of g. From the foregoing lemma, we have an expression β(x1, x2, x3)

defining the graph of the decoding function 〈s, t〉 7→ (s)t. Then, the expression

∃z[∃y(ϕ(x1, y) and β(z, 0, y)) and
∀u[x2 ≤ u or ∃v∃w(β(z, u, v) and β(z, Su,w) and γ (v, x1, u,w))]
and β(z, x2, x3)]

defines the graph of h in arithmetic. (Translation hints: The variable z will be assigned
a number s meeting (i)–(iii). The variable y will be assigned f (r).) a

Corollary: The graph of any primitive recursive function is definable in arithmetic.

Corollary: Every primitive recursive relation is definable in arithmetic.
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Proof. For any k-ary primitive recursive relation R, the graph of its characteristic func-
tion is defined in arithmetic by some expression ρ(x1, . . . , xk, xk+1). Then, R is defined
in arithmetic by the expression ρ(x1, . . . , xk, S0). a

Corollary: Every 61 relation is definable in arithmetic.

Proof. We showed on page 82 that any 61 relation had the form {Es | ∃t Q(Es, t)} for a
primitive recursive relation Q. We know that Q is definable; add one more quantifier
to define {Es | ∃t Q(Es, t)} in arithmetic. a

Digression: Work by Martin Davis, Yuri Matiyacevich, Hilary Putnam, and Julia
Robinson has shown that any 61 relation is definable in arithmetic by an expression

∃y1 · · · ∃yk θ,

where θ contains no quantifiers at all. And it gets even better than that; θ can actually
be a polynomial equation. In particular, while θ uses multiplication and addition, it
does not need exponentiation. We have included exponentiation in our language in
order to simplify the proofs.

But all these corollaries are mere preliminaries for the following result.

Theorem: Any relation that is 6n or 5n (for any n) is definable in arithmetic.

Proof. Keep adding quantifiers. a

And that is where this string of results stops. Although we will not go into the topic
here, the converse to the theorem also holds: the 6n and 5n relations are the only
relations that are definable in arithmetic.

5.3 The Complexity of Truth

We now know that for any 699 set S, there is an expression α(x1) of arithmetic such
that

n ∈ S ⇐⇒ α(n̄) is a true sentence.

That is, any 699 set is reducible, in a sense, to the set of true sentences in arithmetic.
And the same holds for any set that is 6999 or elsewhere in the arithmetical hierar-
chy. This “reducibility” will be seen to demonstrate that the set of true sentences is
a very complicated set. In particular, it will be seen that the set of true sentences is
undecidable. It is not even semidecidable.

In order to describe the situation more precisely, we need to convert the set of true
sentences of arithmetic to a set of numbers. That is, to each expression ε of arith-
metic (which is a string of symbols), we can assign its Gödel number #ε, much as we
assigned Gödel numbers to register machine programs. Of course, different expres-
sions receive different Gödel numbers.



Connections to Logic 117

Moreover, for any fixed expression α(x1), we expect the function

n 7→ #α(n̄)

to be a computable function. (This function needs to go through the expression and
replace occurrences of the variable x1 by the numeral n̄.)

Rather than to go into the specifics of Gödel numbering, let’s take it for granted
that the Gödel numbers can be assigned in such a way that n 7→ #α(n̄) is always
a computable function. (This is not so unreasonable. Expressions of arithmetic are
words over a certain finite language. We can code such words by numbers. Logic
textbooks, such as the one cited in the References, carry out Gödel numbering and
verify that substituting a numeral for a variable is a computable procedure.)

Define True to be the set of Gödel numbers of true sentences of arithmetic:

True = {#τ | τ is a true sentence of arithmetic}.

For example, the number

#∀x∀y∀z∀n
(
n ≤ 2 or xyz = 0 or not xn

+ yn
= zn)

belongs to the set True. An indication of the complexity of the set True is given by the
following result.

Proposition: For any set S that is definable in arithmetic, we have S ≤m True.

Proof. Say S is defined in arithmetic by the expression α(x1). Thus

n ∈ S ⇐⇒ #α(n̄) ∈ True

for each number n. Since n 7→ #α(n̄) is a computable function, we conclude that
S ≤m True under this function. a

Corollary: For any set S that is either 6n or 5n for some n, we have S ≤m True.

Proof. Any such set is definable in arithmetic; apply the preceding proposition. a

Tarski’s theorem: The set True is not 6n or 5n for any n.

Proof. We will show that True is not 699. Let S be a set that is 599 but not 699. (We
know there are such sets.) By the above corollary, we have S ≤m True. Therefore,
True cannot be 699, lest S be 699. a

In particular, True is not a computable set. That is, truth in arithmetic is unde-
cidable. We have here an unsolvability result for a problem that is not formulated in
terms of computability concepts (as was the halting problem). Even for arithmetic,
sometimes regarded as one of the simpler branches of mathematics, the set of true
sentences is not a decidable set. (Of course, if instead of calling it “arithmetic,” we
call it “number theory,” then its undecidability comes as less of a surprise.)
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Digression: Suppose that we omit exponentiation from our language, and we apply it
not to N but to R. That is, now ∀x means “for all real numbers x,” and ∃x means “there
exists a real number x.” Then, we get a language for talking about the real number
line. For example, a subset of R that is a finite union of intervals (open or closed) with
rational endpoints is definable in this language. Perhaps surprisingly, the set True in
this situation turns out to be computable! This follows from a different theorem of
Tarski, from 1939.

Moreover, in addition to showing that True is not computable, we have shown
that True is not 61; that is, it is not recursively enumerable. (More informally, truth
in arithmetic is not semidecidable.) This fact, although lacking the full strength of
Tarski’s theorem, is relevant to axiomatic theories in arithmetic, such as might be
studied in a logic course.

Imagine, then, that we want to develop an axiomatic theory for arithmetic. So we
need two components. First, we need to adopt some true sentences as our axioms.
(There is a set of sentences called the first-order Peano axioms that is a popular
choice.) Secondly, we need to adopt rules for what is an acceptable proof. Here there is
not so much latitude; logicians have succeeded in nailing down the concept of a proof
from axioms very precisely.

But there is one additional feature we expect: the binary relation

{〈π, σ 〉 | π is a proof of σ }

must be a decidable relation. That is, it is not acceptable to take simply all true sen-
tences as axioms because then we could not effectively tell an axiom from a nonaxiom.
(The set True is not computable.) A key feature of a proof is that it should be effectively
verifiable. It must be possible – in principle – for a hard-working graduate student (or a
referee) to check a proof line by line and verify its correctness. We cannot demand that
the student contribute brilliant insights. Nor can we demand that the student spend an
infinite amount of time, checking an infinite number of cases. What we can insist on is
that the student or the referee must eventually either conclude that the proof is correct
or conclude that it is not yet acceptable. We need to be able to distinguish between
proofs and nonproofs.

Using Church’s thesis and Gödel numbers, this demand can be translated as fol-
lows: the binary relation

{〈p, s〉 | p is the Gödel number of a proof of the sentence with Gödel number s}

must be a computable relation. This has the following consequence:

{s | ∃p(p is the Gödel number of a proof of the sentence with Gödel number s)}

is recursively enumerable. (In fact, this set would be r.e. even if the binary relation,
instead of being computable, were merely r.e.) That is, in an axiomatic theory of
arithmetic, the set of Gödel numbers of provable sentences is recursively enumerable.
Therefore, this set cannot be the same as True, which is not recursively enumerable.
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The best that an axiomatic theory can hope to generate is some recursively enumerable
subset T of True.

Gödel incompleteness theorem (1931): For any recursively enumerable subset T of
True, we can find a true sentence σ with #σ /∈ T.

Thus, for an axiomatic theory of arithmetic, we can find a true sentence not provable
in that theory.

First proof. T is a subset of True. These two sets cannot be equal because the first is
r.e. and the second is not. So there must be something in True not in T . a

But it will be more interesting if we can actually get some idea of what that sentence
σ might express. Let’s retrace the argument.

Second proof. We know that True is not r.e. because the non-61 set K is many-one
reducible to True. That is, there is an expression κ(x1) that defines K in arithmetic,
and

n ∈ K ⇐⇒ #κ(n̄) ∈ True.

For the given r.e. subset T of True, let

J = {n | #κ(n̄) ∈ T}.

Thus, J is the set of numbers that T “knows” are in K. The set J is r.e. (because we
have J ≤m T under the function n 7→ #κ(n̄)). So we have J = Wj for some number j.
Moreover, J ⊆ K (because

n ∈ J ⇒ #κ(n̄) ∈ T ⇒ κ(n̄) is true

for each n). Therefore, J is a proper subset of K because J is r.e. and K is not. So there
is a number in K that is not in J. In fact, j is such a number, by the proposition on
page 84. Thus, the sentence

κ( j̄)

is true (because j ∈ K), but its Gödel number is not in T (because j /∈ J). So here is a
specific sentence witnessing Gödel’s incompleteness theorem. a

And what might this sentence κ( j̄) say? Literally, it speaks of numbers and their
sums and products – dullsville. But we can give it a more interesting translation:

κ( j̄) says j ∈ K
i.e., j /∈ Wj

i.e., j /∈ J
i.e., #κ( j̄) /∈ T
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That is, our witness (our true unprovable sentence) asserts, in a sense, that it is itself
not in the axiomatic theory that yields T . It is saying (under this rather free translation),
“I am unprovable in this axiomatic theory.”

Digression: In 1931, Gödel did not have the development of computability theory
available to him. Instead, he proceeded directly to an ingenious construction of a sen-
tence that could be freely translated as saying “I am unprovable in this axiomatic
theory.” This sentence had to be true (if it were false, we would have a provable false-
hood), and hence unprovable in the axiomatic theory. Even better, Gödel worked not
from the concept of a true sentence, but from the concept (from logic) of a consistent
theory. This led to a result called the second incompleteness theorem, which cannot
be explored here.

Emil Post, in a seminal 1944 paper, defined a concept he called a creative set; the
set K was an example of such a set. (See Exercise 9.) He gave, much as is done here,
a version of the Gödel incompleteness theorem. He then added: “The conclusion is
unescapable that even for such a fixed, well defined body of mathematical proposi-
tions, mathematical thinking is, and must remain, essentially creative.”

Exercises

6. Call a set S of natural numbers productive if there is a computable partial function
f (a productive function for S) such that whenever Wx ⊆ S then f (x) is defined and
belongs to S but not to Wx. (Thus f (x)witnesses the fact that Wx is not all of S.) For
example, K is productive, and the identity function is a productive function for K.
Clearly, a productive set cannot be recursively enumerable. Show that if A ≤m B
and A is productive, then B is also productive.

7. (a) Show that the set True is productive.
(b) Show that its complement, True, is also productive.

8. (a) Show that the set Tot is productive.
(b) Show that its complement, Tot, is also productive.

9. Call a set creative if it is recursively enumerable and its complement is productive.
For example, the set K is creative. Show that any m-complete r.e. set (i.e., any
r.e. set such that all other r.e. sets are many-one reducible to it) is creative.



6 Degrees of Unsolvability

6.1 Relative Computability

All the noncomputable sets are noncomputable, but some are more noncomputable
than others. In this chapter,1 we want to make sense of this idea.

For example, suppose A and B are both noncomputable subsets of N. On the one
hand, we might be able to show that if, hypothetically speaking, we could somehow
decide membership in B, then we could decide membership in A. This would lead us
to the opinion that A is no more undecidable than B is.

On the other hand, we might be able to show that even if our Fairy Godmother gave
us an oracle so we could decide membership in B, there still would be no decision
procedure for A. This might lead us to the opinion that A is more undecidable than B
or else that their “degrees of unsolvability” are not directly comparable.

Now, an “oracle” for B sounds like a magic device – a black box sitting on a tripod,
perhaps, with the ability to say whether or not a given number belongs to B. The
informal concept we want to explore is the concept of effective calculability relative
to some fixed set B. Our mental image of effective calculability (in Chapter 1) involved
a clerk dutifully carrying out given instructions. Now, we intend to supply this clerk
with one more asset: an oracle for B. This will allow him or her to do more than
before (if B is undecidable); he or she can now very easily calculate the characteristic
function CB of B, for example. But there will still be limits to what the clerk can do,
even with this new oracle.

The remarkable fact is that we can turn this into mathematics, without any magic.
The concept of relative computability first appeared in a 1939 paper by Alan Turing.
At first glance, it might seem strange to combine the rather constructive concept of
computability with the almost mystical idea of an oracle. It is to Turing’s credit that
he perceived that the combination, strange or not, would be a useful tool in classifying
the noncomputable sets.

The preceding paragraphs give an informal description of the concept of effective
calculability relative to a set B (shades of Chapter 1!). Here is the plan. We want to
make the concept into a genuine mathematical concept in two ways: general recur-
siveness relative to B (as in Chapter 2) and register-machine computability relative
to B (as in Chapter 3). So next we will look at the (rather minor) changes needed to
Chapter 2 to incorporate B. And then, we will look at the changes needed to Chapter 3
to incorporate B. In particular, we will want to know that two approaches yield exactly
the same class of partial functions. And we will want to know that the theorems from

1 Chapters 5, 6, and 7 are largely independent and can be read in any order.
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Chapters 2 and 3 continue to hold in the new setting. After that, we will explore what
use can be made of these ideas.

In Chapter 2, we formalized the concept of effective calculability by defining the
class of general recursive partial functions: the partial functions that could be built up
from certain initial functions by use of composition, primitive recursion, and search.
Define the general recursive partial functions relative to B in exactly the same way,
except for allowing one additional initial function, namely the characteristic function
CB of B.

Moreover, we obtain the primitive recursive functions relative to B by foregoing
unbounded search. And an n-ary relation R on the natural numbers is defined to be
primitive recursive relative to B if its characteristic function CR is primitive recursive
relative to B. Similarly, a relation R is general recursive relative to B if its characteristic
function CR (which is always total) is general recursive relative to B.

For a simple example, the complement B of B is primitive recursive relative to
B because its characteristic function is obtainable by composition from the function
x 7→ 1−· x and CB.

As in Chapter 2 (and by the same proofs), the class of relations that are general
recursive relative to B is closed under the constructions we came across there. In par-
ticular, it is closed under unions, intersections, complements, bounded quantifiers, and
substitution of total functions that are general recursive relative to B.

(It is clear that this concept of relative general recursiveness could be extended in
two ways. First, instead of adding the CB as an initial function for one set B, we could
add the characteristic functions of many sets. That is, where C is some collection of
subsets of N, we can define the class of general recursive partial functions relative to C
by including all the characteristic functions of members of C as initial functions. And
here C could be finite or infinite.

Secondly, for a total function F on the natural numbers, we can obtain the general
recursive partial functions relative to F by adding F as an initial function. That is,
there is no necessity of limiting ourselves to oracles for characteristic functions – we
can handle oracles for other total functions just as well.

Combining these two extensions, where F is a collection of total functions, we can
obtain the general recursive partial functions relative to F by adding all of F as initial
functions.

These are good extensions, but we will not make use of them right now. For the
time being, we will concentrate solely on the concept of computability relative to a
single set B of natural numbers.)

In Chapter 3, we examined the register-machine option for formalizing the con-
cept of effective calculability. Now, we add a new type of instruction for register
machines:

l “Convert r,” C r (where r is a numeral for a natural number): The effect of this instruction
is to replace the number x in register r by CB(x). This happens instantly, in one step. The
machine then proceeds to the next instruction in the program (if any).

(In the case of computability relative to a total function F, this instruction replaces
the x in register r by F(x).)
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For a program P in the new sense, when we begin execution with Ex in registers
1, . . . , n, there are three possibilities:

(i) The calculation might never halt.
(ii) The calculation might come to a “good” halt, by seeking the first nonexistent instruction.

(iii) The calculation might come to a “bad” halt, by seeking some other nonexistent instruction.
(This can happen if the program tries to jump too far backwards or forwards; it can also
happen if the last instruction is a decrement instruction.)

As in Chapter 2, we say, for an n-place partial function f , that P computes f relative
to B if when we start execution with an n-tuple Ex in registers 1, . . . , n and with 0 in all
other registers, then the following conditions hold:

l If f (Ex) is defined (i.e., if Ex ∈ dom f ), then the computation eventually terminates with f (Ex)
in register 0. Furthermore, the computation comes to a good halt, by seeking a (p + 1)st
instruction, where p is the length of P .

l If f (Ex) is undefined (i.e., if Ex /∈ dom f ), then the computation never terminates.

Then, we say that f is a partial function that is register-machine computable relative
to B if there exists a program P (which may contain conversion instructions) that
computes f relative to B (in the above sense of the verb “computes”).

For example, the characteristic function CB is register-machine computable relative
to B: we use the program that converts register 1 and then moves the result to register 0.
We can do this in four or five lines. (And those lines do not depend on what the set B is.)

All the other initial functions are register-machine computable relative to B, even
without using conversion instructions. And the proofs from Chapter 3 show that the
class of partial functions register-machine computable relative to B is closed under com-
position, primitive recursion, and search. No changes are required in any of those con-
structions. Therefore, we have the following result:

Theorem: Every partial function that is general recursive relative to B is also register-
machine computable relative to B.

We can code programs as in Chapter 3, assigning Gödel numbers to conversion
instructions:

#C r = [4, r].

There is no need to change the “loc” function that updates the location counter in exe-
cuting a program. In the case of a conversion instruction, we already have loc(k,m, e) =
k + 1 by the default clause.

The “mem” function for updating the memory number needs to be adapted by adding
additional cases for the conversion instruction:

memB(m, c) =



m · p(c)1 if (c)0 = 0 and c 6= 0 (increment)
bm/p(c)1)c if (c)0 = 1 and p(c)1 | m (decrement)

bm/px
rc if (c)0 = 4 and x /∈ B (convert)

bm/px
rc · pr if (c)0 = 4 and x ∈ B (convert)

m otherwise,
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where r= (c)1 and x= (m)∗r . In this equation, we have used only parts that are primitive
recursive relative to B, so the function memB is primitive recursive relative to B. (More-
over, the construction tree for memB does not depend on what B is.) Hence, the function
is register-machine computable relative to B. (And the program that computes memB

relative to B does not depend on what B is.)
Our universal program, with mem replaced by memB, computes (relative to B) an

(n+ 1)-place partial function8(n)B with the property that whenever e is the Gödel num-
ber of a program that computes (relative to B) an n-place partial function f , then

8
(n)
B (e, Ex) = f (Ex)

for all Ex (where equality of partial functions has the usual meaning). We define

[[e]](n)B (Ex) = 8(n)B (e, Ex).

Enumeration theorem:

(i) 8
(n)
B is an (n + 1)-place partial function that is register-machine computable

relative to B.
(ii) For each number e, the n-place partial function [[e]](n)B is register-machine

computable relative to B.
(iii) Each n-place partial function that is register-machine computable relative to B is

[[e]](n)B for some number e.

Thus,

[[0]](n)B , [[1]](n)B , [[2]](n)B , . . .

is a complete list (with repetitions) of all the n-place partial functions that are register-
machine computable relative to B.

We obtain a snapshot function snap(n)B by using memB in place of mem. This func-

tion is primitive recursive relative to B. And the following relation T(n)B is also primitive
recursive relative to B:

{〈u, Ex, t〉 | [[u]](n)B (Ex)↓ in ≤ t steps} = {〈u, Ex, t〉 | (snap(n)B (u, Ex, t))0 ≥ lh u}.

Normal form theorem: For any Ex, e, and n,

[[e]](n)B (Ex) = 8(n)B (e, Ex) = ((snap(n)B (e, Ex, µt[(snap(n)B (e, Ex, t))0 ≥ lh e]))1)
∗
0,

where “=” means that either both sides are undefined or else both are defined and are
equal.

Looking at the right-hand side of this equation, we see that every piece defines a par-
tial function that is general recursive relative to B. This proves that every partial function
[[e]](n)B that is register-machine computable relative to B is also general recursive rela-
tive to B. Combining this fact with its converse proved earlier, we have the following
reassuring result.
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Theorem: A partial function is general recursive relative to B if and only if it is register-
machine computable relative to B.

Church’s thesis, extended to the context of relativized computability, is the claim that
not only are the two concepts in this theorem equivalent to each other, but the concepts
are the correct concepts to formalize our ideas of effective calculability, given an oracle
that can decide membership in a set B.

As in Chapter 4, we adopt a unified terminology. A partial function meeting the con-
ditions of this theorem will be said to be a partial function computable relative to B (or
a partial function recursive relative to B).

A relation on the natural numbers will be said to be computable relative to B (or
recursive relative to B) if its characteristic function (which is always total) is com-
putable relative to B.

For an extreme case, suppose B = ∅. A partial function is computable relative to
∅ if and only if it is a computable partial function (in the unrelativized sense). This
holds because the characteristic function of ∅ is a constantly 0 function. This function
is already included as an initial function for the construction of the general recursive
partial functions. (An oracle for ∅ is not a useful device.)

Because the class of functions computable relative to B is closed under composition,
we have the following:

Substitution rule: If Q is an n-ary relation computable relative to B, and g1, . . . , gn are
k-place total functions that are computable relative to B, then the k-ary relation

{Ex | 〈g1(Ex), . . . , gn(Ex)〉 ∈ Q}

is computable relative to B.

This concludes our review of Chapters 2 and 3, modified to allow for an “oracle” for
a set B. Now, we want to make use of that material and see what we can do with it.

A key concept is that of Turing reducibility. For a subset A of N (that is, a unary
relation), we say that A is Turing reducible to B (written A ≤T B) if the characteristic
function of A is computable relative to B. Informally, saying that A ≤T B implies that
membership in A is no harder to decide than membership in B. That is, we could decide
membership in A if we had an oracle for B. Of course, if A is a computable set, then
automatically it is computable relative to anything one wants:

A computable =⇒ for any B, A ≤T B.

For example, suppose A ≤m B under the total computable function f :

x ∈ A ⇐⇒ f (x) ∈ B.

Then, CA(x) = CB( f (x)) and consequently A ≤T B. (Right? Method 2 is to apply com-
position to CB and f . Method 3 is to follow a program for f by a conversion instruction.)
That is,

A ≤m B =⇒ A ≤T B.
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The converse does not hold, in general. For example, we know that K 6≤m K because K
is not r.e. On the other hand, K ≤T K. In fact, A ≤T A for any set A. (Right?)

Transitivity lemma: If f is a partial function computable relative to B and B ≤T C,
then f is a partial function computable relative to C.

Proof. We are given that B is general recursive relative to C, so there is construction
tree T showing how the characteristic function of B is built up from initial functions
(possibly including the characteristic function of C).

Similarly, we are given that there is a construction tree showing how the partial func-
tion f is built up. But this tree may have among its leaves the characteristic function of B.

Use grafting. In the latter tree, whenever a leaf (at the bottom of the tree) has the
characteristic function of B as an initial function, we graft in the tree T . The result is a
tree that still builds up the partial function f , but now its initial functions are only zero,
successor, projection, and the characteristic function of C. Hence, f is general recursive
relative to C. a
Corollary: If f is a partial function computable relative to B and B is a computable set,
then f is a computable partial function (absolutely).

Proof. In the transitivity lemma, take C = ∅. a
It is clear that A ≤T A for any set A; one says that the ≤T relation is reflexive on

the collection PN of sets of natural numbers. The ≤T relation also has the following
property, which is called transitivity.

Proposition: Whenever A ≤T B and B ≤T C, then A ≤T C.

Proof. In the transitivity lemma, take f to be the characteristic function of A. a
Proposition: Whenever A≤T B and B is a computable set, then A is also a com-
putable set.

Proof. In the previous proposition, take C = ∅. a
This proposition, in the contrapositive, has the following consequence: One strategy

for showing that a set B is not computable is to show that A ≤T B where A is some set
already known to be not computable.

Relations (such as ≤T or ≤m) that are reflexive and transitive are called pre-
orderings. We will examine the properties of preorderings shortly.

We say that sets A and B are Turing equivalent (written A ≡T B) if each is Turing
reducible to the other:

A ≡T B ⇐⇒ A ≤T B and B ≤T A.

Because ≤T is reflexive on PN, it follows that the ≡T relation is also reflexive on
PN, that is, that A ≡T A for every set A. Moreover, the transitivity of ≤T tells us
that≡T is also transitive:

A ≡T B and B ≡T C =⇒ A ≡T C.
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In addition,≡T has a property that≤T lacks: it is symmetric:

Whenever A ≡T B then B ≡T A.

In summary, the relation≡T is reflexive onPN, transitive, and symmetric. Such rela-
tions are called equivalence relations onPN.

6.2 Equivalence Relations

Suppose that E is a binary relation on some set U (that is, E ⊆ U × U). In place of

〈x, y〉 ∈ E,

we will write simply xEy.

Definition:

(i) E is said to be reflexive on U if xEx for every x in U.
(ii) E is said to be symmetric if whenever xEy then also yEx.

(iii) E is said to be transitive if whenever both xEy and yEz then also xEz.
(iv) E is said to be an equivalence relation on U if it is reflexive on U, symmetric, and

transitive.

Example 1: The Turing equivalence relation≡T is an equivalence relation onPN.

Example 2: The relation ≤m of many-one equivalence is reflexive on PN (that is,
A ≤m A) and is transitive. Define A and B to be many-one equivalent (written A ≡m B)
if each is many-one reducible to the other:

A ≡m B ⇐⇒ A ≤m B and B ≤m A.

This relation is also an equivalence relation onPN.

Example 3: For sets A and B, say that A is one-one reducible to B (written A ≤1 B) if
A ≤m B under a function that is (in addition to being total and computable) one-to-one.
This relation is also reflexive on PN because A ≤1 A under the identity function. And
it is transitive. Make the inevitable definition:

A ≡1 B ⇐⇒ A ≤1 B and B ≤1 A.

This relation is also an equivalence relation onPN.

Example 4: Equivalence relations arise throughout mathematics, especially in algebra.
For integers x and y, define x ≡ y to hold if the difference |x−y| is evenly divisible by 6.
Then,≡ is an equivalence relation on the set Z of integers. If x ≡ y, then we say that x
and y are congruent modulo 6.

Definition: For an equivalence relation E on a set U, and an element x in U, define the
equivalence class [x]E of x to be the set of all objects t that x is related to:

[x]E = {t | xEt}.
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When the relation E is fixed by the context, we can write simply [x].

Example 4 revisited: For congruence modulo 6 on the integers,

[2] = {. . . ,−4, 2, 8, 12, . . .}.

Example 1 revisited: For Turing equivalence on PN, the equivalence class [∅] of the
empty set is

{A ⊆ N | ∅ ≡T A}.
This is exactly the collection of computable sets. On the one hand, we have ∅ ≤T A
for any set A because ∅ is a computable set (absolutely). On the other hand, whenever
A ≤T ∅, then A is computable, by a recent proposition.

By contrast, [K] does not contain any computable sets because whenever K ≤T A,
then A cannot be computable (by the same proposition). Thus, [∅] and [K] are disjoint;
they have no members in common.

Lemma: Assume that E is an equivalence relation on U and that x and y belong to U.
Then,

[x]E = [y]E if and only if xEy.

Proof.

(⇒) Assume that [x]E = [y]E. We know that y ∈ [y]E (because yEy), and consequently
y ∈ [x]E (because [x]E and [y]E are the same set). By the definition of [x]E, this
means that xEy.

(⇐) Next assume that xEy. Then,

t ∈ [y]E =⇒ yEt

=⇒ xEt because xEy and E is transitive

=⇒ t ∈ [x]E.

Thus [y]E ⊆ [x]E. Since E is symmetric, we also have yEx, and we can reverse x and y
in the above argument to obtain [x]E ⊆ [y]E. a

Definition: A partition 5 of a set U is a collection of nonempty subsets of U that is
disjoint and exhaustive, i.e.,

(a) no two different sets in5 have any common elements, and
(b) each element of U is in some set in5.

There is a close connection between partitions and equivalence relations.

Theorem: Assume that E is an equivalence relation on U. Then, the collection

{[x]E | x ∈ U}

of all equivalence classes is a partition of U.
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Proof. Each equivalence class [x]E is nonempty (because x ∈ [x]E) and is a subset of
U (because E ⊆ U × U). The main thing that we must prove is that the collection of
equivalence classes is disjoint, i.e., part (a) of the definition is met. So suppose that [x]E

and [y]E have a common element t. Thus,

xEt and yEt.

But then xEy and by the lemma, [x]E = [y]E. a
For an equivalence relation E on a set U, we can define the quotient set

U/E = {[x]E | x ∈ U}

whose members are the equivalence classes. (The expression U/E is read “U modulo
E.”) This is a set of sets. We have the natural map (or canonical map) ϕ : U → U/E
defined by

ϕ(x) = [x]E

for x in U.

Example 4 revisited: For congruence modulo 6 on the integers, the quotient set Z/≡
consists of exactly six sets:

Z/≡ = {[0], [1], [2], [3], [4], [5]}.

So Z has been partitioned into six parts.

Example 1 revisited: For Turing equivalence onPN, the equivalence classes are called
degrees of unsolvability, or Turing degrees, or simply degrees. For example, one of the
degrees is [∅], the collection of computable sets.

The concepts of countable and uncountable sets (see Appendix A2) can be usefully
applied here. The set of all possible register-machine programs is countable. One way
to see this is to note that the map from programs to their indices is one-to-one. So we
have a one-to-one function from the set of all programs into N.

Proposition: For any fixed set B, the set

LB = {A | A ≤T B}

is countable.

Proof. We can map each A in this set to the smallest number that is the Gödel num-
ber of a program computing A relative to B. This gives a one-to-one map from LB

into N. a
Corollary: Each Turing degree is a countable collection of sets.

Proof. [B] is a subset ofLB. a
Proposition: The setD of all Turing degrees is uncountable.
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Proof. We use the fact that the union of countably many countable sets is countable. This
implies that the union of countably many degrees must be a countable subset ofPN. But
the union of all degrees isPN, which is uncountable. a

6.3 Preordering Relations

Suppose that R is any binary relation on a set U (that is, R ⊆ U×U). As before, we can
write xRy to mean that 〈x, y〉 ∈ R.

Definition: R is a preordering on U if it is reflexive on U and is transitive.

Example 1: Turing reducibility≤T is a preordering onPN.

Example 2: Many-one reducibility≤m is a preordering onPN.

Example 3: One-one reducibility≤1 is a preordering onPN.

Example 4′: Let U be the set of nonzero integers (positive or negative), and that

mRn ⇐⇒ m divides n.

Then, R is obviously reflexive on U, and transitivity is easy to check.

We want to establish that a preordering relation R on U (a) determines an equivalence
relation E on U and (b) partially orders the set U/E of equivalence classes.

We obtain the equivalence relation E from the preordering R by making it symmetric.
Define relation E on U by the condition:

xEy ⇐⇒ xRy and yRx

for x and y in U. (In other words, the relation E is R ∩ R−1.)

Proposition: The relation E is an equivalence relation on U.

Proof. The definition makes it clear that E is symmetric. It inherits reflexivity and tran-
sitivity from R: For x in U, we have xEx because xRx. If xEy and yEz, then we have four
facts: xRy, yRx, yRz, and zRy. Regrouping these and using the transitivity of R, we get
xRz and zRx, whence xEz. a

Hence, the relation E partitions U into equivalence classes. Let [x] denote the equiva-
lence class to which x belongs. We know that [x] = [y] if and only if xEy. Now consider
the quotient set U/E of all equivalence classes. We can define a binary relation ≤ on
U/E by the condition:

[x] ≤ [y] ⇐⇒ xRy

for x and y in U.
Caution: There is something to prove here, namely that ≤ is “well defined” or

“invariant.” Suppose that a and b are two equivalence classes. We are attempting to
define whether or not a ≤ b holds by choosing a particular x from a and a y from b,
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and then testing to see if xRy. We need to verify that the verdict is independent of the
particular choices made. Suppose that instead of x and y, we had chosen x′ ∈ a and
y′ ∈ b. What must be shown is that xRy⇔ x′Ry′.

Once we see what must be shown, actually showing it is easy. Since x and x′ are in the
same equivalence class, we have xEx′. Similarly yEy′. It follows from transitivity that

xEx′ & yEy′ and xRy =⇒ x′Ry′.

Proposition: The relation≤ is reflexive on U/E, transitive, and antisymmetric.

“Antisymmetric” means that whenever both a ≤ b and b ≤ a then a = b. A rela-
tion that is reflexive on U/E, transitive, and antisymmetric is called a partial ordering
on U/E.

Proof. Reflexivity and transitivity are inherited from R. Suppose that both [x] ≤ [y] and
[y] ≤ [x]. Then, we have both xRy and yRx, whence xEy. Therefore [x] = [y]. a

For equivalence classes a and b, we write a < b to mean that a ≤ b and a 6= b.

Proposition: The relation< is irreflexive (i.e., never a < a) and transitive.

Proof. Irreflexivity is clear. Suppose that a < b < c. Then clearly a ≤ c, but could we
have a = c? No, that would imply a ≤ b ≤ a, whence a = b by antisymmetry. a

Example 4′ revisited: In Example 4′ above, we have mEn if and only if |m| = |n|. Each
equivalence class contains exactly two numbers; [n] = {n,−n}. Under the partial order,
[1] is the least class, that is, [1] ≤ [n] for every n. The partial order is not a total order; for
example, [2] and [3] are incomparable. (That means that neither [2]≤ [3] nor [3] ≤ [2].)
For any class, there is a strictly larger one.

Example 1 revisited: From the preordering ≤T on PN, we obtain the equivalence rela-
tion E which is nothing but the Turing equivalence relation≡T. The equivalence classes
are the Turing degrees, and≤T determines a partial ordering on the Turing degrees:

[A] ≤ [B] ⇐⇒ A ≤T B.

We now want to examine in more detail this partial ordering of the Turing degrees.

6.4 Ordering Degrees

The degree [∅] (call this degree 0) consisting of the computable sets is the least degree
in this partial ordering. That is, for any degree a, we have 0 ≤ a because ∅ ≤T A for any
set A.

Let 0′ be the degree of K. Then 0 < 0′.
Define a degree to be recursively enumerable if it contains an r.e. set. The degree 0

is a recursively enumerable degree; in fact all of its members, being computable, are
r.e. And the degree 0′ is a recursively enumerable degree because it contains K. (It also
contains sets that are not recursively enumerable, such as K.)
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Proposition: 0′ is the largest recursively enumerable degree. That is, a ≤ 0′ for any
recursively enumerable degree a.

Proof. Take an r.e. set A in a. We saw in Chapter 4 that A ≤m K because K is a complete
r.e. set. Therefore A ≤T K. So a ≤ 0′. a

In 1944, Emil Post raised the question whether there were any r.e. degrees other than
0 and 0′. This question, which became known as “Post’s problem,” was finally answered
in 1956 (two years after Post’s death), independently by Richard Friedberg (in his
Harvard senior thesis) and by Albert A. Muchnik in Russia. They showed that inter-
mediate r.e. degrees do indeed exist, and in great profusion. (Nonetheless, there seem to
be no “natural” examples of such degrees.)

There is no largest degree. We will see shortly how to construct, for each degree a, a
strictly larger degree a′.

Exercises

1. Define A ≤∗ B to be like A ≤m B except not requiring that the function be com-
putable. That is, A ≤∗ B if there exists some total function f , computable or not, for
which

x ∈ A ⇐⇒ f (x) ∈ B

for all x. Then, ≤∗ is a preordering on PN. So it determines an equivalence rela-
tion ≡∗ and a partial ordering on the quotient set. How many equivalence classes
are there, and how are they ordered?

2. Let U be the collection of computable subsets of N. Then, ≤m (restricted to U) is a
preordering on U. So it determines an equivalence relation ≡m on U and a partial
ordering on the quotient set. How many equivalence classes are there, and how are
they ordered?

3. Give an example of a set in the degree 0′ that is neither recursively enumerable nor
the complement of a recursively enumerable set.

4. Assume that A and B are sets for which A ≡m B. Show that we also have A ≡T B.
(One says that the equivalence relation≡m refines the equivalence relation≡T.)

5. Show that for any partial function f , there is some set B such that f is a partial func-
tion computable relative to B.

6.5 Structure of the Degrees

Consider any two sets, say A (of degree a) and B (of degree b). Then, there are the four
disjoint possibilities:

l a = b. This happens when A ≡T B. We can think of A and B as being, in some sense, “equally
complex,” or as having the same “information content.”

l a < b. This happens when A ≤T B but A 6≡T B. We can think of A as being, in some sense,
“simpler” than B is, or of having less information content than B has.
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l b < a. We can think of B as being, in some sense, “simpler” than A is.
l None of the above. That is, a and b are incomparable. This happens when A 6≤T B and

B 6≤T A. Incomparable degrees do indeed exist.

Theorem: Any two degrees have a least upper bound. That is, for any degrees a and b,
we can find a degree c with the two properties

(i) a ≤ c and b ≤ c, and
(ii) whenever d is a degree for which both a ≤ d and b ≤ d, then c ≤ d.

If either a ≤ b or b ≤ a, this theorem is trivial; we simply take c to be the larger
degree. The theorem is interesting only in the case where a and b are incomparable.

Proof. Choose a set A from degree a and a set B from degree b. Define the set

A⊕ B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}.
This set codes A on the even numbers and codes B on the odds. Let c be the degree of
A⊕ B.

Then, a ≤ c because A ≤1 A ⊕ B under the function x 7→ 2x. Similarly, b ≤ c
because B ≤1 A⊕ B under the function x 7→ 2x+ 1.

Now suppose that d is a degree with both a ≤ d and b ≤ d. Choose a set D from the
degree d. Then, A ≤T D and B ≤T D. We seek to show that A⊕B ≤T D. The following
program computes the characteristic function of A⊕ B relative to D:

Calculate parity from 1 to 0, preserving 2
Calculate 
x/2� from 1 to 1, preserving 1

D 0 Test parity.
J � Jump on even x.

�

Calculate CB from 1 to 0, relative to D
J # Halt.

�
Calculate CA from 1 to 0, relative to D

Halt.

Thus c ≤ d. a

A set with a partial ordering is called a lattice if any two elements always have a
least upper bound and a greatest lower bound. The degrees do not form a lattice, because
greatest lower bounds do not always exist. The best we can say is that we have an “upper
semilattice” because we can at least take least upper bounds.

Proposition: For any set B of natural numbers, the collection

UB = {C | B ≤T C}
is uncountable.

Proof. For any A in PN, the set A ⊕ B is in UB. The map A 7→ A ⊕ B is one-to-one, so
PN has the same size as a subset of UB. a
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Corollary: For any degree b, the set {c | b ≤ c} of larger degrees is uncountable.

Proof. Look at the union of this set.⋃
{c | b ≤ c} = UB.

On the one hand, the preceding proposition tells us that UB is uncountable. On the other
hand, the union of countably many countable sets is countable. Hence, the union of any
countable collection of degrees must be countable. a

A much weaker statement is that the set {c | b ≤ c} (sometimes called the “cone
above b”) contains more than one degree. So there can be no largest degree; for any
degree b, there are many degrees in the cone above it.

Contrast this result with the following.

Proposition: For any degree b, the set {a | a ≤ b} of smaller degrees is countable.

Proof. Fix some B in b. Map each smaller degree a to the smallest number that is the
Gödel number of a register-machine program that computes relative to B some set of
degree a. (We have seen this argument before, back on page 129.) a

Parameter theorem: For each m and n, there is an (n + 1)-place primitive recursive
function ρmn such that the equation

[[e]](m+n)
B (Ex, Ey) = [[ρmn(e, Ey)]](m)B (Ex)

for all B, e, Ex, and Ey. (Here equality has the usual meaning: either both sides are unde-
fined, or both sides are defined and are the same.) Moreover, ρmn is one-to-one.

Proof. We proceed as before. Here, Ex is 〈x1, . . . , xm〉 and Ey is 〈y1, . . . , yn〉.
ρmn(e, y1, . . . , yn) = km+1(y1) ∗ · · · ∗ km+n(yn) ∗ km+n+1(e) ∗ p,

where p is the Gödel number of our program that computes 8(m+n)
B . (That program

did not depend on what the set B is. Here, m, n, and p are fixed; e, Ex, and Ey are the
variables.) a

It should be noted here that ρmn is primitive recursive absolutely, and not merely
primitive recursive relative to B.

Definition: A relation on N is said to be recursively enumerable relative to B (where
B ⊆ N) if it is the domain of some partial function that is computable relative to B.

Define WB
e to be the domain of [[e]]B. Then,

WB
0 , WB

1 , WB
2 , . . .

is a complete list with repetitions of the sets (of natural numbers) that are recursively
enumerable relative to B.
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As with the unrelativized concept, there are several equivalent formulations of the
definition of recursive enumerability relative to an oracle. For now, here is one of them.

Theorem: A relation R on N is recursively enumerable relative to B if and only if it is
61 relative to B:

Ex ∈ R ⇐⇒ ∃y Q(Ex, y)

for some relation Q that is computable relative to B.

Proof. In one direction, suppose we have Ex ∈ R ⇔ ∃y Q(Ex, y). Define the partial
function:

f (Ex) = µy Q(Ex, y).

Then R = dom f . And f is a partial function that is computable relative to B.
In the other direction, suppose that R = dom [[e]](n)B . Then,

Ex ∈ R ⇐⇒ ∃t [ [[e]](n)B (Ex)↓ in ≤ t steps]

⇐⇒ ∃t [(snap(n)B (Ex, e, t))0 ≥ lh e],

which is61 relative to B. a

Proposition: Whenever A is recursively enumerable relative to B and B ≤T C, then A
is recursively enumerable relative to C.

Proof. Apply the transitivity lemma to a partial function that has domain A and is com-
putable relative to B. a

For the recursively enumerable relations, our standard examples in Chapter 4 were
the halting relation and the set K. The definition of K can be relativized.

Definition: For a set B of natural numbers, its jump is the set

B′ = {x | [[x]]B(x)↓}.

Theorem:

(a) The set B′ is recursively enumerable relative to B.
(b) B′ is not computable relative to B. In fact its complement is not even recursively

enumerable relative to B.

Proof.

(a) B′ is the domain of the function x 7→ [[x]]B(x)which by the enumeration theorem is
a partial function computable relative to B.
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(b) If B′ were computable relative to B, then its complement would also be computable
relative to B and hence recursively enumerable relative to B. So it suffices to prove
the second half of part (b).

Any set that is recursively enumerable relative to B must be WB
e for some e. But by

the definition of B′, we have

e ∈ B′ ⇐⇒ e /∈ WB
e .

So B′ 6= WB
e because they differ at e. a

Proposition: If A ≤m C and C is recursively enumerable relative to B, then A is also
recursively enumerable relative to B.

Proof. Say f is a total computable function that many-one reduces A to C. Because C is
61 relative to B, we have, for some relation Q that is computable relative to B,

x ∈ A ⇐⇒ f (x) ∈ C

⇐⇒ ∃y Q( f (x), y)

and the relation {〈x, y〉 | Q( f (x), y)} is computable relative to B. a

Theorem: For sets A and B of natural numbers,

A is recursively enumerable relative to B ⇐⇒ A ≤1 B′.

Proof. The preceding proposition covers the “⇐” direction (where we take C to be B′).
The “⇒” direction asserts that B′ is a 1-complete recursively enumerable set relative
to B.

So assume that A is recursively enumerable relative to B, say A = WB
a . Our plan is to

make a one-to-one primitive recursive function g such that for each y,

y ∈ A⇒ [[g(y)]]B is total⇒ g(y) ∈ B′

y /∈ A⇒ [[g(y)]]B is empty⇒ g(y) /∈ B′.

Consider the two-place function 〈x, y〉 7→ [[a]]B(y) (which is a partial function [[e]](2)B
computable relative to B) and parameterize out y. Then, taking g(y) = ρ(e, y), we have
the condition we sought. a

In particular, taking A = B in this theorem, we see that B ≤1 B′. Putting this together
with the fact that B′ 6≤T B, we conclude that [B] < [B′]. That is, the jump operation
strictly increases the degree of a set.

Lemma: Whenever A ≤T B, then A′ ≤1 B′.

Proof. We assume that A ≤T B. We know that A′ is recursively enumerable relative
to A. So by a recent proposition, A′ is also recursively enumerable relative to B. So by
the preceding theorem, A′ ≤1 B′. a



Degrees of Unsolvability 137

Applying this lemma twice, we see that whenever A ≡T B, then A′ ≡1 B′, and con-
sequently A′ ≡T B′. This fact allows us to make a jump operation on degrees.

Definition: For a degree a, define its jump a′ to be the degree [A′], where A is any set
chosen from the degree a. (The preceding lemma tells us that the degree a′ does not
depend on which set A is chosen from a.)

Because [A] < [A′], we can conclude that on the degrees,

a < a′ < a′′ < a′′′ < · · ·
for any degree a. Again, we see that there is no largest degree.

Earlier, we defined 0′ to be the degree of K. Now, we are saying that 0′ is the degree
of the jump of a computable set. There is no conflict here; the degrees are the same.

The converse of the preceding lemma also holds.

Proposition: Whenever A′ ≤m B′, then A ≤T B.

Proof. On the one hand, we have A ≤1 A′ ≤m B′, so A is recursively enumerable relative
to B.

On the other hand, A is recursively enumerable relative to A, and so A ≤1 A′ ≤m B′.
Hence, both A and A are recursively enumerable relative to B. By Kleene’s theorem

(converted to relativized form), A ≤T B. a

The jump operation can be thought of as providing us with a unit of measurement in
the degrees. That is, a set of degree a′′′ is “three jumps” more complicated than a set of
degree a. In particular, a set of degree 0′′′ is three jumps away from computability.

There is also a connection between relative computability and the arithmetical hier-
archy, as in Chapter 5. The following result, here stated without proof, extends the fact
that a relation is61 if and only if it is r.e.

Post’s theorem:

(a) A relation is62 if and only if it is r.e. relative to ∅′, the jump of the empty set.
(b) More generally, a relation is6k+1 if and only if it is r.e. relative to ∅(k), the kth jump

of the empty set.

Exercises

6. Let H = {2u+13v+1 | [[u]](v)↓}. (Thus, H encodes the halting problem.) Show that
the partial function

f (x) = the least member (if any) of Wx

is computable relative to H.
7. Let H = {2u+13v+1 | [[u]](v)↓}. (Thus, H encodes the halting problem.) Show that

the partial function

g(x) = the least member (if any) of Wx

is computable relative to H.
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8. Let Fin = {x | Wx is finite}. Let

B = {2x+13y+1 | Wx contains a number ≥ y}.

Show that Fin is recursively enumerable relative to B.
9. Let R = {x | Wx is a computable set}. Let

C = {2u+13v+1 | Wu and Wv are complementary}.

Show that R is recursively enumerable relative to C.
10. Show that Tot is recursively enumerable relative to K.
11. Give an example of sets A, B, and C for which A is recursively enumerable relative

to B, B is recursively enumerable relative to C, but A is not recursively enumerable
relative to C. (The point of this exercise is to show that relative recursive enumer-
ability is not transitive.)

12. Call a set S of degrees large if it includes, for some degree a, the entire “cone”
{c | a ≤ c}. Show that the intersection of any two large sets of degrees is again
large.

13. For each of the following sets of degrees, determine whether or not it is large, in
the sense of the preceding exercise. Also determine whether or not its complement
is large.
(a) The set of recursively enumerable degrees.
(b) The set of degrees a such that every set in a is infinite.

14. Let H = {2u+13v+1 | [[u]](v) ↓}. (Thus, H encodes the halting problem.) Show
that there is a total function f computable relative to H that dominates every total
computable function g (in the sense that f (x) > g(x) for all but finitely many
values of x).



7 Polynomial-Time Computability

7.1 Feasible Computability

Up to now, we have approached computability from the point of view that there should
be no constraints either on the time required for a particular computation or on the
amount of memory space that might be required. The result is that some total com-
putable functions will take a very long time to compute. If a function f grows very
rapidly, then for large x, it will take a long time simply to generate the output f (x). But
there are also bounded functions that require a large amount of time.

In this chapter,1 we want to adopt a different attitude, and we want to pay some
attention to the running time that a program might require. For the most part, we
will not attempt to give complete rigorous proofs. Instead, we will concentrate on
introducing the concepts and describing the ideas behind the results, and on giving
pointers to topics for further study.

Of course, the complexity of computing f (x) depends on the program used. Sup-
pose we define M(e, x) to be the number of steps the program with Gödel number e
uses on input x:

M(e, x) = µt T(e, x, t)

= µt([[e]](x)↓ in ≤ t steps)

Then the computable partial function M has the following two properties:

l M(e, x)↓ ⇐⇒ [[e]](x)↓.
l The ternary relation {〈e, x, t〉 | M(e, x)↓ and M(e, x) ≤ t} is a computable relation.

In fact, that ternary relation is nothing but the primitive recursive relation T(e, x, t).
It can be thought of more simply as {〈e, x, t〉 | M(e, x) ≤ t} if we adopt the con-
vention that whenever M(e, x) ↑, then M(e, x) = ∞ and∞ > t, for any t. (That is,
computations that never halt take “infinite time.”)

Digression: Michael Rabin and Manuel Blum have developed a theory of “axiomatic
complexity” based on having a computable partial function M meeting the two con-
ditions listed earlier. Such a function M is called a measure of complexity. Time (i.e.,
the number of steps) is a measure of complexity, but so is space. That is, if we define
M∗(e, x) to be the sum of the largest number of symbols that get put into the registers
(this being a measure of the “space” program e uses on input x) whenever [[e]](x) ↓,
then M∗ also meets the conditions to be a measure of complexity.

1 Chapters 5, 6, and 7 are largely independent and can be read in any order.

Computability Theory. DOI: 10.1016/B978-0-12-384958-8.00007-7
Copyright c© 2011 Elsevier Inc. All rights reserved.
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The following theorem asserts that we can find subsets of N whose decision prob-
lems are arbitrarily difficult. For example, suppose we take some function that grows
rapidly, such as h(x) = 22x

. The theorem provides a subset A of N that, on the one
hand, is computable (so there are programs that decide membership in A), and on
the other hand, it has the feature that any program that decides membership in A will
need, on input x, at least 22x

steps, with the exception of finitely many inputs. (Some
programs might have a built-in table for the first thousand members of A, so that the
programs are very fast for small values of x. But from some point on, the programs
will be slow.)

Rabin’s theorem (1960): For any total computable function h, we can find a total
computable function f : N→ {0, 1}, such that for any index i of f ,

M(i, x) > h(x) except for finitely many values of x.

Proof outline. We will construct f in such a way that whenever some number j is an
index for a fast function, then f differs from that function.

In calculating f (x) for a particular x, we might “eliminate” some number j. (Elimi-
nating j will assure that it cannot be an index of f .) So suppose we already know what
numbers, if any, have been eliminated in computing f (0), . . . , f (x− 1).

To compute f (x), we first find the least j ≤ x (if any) such that

l j is fast at x, that is, M( j, x) ≤ h(x)
l j has not already been eliminated in computing f (0), . . . , f (x− 1).

If there is no such j, then let f (x) = 0. But if we find such a j, then we eliminate it, and
we let f (x) = 1−· [[ j]](x). (This assures that j cannot be an index for f because [[ j]] and
f differ at x.)

That completes the construction of f . Does it work? At least f : N→ {0, 1} and f is
total and computable. Now let i be any index of f . Then i was never eliminated. Why
not? Take any x large enough that x ≥ i and anything below i that was ever going to
be eliminated has been eliminated before we come to f (x). Then in computing f (x),
we would have eliminated i if M(i, x) ≤ h(x) had held. So it did not hold; that is,
M(i, x) > h(x). a

The conclusion of Rabin’s theorem, that some computable functions are really hard
to compute, conforms to our informal feeling about such matters. What is more unex-
pected is that the feeling can be formulated as a precise theorem.

Is there a more restricted concept of “feasibly computable function” where the
amount of time required does not grow beyond all reason and is an amount that might
actually be practical, at least when the input is not absurdly large? To this very vague
question, an exact answer has been proposed.

Definition: Call a function f polynomial-time computable (or for short, P-time com-
putable) if there exists a program e for f and a polynomial p such that for every x,
the program e computes f (x) in no more than p(|x|) steps, where |x| is the length
of x.
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This definition requires some explanation and support. If f is a function over 6∗,
the set of words over some finite alphabet 6, then of course |x| is just the number of
symbols in the word x. If f is a function over N, then |x| is the length of the numeral
for x. (Here we come again to the fact that effective procedures work with numerals,
not numbers.) So if we use base-2 numerals for N (either binary or dyadic notation),
then |x| is about log2 x.

Moreover, we were vague about how the number of steps in a computation was
to be determined. Here the situation is very encouraging: The class of P-time com-
putable functions is the same, under the different reasonable ways of counting steps.
For definiteness, we adopt the following conventions: The computing is to be done by
register machines operating on words over the alphabet {0, 1}, and the numerals are to
be binary numerals. Thus, for example, in computing f (2055), we are allowed at most
p(12) steps because the binary numeral for 2055 has 12 bits. (In particular, it should
be emphasized that we are not allowed p(2055) steps. If our program is trying to find
the smallest prime factor of a 900-bit number, then we are allowed p(900) steps, and
not p(2900) steps.)

The “industry standard” conventions are to use Turing machines and binary numer-
als. Here we have opted for register machines to make use of the material already
developed for register machines.

Earlier, we came across the encouraging fact that many different ways of formal-
izing the concept of effective calculability yielded exactly the same class of func-
tions. For example, the class of functions computable by Turing machines operating
on words over {0, 1} coincides with the class of functions computable by register
machines operating on words over {0, 1}. As remarkable as that fact is, even more
is true. The number of steps required in one case is bounded by a polynomial in the
number of steps required by the other. For example, there exists a polynomial p (of
moderate degree) such that a computation by a Turing machine that requires n steps
can be simulated by a register machine that requires not more than p(n) steps. Con-
sequently, the concept of a P-time computable function is robust: We get the same
class of functions, regardless of which choice we make. To be sure, the degrees of
the polynomials will vary somewhat, but the class of P-time functions is unchanged.
Moreover, this equivalence extends to other “reasonable” formalizations of comput-
ability.

Encouraged by this result, and inspired in particular by the 1971 work of Stephen
Cook, people since the 1970s have come to regard the class of P-time functions as
the correct formalization of the idea of functions for which computations are feasible,
without totally impractical running times.

By analogy to Church’s thesis, the statement that P-time computability corresponds
to feasibly practical computability has come to be known as Cook’s thesis or the
Cook–Karp thesis. (The concept of P-time computability appeared as early as 1964
in the work of Alan Cobham. Jack Edmunds, in 1965, pointed out the good features of
P-time algorithms. Richard Karp, in 1972, extended Cook’s work.)

The following table gives a small illustration. Suppose the input string consists of
n bits. If we can execute a million steps per second, then the time required to execute



142 Computability Theory

n = 20 n = 30 n = 40 n = 50 n = 60

q(n) = n3 < 1 sec. < 1 sec. < 1 sec. < 1 sec. < 1 sec.
q(n) = n5 3.2 sec. 24.3 sec. 1.7 min. 5.2 min. 13.0 min.
q(n) = 2n 1.0 sec. 17.9 min. 12.7 days 35.7 years 366 centuries
q(n) = 3n 58 min. 6.5 years 3,855 2× 108 the age of

centuries centuries the universe

q(n) steps is, of course, q(n) microseconds. The table converts q(n) microseconds to
more comprehensible units, for five choices of n and four choices of q.

So what are the P-time computable functions? As a lower bound, we can show
that all of the polynomial functions are P-time computable, as are some functions that
grow faster than any polynomial.

But first, we will look at upper bounds. For a start, we can say that the P-time
computable functions form a subclass of the primitive recursive functions.

Theorem: Any P-time computable function is primitive recursive.

Proof idea. We saw earlier (in Exercise 6, page 71) that any function computable in
primitive recursive time is primitive recursive. The argument there can be adapted to
the present situation, where we are using register machines over a two-letter alphabet.

Suppose we have a program that computes f (x) in not more than p(|x|) steps. Now
|x| is a lot smaller than x (with the exception of x = 0), and we can assume that the
polynomial p has positive coefficients, and hence is monotonic. So the number of steps
is bounded by p(x), a primitive recursive function of x.

(Actually, we can get sharper bounds. For some constant c, we can get p(|x|) ≤
x+ c. But for our present purposes, the weaker result suffices.) a

But this is a very high upper bound; the converse to this result does not hold. We
will see that many primitive recursive functions are not P-time computable. There is
a limit to the growth rate of P-time computable functions, imposed by the fact that
printing an output symbol takes a step. That is, we have the following constraint:

Growth limitation property: If f is computable in time bounded by the polynomial
p, then | f (x)| ≤ p(|x|).

Proof. Initially, register 0 contains the empty word. Adding a symbol to register 0
requires at least one step. And we need to add | f (x)| symbols. a

This prevents exponential functions from being P-time computable; there is not
enough time to write down the result.

Lemma: Where |x| is the length of the binary numeral for x, the following hold for all
x 6= 0.

(a) 2|x|−1
≤ x ≤ 2|x| − 1.

(b) |x| = blog2 xc + 1.
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Proof.
(a) We must have x somewhere between the smallest |x|-bit number and the largest:

1 00 · · · 0︸ ︷︷ ︸
|x|−1

≤ x ≤ 1 11 · · · 1︸ ︷︷ ︸
|x|−1

And this is the inequality stated by (a).
(b) We can write part (a) as 2|x|−1

≤ x < 2|x|. To this inequality, apply the (monotonic) log2
function:

|x| − 1 ≤ log2 x < |x|

Now round down: |x| − 1 = blog2 xc.
a

Corollary: The exponential function x 7→ 2x is not P-time computable.

Proof. How long would it take to write out 2x? We have |2x
| = x + 1, and by the

lemma this exceeds 2|x|−1. The function t 7→ 2t−1 grows faster than any polynomial.
We conclude that the number of steps needed to write out 2x cannot be bounded by
a polynomial in |x|. (For example, if x is a 60-bit number, then 2x has more than 259

bits. At a million bits per second, it will take hundreds of centuries to write out 2x.) a

To balance this negative result, let’s look at some functions that can be computed
in P-time.

Example: The squaring function x 7→ x2 is P-time computable. First, think about
how a human goes about squaring an n-bit number x. The standard procedure we all
learned in the third grade involves building up an n × n array and then adding up the
2n columns. Building up the array is not difficult (multiplying by 0 or by 1 is easy),
and the time it takes us will be proportional to n2. Then adding up the 2n columns,
each of height not more than n, will again take us some amount of time proportional
to n2. Altogether, the number of steps will be bounded by a quadratic in n.

A register machine is not a human, so there is more work to be done. To verify that
squaring is P-time computable, we need to program the foregoing human procedure,
and then obtain a bound on how long the program takes. The program can start by
making a second copy of x (in k|x| steps) and then calling the multiplication program
outlined on page 77. The total number of steps will be bounded by a quadratic in |x|.

One way not to do squaring is by repeated addition. That is, a program that com-
putes x2 by adding x to itself x times will require exponential time (because x is about
2|x|) and 2|x| grows faster than any polynomial in |x|.

Proposition: The composition g ◦ f of P-time computable functions is again P-time
computable.

Proof. Assume that programM computes f in time bounded by the polynomial p, and
that program N computes g in time bounded by the polynomial q. Then the program
M followed by some minor housekeeping followed by N will compute g ◦ f . How
long does it take? The number of steps on input x is bounded by

p(|x|)+ small amount+ q(| f (x)|).
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By the growth limitation property, | f (x)| ≤ p(|x|). We may assume that the polynomial
q has only positive coefficients, and hence is monotonic. So our time bound becomes

p(|x|)+ small amount+ q(p(|x|))

which is a polynomial in |x|. a

For a function f (x, y) of two variables to be considered P-time computable, there
must be a polynomial p such that some program produces f (x, y) in not more than
p(|x| + |y|) steps. That is, we can look at |x| + |y| as the total length of the input. We
can handle functions of more variables in a similar way.

The preceding proposition, regarding composition g ◦ f , can be extended to cover
compositions g( f1(Ex), . . . , fk(Ex)) of functions of several variables.

Example: The addition function 〈x, y〉 7→ x + y is P-time computable. As outlined
on page 77, there is a program that will give x + y in a number of steps bounded by
k max(|x|, |y) for a constant k. And max(|x|, |y|) ≤ |x| + |y|.

Example: The multiplication function 〈x, y〉 7→ xy is P-time computable. This is a lot
like the squaring function.

Proposition: Any polynomial function p(x) is P-time computable.

Proof outline. We build up the polynomial piece by piece, using the foregoing exam-
ples. Raising x to a power (that is, the function x 7→ xk) can be done by composition
of multiplications. A monomial x 7→ cxk involves one more multiplication, this time
by a constant. Finally, we use a composition of additions. a

Example: Let

f (x) = 2|x|
2
= 100 · · · 0two,

where the string of 0’s is |x|2 long. This function can be computed in polynomial time.
To append a string of 0’s of length |x| to the output, we use a loop where each time
through the loop we append one 0 and we erase one symbol from a copy of x. Now
we put that loop inside another similar loop. Together, the loops append a string of 0’s
of length |x|2, and they do this in quadratic (in |x|) time.

How fast does f grow? With help from a recent lemma, we obtain

f (x) =
(

2|x|
)|x|
≥ x|x| ≥ xlog2 x

so f grows faster than xk for any fixed k. Thus, we have here a P-time computable
function that grows faster than any polynomial p, in the sense that f (x)/p(x)→∞ as
x increases.

We can conclude that the class of P-time computable functions is more than the
class of polynomials, but less than the class of primitive recursive functions.

Often P-time computability is presented in terms of acceptance of languages (i.e.,
sets of words). We have a finite alphabet 6 = {0, 1}. Over this alphabet, the set 6∗
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of all words is the set of binary strings. (A binary string is the same thing as a base-2
numeral, except for the annoying problem of leading zeros. Ignoring that annoyance,
we can think of 6∗ as being the same as the set of numerals for N.) By a language L,
we mean a set of words (i.e., a subset of 6∗). We say that L ∈ P if there is a program
and a polynomial p such that the following hold:

l Whenever a word w is in L, then the program halts on input w (that is, it “accepts” w), and
does so in not more than p(|w|) steps.

l Whenever a word w is not in L, then the program never halts on input w (that is, the program
does not accept w).

This definition is equivalent to one formulated in terms of P-time computable
functions:

Theorem: A language L is in P if and only if its characteristic function CL is P-time
computable.

Proof idea. In one direction, this is easy: If CL is P-time computable, then we can
make an acceptance procedure that, given an input word w, computes CL(w) and then
either halts or goes into an infinite loop.

It is the other direction that is interesting. Assume we have an acceptance procedure
(which, in effect, is computing the semicharacteristic function cL) that runs in time
bounded by a polynomial p. We can add to the program an alarm clock that rings after
time p(|w|).

That is, given the input word w, we first compute p(|w|). This does not take long; it
can be done in a number of steps that is a polynomial in | |w| |. We store this number
in a “timer” register.

Then we proceed as follows: With our right hand, we run the acceptance procedure
on the word w; with our left hand, we decrement the timer. Or more precisely (because
register machines don’t have hands), we interleave two programs. In odd-numbered
steps, we do the acceptance procedure; in even-numbered steps, we decrement the
timer.

If and when the acceptance procedure halts (the timer will not have run out), then
we give output Yes. If and when the timer runs out (the acceptance procedure will not
have halted), we give output No. a

As a corollary, we can conclude that whenever L ∈ P, then L, viewed as a set of
numbers, is primitive recursive.

Of course, if the characteristic function of L is P-time computable, then so is the
characteristic function of its complement, L. So by the above theorem, L ∈ P iff L ∈ P.
That is, P = co-P, where co-P is the collection of complements of languages in P.

Example: It is now known that the set of prime numbers, as a set of words written in
the usual base-2 notation (or base-10, for that matter), belongs to P. Because the set of
primes is in P, it follows that the set of composite numbers is in P as well.

Nonexample: Consider the function

f (x) = the least prime divisor of x
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with the convention that f (0) = 0 and f (1) = 1. It is easy to see that f is primitive
recursive. Despite the fact that the set of primes belongs to P, it is currently an open
question whether or not f is P-time computable.

The concept of belonging to P extends in a natural way to binary relations R on the
set of words (i.e., R ⊆ 6∗ ×6∗).

Informally, L is in P if L is not only a decidable set of words, but moreover there is a
“fast” decision procedure for L–one that we can actually implement in a practical way.
For example, finite graphs can be coded by binary strings. The set of two-colorable
graphs (i.e., the set of graphs that can be properly colored with two colors) is in P
because coloring a graph with two colors does not involve any backtracking; either
the coloring succeeds or we find a cycle of odd length. The set of graphs with an Euler
cycle is in P because it is fast to check that the graph is connected and that every vertex
has even degree.

What about three-colorable graphs, or graphs with Hamiltonian cycles? Here there
are no known fast decision procedures. But there are weaker facts: Given a proper
coloring with three colors, it is fast to verify that it is indeed a proper coloring. Given
a Hamiltonian cycle, it is fast to verify that it is indeed Hamiltonian. Both the set of
three-colorable graphs and the set of Hamiltonian graphs are examples of languages
that are “verifiable” in P-time. That is, we might not know fast decision procedures,
but we do know how, given the correct evidence, to verify quickly that the evidence
does indeed show that the graph has the claimed property. Such languages belong to a
class known as NP.

One way to define NP is to use nondeterministic Turing machines. (The symbols
“NP” stand for “nondeterministic polynomial time.”) Back in Chapter 1, the definition
of a Turing machine demanded that a machine’s table of quintuples be unambiguous,
that is, that no two different quintuples have the same first two components. By simply
omitting that demand, we obtain the concept of a nondeterministic Turing machine. A
computation of such a machine M, at each step, is allowed to execute any quintuple
that begins with its present state and the symbol being scanned. So when we startM
on some input, there can be many possible computations, depending on which of the
allowed quintuples it chooses to execute.

Then we say that L ∈ NP if there is a nondeterministic Turing machine M and a
polynomial p, such that the following conditions hold:

l Whenever a word w is in L, then some computation ofM starting from input w halts, and
does so in not more than p(|w|) steps.

l Whenever a word w is not in L, then no computation ofM starting from input w ever halts.

An accepting computation can be thought of as having made a number of lucky
guesses.

There is an equivalent, and somewhat more workable, characterization along the
lines of 61 definability.

Definition: For a language L, L ∈ NP if there is binary relation R ∈ P and a polyno-
mial p, such that for every word w,

w ∈ L ⇐⇒ ∃y[|y| ≤ p(|w|) and R(w, y)].
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Example: The set of three-colorable graphs (as a set of binary strings) is in NP. A
graph w is three-colorable iff there exists some three-coloring y, such that w is properly
colored by y (that is, adjacent vertices are always different colors).

Similarly, the set of Hamiltonian graphs is in NP. Here, the evidence y is a Hamil-
tonian cycle in the graph w.

Another example of a language in NP is SAT, the set of satisfiable formulas of sen-
tential logic. The truth-table method taught in logic courses for determining whether
a formula with n sentence symbols is satisfiable involves forming all 2n lines of the
formula’s truth table, and looking to see if there is a line making the formula true. But
this is not a feasible algorithm because 280 microseconds greatly exceeds the age of
the universe. But if we (nondeterministically) guess the correct line of the table, then
we can quickly verify that the formula is true under that line.

There is a clear analogy between computable and recursively enumerable (r.e.) sets
on the one hand, and P and NP on the other hand. The computable sets are decidable;
the sets in P are decidable by fast algorithms. And r.e. sets are one existential quantifier
away from being computable; sets in NP are one existential quantifier away from being
in P. Moreover, there are r.e. sets that are complete with respect to ≤m; there are NP
sets with a similar property. Say that L1 is P-time reducible to L2 (written L1 ≤P L2)
if there is a P-time computable (total) function f that many-one reduces L1 to L2. The
following result was proved independently by Cook (1971) and Leonid Levin (1973):

Cook–Levin theorem: SAT is in NP, and every NP language is P-time reducible to
SAT.

In other words, SAT is NP-complete. Karp has shown that many other NP lan-
guages (three-colorable graphs, Hamiltonian graphs, and others) are NP-complete.

Digression: We have defined P-time reducibility in a way that is analogous to many-
one reducibility. But there is another option: We could define a concept analogous to
Turing reducibility. That is, we could specify that L1 be polynomial-time decidable,
but allow an oracle for L2.

7.2 P versus NP

How far does the analogy between “NP” and “r.e.” go? We know that there are non-
computable r.e. sets, and a set is computable if and only if both it and its complement
are r.e. Although it is clear that P ⊆ NP∩ co-NP (that is, every language in P is also in
NP, as is its complement), it is not known whether P = NP, or if NP is closed under
complements.

The diagonalization that produces a noncomputable r.e. set K was “relativized” in
Chapter 6 to show that for any fixed oracle B, there is a set B′ that is r.e. relative to B
but is not computable relative to B. Might some diagonal argument produce a set in
NP that was not in P? Would that argument then relativize? The definitions of P and
NP extend easily to PB and NPB, where the computations can query the oracle B (in
one step).
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In a 1975 article, Theodore Baker, John Gill, and Robert Solovay showed that there
are oracles B and C such that on the one hand PB

= NPB and on the other hand
PC
6= NPC. This result suggests that the “P versus NP” question is difficult because

whatever argument might settle the question cannot relativize in a straightforward
way. It has also been shown that if we choose the oracle B at random (with respect to
the natural probability measure on PN), then PB

6= NPB with probability 1.
The P versus NP question remains the outstanding problem in theoretical com-

puter science. In recognition of this fact, the Clay Mathematics Institute has offered a
million-dollar prize for its solution.

7.3 Some Other Complexity Classes

And what might lie beyond NP? Although there is some analogy between NP and
61, what might be analogous to 6n? And what might be computable in “exponential
time,” where we allow the computing time to be bounded by 2p(|x|) for a polynomial p?

As indicated earlier, two reasonable measurements of complexity are time (the
number of steps the computation executes before halting) and space (where we take
the largest number of symbols a register ever contains in the course of the computa-
tion, and add these numbers up for all the registers).

These two measurements are related. If a computation halts in time t on input x,
then the space used is bounded by t+ |x| because writing a symbol takes a step. What
about the other direction? Suppose that a particular calculation from a program halts,
having used space s. We want a bound on the time it used.

Consider the snapshots

[location counter,memory number]

that arise in the course of the computation. One thing we can be sure of is that no
snapshot occurs twice. This is because if a computation ever hits a snapshot for a sec-
ond time, then the computation will run forever, returning to this snapshot infinitely
often. So for a calculation that halts, the time is bounded by the number of possi-
ble snapshots. And what is the number of possible snapshots? For a program with
Gödel number e, there are at most 1 + lh e values for the location counter. And if
the program addresses k different registers, there could be (for the alphabet {0, 1}) at
most 2ks different values for the memory number. Putting the pieces together, we see
that for constants c and k (depending on the program), the running time is bounded
by c2ks.

We have been looking at the complexity class P. This class might just as well be
called PTIME because it uses time as the complexity measure. A language L (that is, a
subset of {0, 1}∗) is in the class if its characteristic function at x is computable in time
bounded by a polynomial q(|x|) in |x|.

Analogously, define PSPACE as follows: A language L belongs to PSPACE if there
is a program and a polynomial p such that the program computes the characteristic
function of L at each word x using space at most p(|x|). Then P ⊆ PSPACE because a
computation that uses time q(|x|) can use at most space |x| + q(|x|).
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Next, we want to define EXPTIME and EXPSPACE. A language L belongs to
EXPTIME if there is a program and a polynomial p such that the program computes
the characteristic function of L at each word x in at most 2p(|x|) steps. And a language L
belongs to EXPSPACE if there is a program and a polynomial p, such that the program
computes the characteristic function of L at each word x using space at most 2p(|x|).

We claim that PSPACE ⊆ EXPTIME. Suppose a computation uses space p(|x|).
Then for some constants, c and k, that depend on the program (but not on x), the
running time is bounded by c2kp(|x|)

= 2ln c+kp(|x|). We observe that the exponent here
is a polynomial in |x|.

Moreover, EXPTIME ⊆ EXPSPACE. Suppose a computation uses time 2p(|x|).
Then the space is bounded by |x| + 2p(|x|). This is in turn bounded by 2q(|x|) for a
suitable polynomial q; see Exercise 4.

Thus, we are left with the inclusions

P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ PR,

where PR is the class of primitive recursive languages. There are numerous questions
that can be raised regarding these classes. For some of the questions, answers are
known, whereas other questions remain open.

The subject of computational complexity is young and growing. See the list of
references for some avenues well worth exploring.

Exercises

1. Show that the concept of P-time reducibility is reflexive and transitive. That is,
show that we always have L ≤P L, and that whenever L1 ≤P L2 and L2 ≤P L3,
then L1 ≤P L3.

2. Assume that L1 ≤P L2 and L2 ∈ P. Show that L1 ∈ P.
3. Assume that L1 ≤P L2 and L2 ∈ NP. Show that L1 ∈ NP.
4. Assume that p is a polynomial. Show that for some polynomial q, we have

z+ 2p(z)
≤ 2q(z) for all z.



A1 Mathspeak

The purpose of this appendix is to give a quick summary of everyday mathematical
terminology.

First of all, a set is a collection of things (called its members or elements), the
collection being regarded as a single object. We write “x ∈ S” to say that x is a member
of S; we write “x /∈ S” to say that it is not.

For example, there is the set S whose members are the prime numbers between
0 and 10. This set has four elements, the numbers 2, 3, 5, and 7. We can name this set
conveniently by listing the members within braces (curly brackets):

S = {2, 3, 5, 7}

An important part of the set concept is that what a set is depends solely on what
its members are, and not on how we might choose to name them. We might choose to
name the elements in a different order

{2, 3, 5, 7} = {7, 5, 3, 2}

or even with repetitions

{2, 3, 5, 7} = {2, 3, 3, 5, 5, 5, 7, 7, 7, 7}.

In each case, we are referring to one and the same set. Something belongs to the set on
the left iff it belongs to the set on the right (where “iff” abbreviates “if and only if”).
We might even describe S as the set of all solutions to the polynomial equation

x4
− 17x3

+ 101x2
− 247x+ 210 = 0.

No matter; it is still the same set.
Similarly, we can name larger sets. {0, 2, 4, . . . , 20} is the set of even natural num-

bers up to 20, and

N = {0, 1, 2, . . .}

is the infinite set of all natural numbers. Similarly, the set Z of all integers can be
expressed by

Z = {. . .− 2,−1, 0, 1, 2, . . .}.

Computability Theory. DOI: 10.1016/B978-0-12-384958-8.00008-9
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And we can name smaller sets; {2} is the one-element set (the singleton) whose only
member is 2. (This set is not the same thing as the number 2. A hatbox containing one
hat is not to be worn on the head.)

There is an even smaller set, the zero-element set with no members at all. It is
conventional to call this set (and there can be only one such set) ∅.

Another convenient way to name the set of all objects that meet some condition
is to write

{x | x }

as in

{2, 3, 5, 7} = {x | x4
− 17x3

+ 101x2
− 247x+ 210 = 0}.

Here “x” is a dummy variable; we could just as well write

{2, 3, 5, 7} = {t | t4 − 17t3 + 101t2 − 247t + 210 = 0}.

This notation is convenient for sets that are or might be infinite, as in

{x | x and x+ 2 are both prime}.

Or to clarify that we mean here a set of natural numbers, we can write

{x ∈ N | x and x+ 2 are both prime}.

For example, we can use this notation to describe intersections

A ∩ B = {x | x ∈ A and x ∈ B}

and unions

A ∪ B = {y | y ∈ A or y ∈ B (or both)}.

Similarly, we can describe the “relative complement”

A \ B = {t | t ∈ A and t /∈ B}.

We say that a set S is a subset of a set T or that T includes S (written S ⊆ T) if all
members of S (if any) are also members of T . For any set S, we have both S ⊆ S and
∅ ⊆ S. The latter is “vacuously true,” in the sense that the task of verifying, for each
member of ∅, that it also belongs to S, requires doing nothing at all. A proper subset
of S is a subset of S different from S itself.

The subset relation (⊆) is not to be confused with the membership relation (∈). If
we want to know whether S ∈ T , we look at S as a single object, and we check to
see if this single object is among the members of T . By contrast, if we want to know
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whether S ⊆ T , then we need to open up the set S, examine its various members (if
any), and check to see if each of them is also among the members of T .

For a set S, we can form a new set, called the power set of S, whose members
are exactly the subsets of S. So the power set, call it PS, is always a set of sets. For
example, if S is the three-element set S = {1, 2, 3}, then its power set has size eight:

PS = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

As sets, {2, 3} = {3, 2}; we have at least these two names for the set. But some-
times, we want to keep track of the order. That is, we will want the ordered pair 〈x, y〉,
consisting of x and y and a designation of x as first and y as second. Then the four
ordered pairs

〈2, 3〉, 〈3, 2〉, 〈2, 2〉, 〈3, 3〉

are all different.
For sets A and B (not necessarily different), the set of all ordered pairs 〈x, y〉 with x

from A and y from B is called the Cartesian product A× B of A and B:

A× B = {〈x, y〉 | x ∈ A and y ∈ B}

Similarly, we can use ordered triples 〈x, y, z〉, ordered quadruples 〈u, v, x, y〉,
ordered quintuples 〈u, v, x, y, z〉, and so forth for “tuples” of other lengths. In general,
〈x1, x2, . . . , xn〉 is an ordered n-tuple. For a set S, we let Sn be the set of all ordered
n-tuples 〈s1, s2, . . . , sn〉, where each si is in S. (There is some rationale to this notation.
If S is a set of size 17, then S3 is a set of size 173

= 4913.)
A relation is defined to be a set of ordered pairs. That is, a set R is a relation if each

of its members (if any) is an ordered pair. This usage of the word “relation” has some
connection with the everyday usage of the word. For example, the ordering relation
on the set R of real numbers is completely described by the set of ordered pairs 〈x, y〉
of reals with x < y, that is,

{〈x, y〉 ∈ R2
| x < y}.

It is now a small additional step to say that this set of pairs is the ordering relation.
R is a relation on S if it is a set of ordered pairs of members of S, that is, if R ⊆ S2.

We can stretch this terminology further: A ternary relation is a set of ordered
triples. An n-ary relation on a set S is a subset of Sn. For clarity, a set of ordered
pairs can be called a binary relation.

In Chapter 6, we encounter equivalence relations on a set. These are relations with
certain special properties.

A function f on a set S assigns to each member x of S one and only object, which
is written f (x). Functions are familiar from calculus courses. For example, calculus
gives us the chain rule for the derivative of the composition of functions. The set S is
called the domain of the function f . For some object x not in the domain of f , one can
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say that f (x) is “undefined.” For example, calculus defines the logarithm function as a
function on the set of positive real numbers. But log(−3) is undefined.

The graph of a function f is the set of all ordered pairs 〈x, y〉 for which y = f (x).
Thus for a function f on S, the graph is the set

{〈x, f (x)〉 | x ∈ S}

of pairs. So it is a relation. Often people take a function simply to be this relation.
Doing so has the advantage that the domain of the function f is nothing but the set of
objects that are first in an ordered pair in f . And the range is nothing but the set of
objects that are second. It is convenient to write f : A→ B (and to say that f maps A
into B) to mean that f is a function with domain A and with range included in B:

f : A→ B⇐⇒ f is a function and dom f = A and ran f ⊆ B

If, in addition, we have ran f = B, then we say that f maps A onto B.
A function f is said to be one-to-one if whenever we take two different objects, say

x and y, in the domain of f , then the values f (x) and f (y) are different. For example,
in calculus, the exponential function f (x) = ex is one-to-one, but the sine function is
not. For a one-to-one function f , we can construct its inverse f−1:

f−1 : ran f → dom f ,

where f−1(y) is the unique x in dom f for which f (x) = y.

Digression: If one were inventing mathematical notation from scratch, one should
write “(x)f ” instead of “f (x).” That way, certain equations related to the composition
of functions would read more smoothly (in languages in which one reads from left to
right). Too late now.

On a similar subject, a flaw in standard calculus notation is that it lacks a good
symbol for the identity function. Instead, people are forced into circumlocutions such
as “the function whose value at t is t,” where t is a dummy variable. The squaring
function is the function whose value at x is x2. How awkward! The notation x 7→ x2

helps a little.
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Often we want to know the size of a set. On the one hand, there are the finite sets. On
the other hand, there are the infinite sets. The infinite sets are bigger than the finite
sets.

There is more to it, of course. There is the zero-element set, the empty set. There
are the one-element sets, the singletons (like {8}). There are the two-element sets, the
doubletons (like {0, 8}). And so forth and so on. Finite sets come in all sizes.

Something similar happens with the infinite sets. All the infinite sets are big, but
some are bigger than others. We want to make sense of this idea, by extending some
concepts (that are familiar in the finite case) to infinite sets.

For sets A and B, say that A is the same size as B (written A ≈ B) if there is a one-
to-one correspondence between them, that is, if there is a one-to-one function f whose
domain is A and whose range is B. (In this situation, f−1 is a one-to-one function,
whose domain is B and range is A. Hence B is also the same size as A, so the concept
is symmetric.)

Applied to finite sets, this concept tells us nothing much that is new. For infinite
sets, the situation is more interesting. The possibly surprising fact about infinite sets is
that they are not all the same size.

One infinite set is the set N = {0, 1, 2, . . .} of all natural numbers. We can use
natural numbers to give an exact characterization of finiteness: A set is finite iff there
is a natural number n such that the set is the same size as {x ∈ N | x < n}, that is, the
same size as {0, 1, . . . , n− 1}. (For the empty set, n = 0.)

Definition: A set is said to be countable if it is the same size as some subset of N.
That is, a set S is countable if there is a one-to-one function f : S→ N mapping S into
the natural numbers, so that S ≈ ran f . Otherwise, the set is said to be uncountable.

Thus, for a set S to be countable, there must be a way to assign a unique natural
number to each member of S. For example, any finite set is countable because it has
the same size as {0, 1, . . . , n − 1}, for some n. And N itself is countable, as are each
of its subsets.

Example: The set of all finite sequences of natural numbers is countable. In Chapter 2,
we defined the bracket notation:

[ ]= 1
[x]= 2x+1

[x, y]= 2x+13y+1

[x, y, z]= 2x+13y+15z+1

· · ·

[x0, x1, . . . , xk]= 2x0+13x1+1
· · · pxk+1

k

.
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The function

〈x0, x1, . . . , xk〉 7→ [x0, x1, . . . , xk]

maps the set of sequences of natural numbers into N, and it is one-to-one by the
uniqueness of prime factorization.

Theorem: Any infinite countable set has the same size as N.

Thus, the countable sets consist of the finite sets,

{s0, s1, . . . , sn−1}

plus the sets

{s0, s1, . . . , }

that are the same size as N.

Proof. Assume that S is an infinite set that is countable, so that there is a one-to-one
function f : S → N. We want a new function g : S → N that is both one-to-one and
onto N. That is, we know that ran f ⊆ N, and we want ran g = N. The idea is to push
down ran f , to squeeze out all the holes.

First of all, ran f contains some least member, say f (s0). (Because f is one-to-one,
s0 is unique.) We define g(s0) = 0. More generally, for each n, there is a unique sn in
S for which f (sn) is the (n+ 1)st member of ran f . We define g(sn) = n. This gives us
the function g we want: dom g = S and ran g = N. a

Theorem:
(a) Any subset of a countable set is countable.
(b) The union of two countable sets is countable.
(c) The Cartesian product of two countable sets is countable.
(d) If A is a countable set, then the set A∗ of all finite sequences of members of A is

countable.
(e) The union of countably many countable sets is countable.

Proof. The preceding example proves part (d) in the special case, where A = N. The
argument can be adapted to cover any countable A.

As a special case of part (c), the set N × N is countable; we can map the ordered
pair 〈x, y〉 to 2x+13y+1 as before. (And there are other possible “pairing functions,” as
noted on page 43. For a start, we could use 2x3y, which is a bit simpler.)

Again, the argument can be adapted to cover the Cartesian product A × B of any
countable sets A and B. Where f and g are one-to-one functions with f : A → N and
g : B→ N, we can map the ordered pair 〈a, b〉 to 2f (a)3g(b).

Moreover, in this situation, the union A ∪ B is countable. We can map x to 2f (x)
whenever x ∈ A, and to 2g(x)+ 1 when x /∈ A. Thus, we get part (b).

Part (a) of the theorem is easy to see.
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Part (e) means the following: Assume thatA is countable, and that each member of
A is a countable set (so in particular, A is a set of sets). Then part (e) says that

⋃
A,

the result of dumping all the members of A together, is countable.
We may suppose that A is infinite (otherwise, we can simply apply part (b) several

times) so there is some function f : A→ N that is both one-to-one and onto N:

A = { f (0), f (1), . . . , f (n), . . .}.

For each n, the set f (n) is countable, so there exists some function mapping it one-
to-one into N. We need to choose some such function gn for each n. Then for each x
in

⋃
A, we take the smallest n for which x ∈ f (n) and map x to the natural number

2n3gn(x). The map described in this way maps
⋃
A one-to-one into N. a

For example, the set Z of all integers (positive, negative, and zero) is a countable
set. And the set Q of all rational numbers is countable. Part (d) tells us that over a
countable alphabet A, the set A∗ of all words is countable.

But not every set is countable. And by part (a) of the theorem, any set having an
uncountable subset must be uncountable.

Cantor’s theorem (1873):
(a) The set R of all real numbers is uncountable.
(b) The set PN of all subsets of N is uncountable.
(c) The set of all infinite binary sequences (i.e., the set of all functions from N into
{0, 1}) is uncountable.

(d) The set NN of all function from N into N is uncountable.

Proof. This theorem is proved by the classical “Cantor diagonal argument.” To show
that a set is uncountable, it suffices to show that each countable subset fails to exhaust
the set.

For part (a), consider an arbitrary countable set of real numbers, for example:

s0 = 236.001 · · ·

s1 = −7.777 · · ·

s2 = 3.1415 · · ·

To show that this list fails to exhaust R, we only need to produce one new real number
z not on the list. Here is one: Its integer part is 0, and for each n, its (n+ 1)st decimal
place is 7 unless the (n + 1)st decimal place of sn is 7, in which case the (n + 1)st
decimal place of z is 5. So in the example shown, z = 0.757 · · · . Then z cannot have
been on the list because it differs from each sn in its (n+ 1)st decimal place.

To prove part (b), consider an arbitrary countable subset

{S0, S1, . . .}

of PN. To show that this collection does not exhaust PN, we seek to come up with
a new subset of N. Here is one: A = {n ∈ N | n /∈ Sn}. This set could not equal S17
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because either

17 ∈ S17 and 17 /∈ A or 17 /∈ S17 and 17 ∈ A.

The set in part (c) has the same size as the set in part (b); simply pair up each
subset of N with its characteristic function. Or to prove part (c) directly, consider
any countable set {s0, s1, . . .} of infinite binary sequences. Then, we can make a new
binary sequence f by defining f (n) = 1−· sn(n) for each n.

The set in part (d) is at least as big as the set in part (c). That is, the set in part (c) is
a subset of the set in part (d). a

A particularly relevant example for our purposes is the set S of all register-machine
programs. This set is countable. One way to see this fact is to represent S as a set of
finite sequences over a certain finite alphabet. But a more direct proof uses the function
P 7→ #P assigning to each program its Gödel number. This function maps S one-to-
one into N.

Consequently, the set of all computable partial functions is countable. We can map
each such function to the least Gödel number of a program that computes it.

The set of all partial functions (computable or not) is uncountable. By part (d) of
the preceding theorem, even the set of total functions is uncountable. So the set of
noncomputable total functions is uncountable. That is, there are uncountably many
noncomputable functions.



A3 Decadic Notation

There is a simple and natural one-to-one correspondence between the set of all strings
over a finite alphabet and the set of natural numbers. The key to the correspondence is
to use base-n notation, where n is the size of the alphabet, but without a 0 digit.

Suppose that 6 is a finite set of size n. We refer to 6 as the alphabet, we refer to
the members of 6 as letters, and we refer to finite strings of letters as words (over 6).
Let 6∗ be the infinite set of all words (including the empty word λ). For example, if
6 = {1, 2}, then

6∗ = {λ, 1, 2, 11, 12, 21, 22, 111, 112, 121, . . .}.

We assume that the members of the alphabet 6 are ordered in some way (referred
to as alphabetic order). Thus, we have a function v : 6→ {1, . . . , n} where

v(the first letter) = 1
v(the second letter) = 2

· · ·

v(the last letter) = n,

and we refer to v(a) as the value of the letter a.
We obtain a one-to-one map from 6∗ onto the set N = {0, 1, 2, . . .} by mapping

the three-letter word abc to the number

(abc)n-adic = v(a)n2
+ v(b)n+ v(c)

and in general,

(ak · · · a2a1)n-adic = v(ak)n
k−1
+ · · · + v(a2)n+ v(a1)

and (λ)n-adic = 0 (the empty sum).
In what follows, the properties of this map will be developed in the special case

where n = 10 and the 10 letters are 1, 2, 3, 4, 5, 6, 7, 8, 9,X, in that order. But all of
the arguments generalize immediately to finite alphabets of any size 2 or more.

(An alphabet of size 1 is a somewhat special and somewhat boring case. Where the
alphabet is the singleton {|}, a typical word is the string |||||||, and the above equation
reduces to

(ak · · · a2a1)1-adic = 1+ · · · + 1+ 1 = k

Computability Theory. DOI: 10.1016/B978-0-12-384958-8.00010-7
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so that (w)1-adic equals the length of the word w. This obviously produces a one-to-one
map onto N.)

In the n = 10 case, we will refer to (w)10-adic as (w)decadic, the number denoted by
the word w in decadic notation. (The corresponding words for n = 1, 2, 3, . . . would
be monadic, dyadic, triadic, . . . .) For example,

(415)decadic = 4 · 100+ 1 · 10+ 5 = 415

and

(4X5)decadic = 4 · 100+ 10 · 10+ 5 = 505.

As the first of these equations exemplifies, for any word w not containing the X digit,
(w)decadic is simply the number denoted by the numeral w in the usual base-10 notation.
But the alphabet contains no zero digit, and some words contain the X digit (the “ten”
digit). For example,

(XX)decadic = 10 · 10+ 10 = 110

and

(XXX)decadic = 10 · 100+ 10 · 10+ 10 = 1110.

First consider the problem of how to add 1 in decadic notation. Here are some
examples:

(3X8)decadic + 1 = (3X9)decadic
(XXX)decadic + 1 = (1111)decadic
(2XXX)decadic + 1 = (3111)decadic

From looking at these examples, we want to extract a general rule for adding 1. In
general, a word w consists of a word u (possibly empty) not ending in X, followed by
a string of k X’s (where k ≥ 0). Thus,

(w)decadic = (u)decadic · 10k
+ 10k

+ 10k−1
+ · · · + 10.

In order to add 1, we use the word w+ consisting of u+ followed by a string of k 1’s,
where u+ is obtained by incrementing u’s rightmost digit (and λ+ = 1). This works
because

(w+)decadic = ((u)decadic + 1) · 10k
+ 10k−1

+ · · · + 10+ 1
= (u)decadic · 10k

+ 10k
+ 10k−1

+ · · · + 10+ 1
= (w)decadic + 1.

Now that we know how to add 1, we obtain a theorem:
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Theorem: For every natural number n, we can find a word w for which
(w)decadic = n.

Proof. We prove the existence of w by induction on n. The basis, n = 0, holds because
(λ)decadic = 0. For the inductive step, we add 1 as above.

And not only does w exist, but we know how to calculate it by adding 1 many times
(n times). (Of course, there are much faster ways to find w, if we are in a hurry.) a

Next consider the problem of comparing decadic numerals to see which one denotes
a larger number. Among four-digit numbers (i.e., among the numbers denoted by four-
digit words), the smallest is obviously (1111)decadic. Any other four-digit word will
give us a larger number. Similarly, the largest number denoted by a three-digit word is
(XXX)decadic. Any other three-digit word will give us a smaller number. Moreover,

(XXX)decadic < (1111)decadic

because adding 1 to the left side gives the right side.
We can conclude from this that any number m denoted by a three-digit word is less

than any number n denoted by a four-digit word:

m ≤ (XXX)decadic < (1111)decadic ≤ n

And the argument generalizes: Any number denoted by a k-digit word is less than any
number denoted by a (k + 1)-digit word. And then by iterating this argument, we see
that any number denoted by a k-digit word is less than any number denoted by a word
of more than k digits. That is, shorter words always give smaller numbers.

What, then, about two words of the same length? For example, take the four-letter
words 2∗∗∗ and 3???, where in both cases, we don’t know the last three digits. Even
so, we know that

2∗∗∗ ≤ 2XXX
< 3111 by 1
≤ 3???.

Similary, for the six-letter words 472∗∗∗ and 473???, we have

472∗∗∗ ≤ 472XXX
< 473111 by 1
≤ 473???.

In general, we need to look only at the first (i.e., leftmost) digit where two words
of the same length disagree. The larger digit produces a larger number, no matter what
the later digits are. That is, for words of the same length, we simply use lexicographic
order. We can summarize these ideas as follows:



162 Computability Theory

Theorem:
(a) For two words of different lengths, the shorter word denotes a smaller number

than does the longer word.
(b) For two words u and w of the same length, (u)decadic < (w)decadic iff u lexico-

graphically precedes w.

In particular, two different words must denote different numbers, because either
they will have different lengths (and clause (a) of the theorem will apply) or else there
will be a first digit where they differ (and clause (b) will apply). That is, our map from
words to numbers is one-to-one. Together with the previous theorem, we now have
the following:

Theorem: Decadic notation yields a one-to-one correspondence between the set of all
words over our 10-letter alphabet and the set N of all natural numbers.

This theorem illustrates a property of decadic notation which standard decimal
notation lacks. In decimal notation, there is the problem of “leading zeros”; the words
3 and 03 denote the same number (or else 03 needs to be declared an illegal word).

Roman numerals are sometimes criticized for lacking a numeral for zero. But the
real difficulty with Roman numerals is the lack of place-value notation. Zero itself is
nothing.
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Turing’s work, 121
Representability, and definability, 26
Restriction, and primitive recursiveness, 45
Rice’s theorem

and arithmetic hierarchy, 104
r.e. parameters, 98–99

S
Search operation

bounded search, 40–41
example, 47
as formalization, 18–20

Semicharacteristic function, see also
Characteristic function

and decidability, 4, 8–10
and recursively enumerable relations,

81–82, 85, 90
and universal program, 67

Semidecidability
and complexity of truth, 116, 118
and decidability, 5–6
effectively calculable partial function, 5
halting relation, 8–9
Kleene’s theorem, 9
r.e. relations, 82–83
theorem example, 10

Sentences
and complexity of truth, 116–120
decidable sets, 1
and definability in arithmetic, 111–113
formal language definability, 26
and P-time computability, 147
and r.e., 81
true sentences, 103
undecidability, 116–118

Sequence number, and primitive
recursiveness, 44

Sets
countability, 155–158
decidability, 2–3
definition, 151
naming, 151–152
primitive recursiveness, 40

Set size, 153, 155–156, 158
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Singleton set
countability, 155
definition, 152

Snap function
normal form theorem, 69–70
and register machines, 68–71

Squaring function, P-time computability, 143
Subsets

and complexity classes, 148
and complexity of truth, 118–119
countability, 155–158
and decidability, 4
and definability in arithmetic, 112
definition, 152–153
and equivalence relations, 128–130
and feasible computability, 140, 145
and primitive recursiveness, 19
and r.e., 84, 87–91
and r.e. parameters, 97
and r.e. relations, 86–90
and relative computability, 121–122, 125
and structure of degrees, 133

Substitution rule
and arithmetic hierarchy, 107–110
and general recursive relation, 48
primitive recursive relation, 35
and register machine relative

computability, 125–126
Subtraction

partial functions for, 4
as primitive recursive functions, 34

Successor functions
definability in arithmetic, 111, 113
definition, 18
register machines, 54

Symbols, see also Alphabet
definability in arithmetic, 111
program definition, 61
register machines, 23

Symmetric relation, definition, 127

T
Tarski’s theorem, and complexity of truth,

117–118
Ternary relation

and arithmetic hierarchy, 104
definition, 153

Total computable function
and arithmetical hierarchy, 104, 106–107
and feasible computability, 139
Rabin’s theorem, 140
and r.e. parameters, 96–99

and r.e. relations, 85, 87, 89, 91
and relative computability, 125
and structure of degrees, 136

Total constant function
and effective calculability, 4–5
and r.e. parameters, 93
and register machines, 54

Total function
and arithmetic hierarchy, 105, 110
and countability, 158
definition, 3
example, 6
and primitive recursiveness, 18–19, 30, 32
and P-time computability, 147
and r.e., 79–80
and r.e. parameters, 96, 98–99
and r.e. relations, 88–89
and relative computability, 122, 125
and search operation, 47–49
and Turing machines, 15–17
and universal program, 63–69

Transitivity
definition, 126–127
preordering relations, 130–131

Triadic notation, register machines over
words, 74–75

Tuples definition, 153
Turing computability

definition, 14
general recursive functions, 19–20
Rado’s theorem, 17
while programs, 22

Turing degrees, see Degrees of unsolvability
Turing equivalent

definition, 126, 129
equivalence relations, 127

Turing machines
alphabet of symbols, 13–15
busy beaver problem, 16
and Church’s thesis, 15
example, 16
as formalization, 13–17
input, 72
nondeterministic concept, 14
and P-time computability, 146–147
and register machines, 70
table definition, 14

Turing reducibility, definition, 125
Twin prime conjecture, definition, 6

U
Undecidability

calculable functions, 3
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Undecidability (Continued)
and complexity of truth, 116–117
halting relation, 8
and r.e. parameters, 99
and relative computability, 121
sentences, 116–118
sets, 2

Undefined, function definition, 154
Union

and arithmetic hierarchy, 107–110
primitive recursive relations, 36

Universal function, calculability, 7
Universal program

Gödel number and partial functions,
64–65

register machines, 60–71
instructions, 60–61
location counter, 62–63
memory number, 61–62
partial function computability,

65–66
and relative computability, 124
summarization, 64

Unsolvability, see also Degrees of
unsolvability

and complexity of truth, 117
halting problem, 9, 67, 69, 80

V
Value definition, 159

W
While programs

definition, 21
as formalizations, 20–22

Words
appending letters, 73–74
decadic notation definitions, 159–162
definability in arithmetic, 111
register machines, 23–24, 72–76

Z
Zero-element set

definition, 152
size, 155

Zero functions
definition, 18
primitive recursive functions, 29, 31–32
register machines, 54
register machines over words, 76
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