
Origins of Recursive
Function Theory
STEPHEN C. KLEENE

For over two millenia mathematicians have used particular examples of
algorithms for determining the values of functions. The notion of “X-
definability” was the first of what are now accepted as equivalent exact
mathematrcal descriptions of the class of the functions for which algorithms
exist. This article explains the notion and traces the investigation in 1931-
1933 by which the notion was quite unexpectedly so accepted. The
Herbrand-Godel notion of “general recursiveness” in 1934 and the Turing
notion of “computability” in 1936 were the second and third equivalent
notions. Techniques developed m the study of A-defmability were applied in
the analysis of general recursiveness and Turing compatability.
Keywords: X-definability, undecidable sentences, general recursiveness,
part/al recursiveness, Turing computability, finite automata, recursion
theorem, primitive recursiveness, algorithms, Church’s thesis, degrees of
unsolvability, normal form theorem, arithmetical hierarchy, analytic
hrerarchy, hyperanthmetical hierarchy, relative recursiveness, inductrve
definitions
CR Categories: 1.2, 5.22, 5.26, 5.27

I could entitle this paper “Four Dozen Years in Re-
cursionland” (1979 - 1931 = 48). When I was invited
to lecture at the FOCS symposium, it was indicated
that my hearers would be interested in how recursion
theory (and the theory of regular events in finite
automata theory) originated, as viewed through the
eyes of one who was there.

I began my intensive study of the foundations of
mathematics with the course given by Alonzo Church
at Princeton in the fall semester of 1931-32. My only
previous acquaintance with the area had been very
general, from Alfred North Whitehead’s An Introduc-
tion to Mathematics (1911)’ and Bertrand Russell’s
Introduction to Mathematical Philosophy (1919).

Church’s course consisted, except for one interpo-
lation, in the presentation of the contents of his two
papers “A set of postulates for the foundation of logic”
1932 and 1933.

0 1981 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or
distributed for direct commercial advantage, the AFIPS copyright
notice and the title of the publication and its date appear, and notice
is given that copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author’s Address: Department of Mathematics, Van Vleck Hall,
University of Wisconsin, Madison, WI 53706.
Note: This is a revised version of a paper presented at the twentieth
annual IEEE Symposium on Foundations of Computer Science,
October 1979, San Juan, Puerto Rico.
0 1981 AFIPS 0164-l 239/81 /01052-67$01.00/O

The interpolation? During the fall of 1931, John von
Neumann was the speaker one day at the mathematics
colloquium. He chose to speak, not on work of his
own, but on Godel’s results on formally undecidable
sentences; von Neumann had received a preview of
them at a meeting at Konigsberg in September 1930,
which von Neumann and Godel both attended (Godel
1931-32a). This topic was thereupon incorporated into
the course, and I at once read very carefully Godel’s
1931 paper in the Monatshefte.

This paper contains Godel’s celebrated proof of the
existence of undecidable sentences in formal systems
embodying the usual elementary number theory, and
his “second theorem” on the impossibility of a proof
of the consistency of such a system within the system
itself. Church’s immediate reaction was that his formal
system, about which I am going to say more, is suffi-
ciently different from the systems Godel dealt with
that Godel’s second theorem might not apply to it (see
Church 1933 top p. 843). Indeed, Church was right! In
his system there is a proof of its own consistency, since
in fact it is inconsistent (so all its sentences are prov-
able), as Church had thought possible (1933 top p.
842) and as Rosser and I showed later (Kleene and
Rosser 1935).

I wrote about Godel’s 1931 paper and his work
generally in 1976. In 1931 Godel employed as a tool a

‘A date shown in italics refers to a work listed in the References
(under the name of the adjacent author).

52 * Annals of the History of Computing, Volume 3, Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

class of number-theoretic functions, which he called
“recursive” and which since my 1936 paper on general
recursive functions have instead been called “primitive

i recursive”.
Let me summarize at this point what was known

about recursive functions in 1931, although it was not
until later that I read more about them.

What are familiar as Peano’s five axioms for the
positive integers { 1,2,3, . . . } appeared in his 1889 and
1891. As a companion to the fifth of these axioms,
mathematical induction, he used definition by induc-
tion-in fact, primitive recursion (so called since P6ter
1934). Peano’s axioms indeed come from Dedekind
1888, who proved the theorem that a primitive recur-
sion defines a function on the positive integers and
applied it to the definition of the functions m + n,
m X n, and mn. For agreement with the currently more
usual setting for this theory, we can transpose from
the positive integers (1, 2, 3, . . . } to the globally more
convenient natural numbers (0, 1, 2, . . . } (used, for
example, by Giidell931).

The richness of the possibilities for the development
of number theory on this basis was brought out by
Skolem in his 1923 paper on the foundation of elemen-
tary arithmetic through the recursive mode of thought.
Some of the devices used by Gadell931 with primitive
recursive functions were anticipated therein.

Hilbert 1926 made a bold attempt to prove Cantor’s
continuum hypothesis by using recursions of more and
more complicated kinds to generate the number-
theoretic functions and by associating them with in-
creasing ordinals of the second number class. The
attempt failed, although something of its method sur-
vived in Godel’s proof of the consistency of the contin-
uum hypothesis (1938, 1939, 1940). In the course of
this attempt, Hilbert ‘used an example of a function
definable by a transfinite recursion (or by a recursion
on two variables simultaneously) for which Acker-
mann had a proof (published in 1928) that it is not
primitive recursive.

This is what existed in 1931. Immediately thereafter,
it was elaborated and extensively developed by P&er
in a series of papers (1932, 1934, 1935, 1936, etc.)

depicting a hierarchy of levels of recursive functions:
the primitive recursive functions, the double recursive
functions, the triple recursive functions, and so on.
The theory is expounded in her book 1951.

Besides this theory of special recursive functions,
for which the basis had been laid by 1931, there had
existed since antiquity (for example, in Euclid’s
Elements, written about 330-320 B.C.) examples of

Note: The photographs in this article are from the author’s personal
collection.

S. C. Kleene - Recursive Function Theory

algorithms as methods of deciding questions (predi-
cates) or computing functions. The name “algorithm”
is a corruption of the name of the ninth-century Ara-
bian mathematician Al-Khowarizmi. (I participated in
a scientific pilgrimage in September 1979 to his re-
puted birthplace at the Khowarizm oasis in Uzbeki-
stan.)

As I said, in the fall semester of 1931-32 I was taking
Church’s course in which, besides reading Gijdell931,
I was made acquainted with Church’s postulates for
the foundation of logic. I shall not go into these in full.
They included one ingredient that has proved to be
extraordinarily fruitful.

As calculus is usually taught, the undergraduate
mathematics student is introduced to functions, some
of which have been given closed names, permanent
such as “sine” or temporary such as “f “; others are
named by expressions, such as “x4 + 3x2 + 2” contain-
ing a variable “x”, that tell us what the value of the
function is for each value of that variable as argument.
The calculus student is unlikely to worry whether the
expression “x4 + 3x2 + 2” really denotes a number (a
different one for each number x that “x” denotes) or
a function. That there is an ambiguity here (indeed,
“x4 + 3s’ + 2” is called the “ambiguous-value” nota-
tion for the said function) may be illustrated by com-
paring two statements: “x4 + 3x2 + 2 is not less than
2” and “x4 + 3x2 + 2 is even” (a function f is even iff,
for all x, f(-x) = f(x)). The first statement can be read
as about any one of the numbers that are the values
of the function. The second statement is about the
function. (Mathematicians have been accustomed to
stating definitions using “if” where “if and only if” is
meant. Recently, an elegant way of making their writ-
ing accurate has won acceptance: spell such an “if” as
“iff “.)

The ambiguity can be banished by adopting “Xx[x4
+ 3x’ + 21” as a notation, with “x” now bound by the
prefix “Ax”, for the function itself.

Once this notation is introduced, there are three
obvious operations with it. (For simplicity, I usually
omit the quotation marks from now on.) First, if f =
Xx[x4 + 3x2 + 21, then f(2) = 24 + 3(2’) + 2 = 30. So,

Stephen C. Kleene was born in Hartford,
Connecticut, in 1909. He graduated from Amherst
College in 1930 and received a Ph.D. from Princeton
University in 1934. He has taught mathematics at
the University of Wisconsin since 1935. He was
president of the Association for Symbolic Logic from
1956 to 1958 and was editor of the Journal of
Symbolic Logic from 1950 to 1962. He was elected to
the National Academy of Sciences in 1969.

Annals of the History of Computmg, Volume 3. Number 1, January 1981 l 53

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene - Recurswe Function Theory

Stephen C. Kleene (left) and Alonzo Church
(center) with Anatol Ivanovic Malcev (back to
camera) at a reception in Moscow in 1966.

without introducing f, {Xx[x” + 3x2 + 2]}(2) reduces
(equivalently) to 2* + 3(2’) + 2. Second, inversely, 2*
+ 3(2’) + 2 expands (equivalently) to {hx[x* + 3x2 +
2]}(2) (or indeed also to various other expressions,
such as {hx[x4 + 3x’! + x]}(2)). Third, there is the
usual principle that a bound variable can be changed
to any other with the same range, so long as (in
complicated situations) there is no “collision”. Thus
our expression hx[x* + 3x2 + 21 means the same as
the expression ;ly[y* + 3~’ + 21.

The device of this h-notation with its operations is
so simple that one wonders why in beginning calculus
courses some bright student did not think of it.

Church introduced the h-notation in the context of
his system of postulates. In my illustration hx[x4 + 3x”
+ 21, the context is the arithemtic of the real numbers,
where there are available some constants (such as 2
and 3) and some functions already symbolized (such
as sum and product). This brings us to the observation
that, to make the “h-calculus” precise, we need to
describe in advance the class of the meaningful expres-
sions in which we use it.

Let us be bold enough to do so in a minimal lan-
guage, with just one category of variables (without
type or sort), infinite in supply, constituting the atoms.
We get this from Church’s formalism by stripping
away all the other elements, which for this purpose do
not need to be present. (In my 1934 I got the same
effect by treating the constants no differently than the
variables, calling them all “proper symbols”.)

The meaningful formulas we get in this way I call
“h-formulas”. First, the variables are X-formulas. Sec-
ond, if P is a h-formula already built up containing x
as a free variable, hx[P] is also a h-formula. (There is
also a version of this theory, called the “h-K-calculus”,
in which P is not required to contain x free.) I assume
my readers understand free and bound occurrences of
variables, where for us Xx is the only operator that
binds variables. I could build in the definition of this
simultaneously with that of the class of the X-formu-
las. We think of hx[P] as denoting that function of x
whose value (if defined), for each value taken by x, is
the value then taken by P. Third, if M and N are h-

formulas, so is {M}(N). We think of {M}(N) as the
result of the application of a function M to an argu-
ment N. The h-formulas are all and only the expres-
sions that are such by repeated application of these
three clauses. This is an example of an “inductive
definition”, a class of objects (in the present example,
“h-formulas”) being defined to comprise all the objects
that are required to be in it by the repeated application
of certain clauses (here the three clauses identified by
their opening words “First”, “Second,” and “Third”),
and to comprise no other objects.

There are now the three operations by which h-
formulas can be transformed without altering their
meanings. I shall state them in general. (I illustrated
them above, but not in the present purified language.)
First, there is reduction whereby {hx[P]}(N) is
changed to the result S$J P 1 of substituting N for the
free occurrences of x in P, provided no “collision” of
variables results. Second, there is expansion, the in-
verse of reduction. Third, there is the change of a
bound uariable, Xx[P] becoming Xy[S: PI], again
avoiding “collision”. Each of these steps can be made
on a whole X-formula, or on a consecutive part that is
a h-formula, except that we do not apply expansion to
the x of a prefix hx, as I noted in my 1934 emending
Church’s formulation.

As I have said, this and more are in Church’s for-
mulation of his language and postulates. We just leave
out the more. Before research was done, no one
guessed the richness of this subsystem. Who would
have guessed that this formulation, generated as I
have described to clarify the,notation for functions,
has implicit in it the notion (not known in mathemat-
ics in 1931 in a precise version) of all functions on the
positive integers (or on the natural numbers) for which
there are algorithms?

This requires that the positive integers (or the nat-
ural numbers) be identified within the class of the h-
formulas.

Before presenting Church’s identification, I shall
introduce some abbreviations, mainly his. Xx[P] will
often be written hx*P or simply hx P. {M} (N) when M
is (or is named by) a single symbol can be simplified

54 * Annals of the History of Computing, Volume 3. Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

to M(N). Moreover, Xx[Xy[P]] can be abbreviated
Xxy[P] or Xxy*P or hxy P; ({M}(N)}(P) can be abbre-
viated (M) (N, P) or M(N, P). Herein is a workable
definition by Schonfinkel 1924 (however, Xxy[P] first
appears in my 1934) of two-place functions from one-
place functions. A similar situation applies with more
places (functions of p variables for p > 2).

For A and B h-formulas, I now write “A red B”
(read “A (is) reducible (to) B”) to say that A is
transformable to B by zero or more reductions of the
above described form ({Xx[P]} (N) to Sk P] , as a whole
or part) with zero or more changes of bound variables.
(This suits my present summary. At the time and in
the literature, we were using instead “A conv B” (read
“A (is) convertible (to) B”) in which expansions are
also allowed. In the case of the results taken over here
from my writings, it will be clear from the construc-
tions that they hold with “red” instead of “conv”.)

Iff no reduction is possible on B, either immediately
or after some changes of bound variables, B is said to
be in normal form; and then, iff A red B, B is a normal
form of A. (These notions were introduced in Church’s
1931 lectures.)

Church identified the positive integers 1, 2, 3, . . .
with the following h-formulas (in normal form):

(1) Afx*f(x), hfx*f(f(x)), Afx*f(f(f(r))),

Here I am using the italic letters “f” and “x” as
particular variables, while above the Roman “x” and
“y” were names for any variables (distinct names
standing for distinct variables).

Beginning in 1936a, I instead identified the natural
numbers 0, 1, 2, . . . with the h-formulas (l), partly
because the primitive and general recursive functions
I took over from Godel were defined on the natural
numbers. But here, while I am speaking of develop-
ments through 1935, it will be easier to stick in this
respect with Church than to keep annotating the
difference.

I call the X-formulas (1) numerals, and specifically
Xf.x*f(x) the numeral for 1, Afx*f(f(x)) the numeral for
2, etc. When I use “n” to denote a positive integer, I
use “n” to denote the corresponding numeral.

Now we cannot escape the following. Each X-for-
mula F containing no free variables has an interpre-
tation as a partial one-place function #I from the
positive integers to positive integers, as I will indicate
in a moment. A “partial” function d, is one such that,
for each positive integer n, 6(n) either is defined with
a positive integer as its value or is undefined.

“Partial” functions were first used explicitly in re-
cursion theory in my 1938 (using the natural numbers).
What I am stating now was formulated in 1931-32 as
a condition when a A-formula defines an ordinary or

S. C. Kleene - Recursive Function Theory

“total” one-place function $I from the positive integers
to positive integers.

The partial function $J that a h-formula F containing
no free variables expresses is the function + such that,
for each positive integer n, +(n) = m or G(n) is unde-
fined, according to whether F(n) red m for some
positive integer m or not. That this defines a partial
(single-valued) function depends on there being at
most one m (for a given F and n) such that F(n) red
m. At the time of which I am speaking, we felt assured
of this by the interpretation of the h-calculus or of
Church’s full system. Subsequently, the Church-Ros-
ser theorem 1936 became available, whereby A red B
with B in normal form can hold, with a given A, for at
most one B apart from the choices of the bound
variables in it. Thereby, with a given F and n, F(n)
red m for at most one m.

A formula F with the property just described we say
h-defines the function 9, and we then say that #I is h-
definable. (This terminology was not published, al-
though we had been working with the concept since
1931-32, until in Church 1936 and my 1936a.) Simi-
larly, with functions of more variables, taking +(n,,
. . . , nP) = m iff F(nl, . . . , np) red m.

If F contains free variables, F(n) red m for no n and
m, since a sequence of reductions leaves the set of the
free variables unaltered. So such an F simply X-defines
the totally undefined function.

Church’s particular identification (1) of h-formulas
with 1, 2, 3, . . . was made with a view to facilitating
definitions by induction. Thus, if F is the h-formula
hn*n(G, A), F(n) 1or n = 1, 2, 3, . . . is reducible
respectively to

(2) G(A), G(G(A)), G(G(GW)),

We can say the sequence (2) of A-formulas is X-defined
by this F. In the case A has a numeral a as its normal
form, and G X-defines a total function #, F h-defines
the function whose sequence of values is #(a), $($(a)),
4444+(a))), *. . *

Church (1933 p. 863, and in his lectures in 1931-32)
gave two examples of X-definable (total) functions.
First, the successor function S (where S(n) = n+l) is
X-defined by hnfx*f(n(f, x)), call it “S”. To illustrate
for n = 2, we must verify that S(2) red 3. After
unabbreviating S and 2, we have
{Xnf~sf({{n)(f))(r)))(hfx*f(f(x))) red
Xfx~f({{Xf~.f(f(x)))(f))(X)) red
xf~*f({Xx*f(f(x)))(x)) red hfx*f(f(f(x))), which is 3.
Second, the sum function m-+-n is h-defined by
hmn*n(S, m) (abbreviate it “+“), as is easily seen.

In Church’s postulates, means were provided to
express propositional functions (predicates), and a de-
scriptive operator 1 such that 1 (F) expresses “the x

Annals of the Hlstory of Computing, Volume 3, Number 1, January 1981 - 55

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C Kleene - Recurswe Function Theory

Left to right: .J. Barkley Rosser, Solomon Lefschetz,
Stephen C. Kleene, and Edward J. McShane in Princeton
in 1935.

such that F(x)“. I (hx[G]) is abbreviated I x[G] or
1x-G. Having h-defined S and +, Church did not
continue to give h-definitions of other functions, but
instead he gave for subtraction - and product X the
respective defining formulas Xrs. I X[{ +) (x, s) = I”] and
hmn.{-}(m(n(S),l),l),usinghisdescriptiveoperator~.

We can observe that all the h-definable functions,
in contrast to some of the functions that are definable
using, for example, Church’s I -symbol and other con-
stants, are “effectively calculable” or calculable by
algorithms.

To justify this, I can appeal to the Church-Rosser
theorem 1936, which, beyond what I stated above, tells
us that, if we get A red B with B in normal form by
one series of reductions (with changes of bound vari-
ables), then any such series pursued long enough (or
even any such series after any preliminary spree of
using expansions or mixed expansions and reductions)
must eventually lead to the same B, apart from alpha-
betical differences in the bound variables.

So, considering for the moment only the total func-
tions, an algorithm for computing the function 4 h-
defined by F is the following. For a given n, look for
the part of F(n) of the form {Xx[P]}(N) beginning
leftmost and reduce it immediately, or immediately
after changes of bound variables if necessary, and keep
repeating. This makes the computation procedure de-
terminate (apart from details in the choices of bound
variables, which could also be made determinate by
some conventions). We could vary it, without changing
the fact of termination and the result, at any step
where there is more than one part of the form
{hx[P]}(N) by choosing to reduce one or another of
those parts.

For partial functions, the “effective calculability” of
+ means that there is an algorithm that leads in a

finite number of steps to the value of +(n) for any n
for which the value is defined, and that for any other
n leads to no value (either by terminating in a situation
that does not give a value or else by continuing ad
infinitum).

My study of the class of the h-definable functions
came about as follows. At the conclusion of Church’s
course in January 1932, I undertook as a Ph.D. thesis
project to develop the theory of positive integers in
the formal system of his 1932 and 1933. Indeed, I took
over the first part of the project proposed on the final
page of his 1933. This called at the outset for proving
Peano’s axioms in Church’s formalism.

Proofs of three of them were “immediately evident”,
although I formulated the fifth axiom a little differ-
ently than Church (see my 1935 p. 157).

But the third axiom (if the successors of two num-
bers are equal, so are the numbers) offered a challenge.
I proposed to handle it by defining the predecessor
function P (where P(1) = 1, P(S(n)) = n) in the
system, and indeed using only the h-calculus.

Almost at once, I saw a way to change the identifi-
cation of the integers with X-formulas which made the
predecessor function come out immediately. When I
showed this to Church, he responded that my alter-
native identification would not do, because his was
specifically chosen to give definition by induction (as
indicated at (2) above, and illustrated by the h-defi-
nition of +). I might have challenged this “put-down”
by investigating whether in fact, with my alternative
identification, definition by induction and further de-
velopments could not be managed reasonably well. I
did not. The fact that I did not and the use of the h-
calculus instead of the X-K-calculus in Church’s system
may have meant that I developed h-definability in a
more difficult but perhaps more challenging version.
Thirty-one years later, in a letter dated January 20,
1963, Dana Scott communicated to me an alternative
identification of the positive integers with h-formulas
making the predecessor function immediate (the same
as, or similar to, mine of 1932, of which I preserved no
record), and indicated success in the further develop-
ment of the theory using that alternative. I am not
sufficiently familiar with Scott’s development and
other recent work to be able to say as of 1979 what
version of the theory is the best.

Soon after returning to Church’s identification, one
day late in January or early in February 1932, while in
a dentist’s office, it came to me that I could X-define
t,he predecessor function by using the h-definability of
(2) by hn*n(G, A) in the following way. The ordered
number-triples (n,, a, n3) can be represented by the
X-formulas Xfghx*f(. . . f(g(. . . g(h(. . h(x) . . .))
. .)) . . .) with nl f’s, n2 g’s, and nn h’s after the prefix

56 - Annals of the Hlstory of Computing, Volume 3, Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene - Recurwe Function Theory

Xfghx. And a h-formula G is easily constructed to
perform the following operation on any number triple:

(nl, n2, n3)

1(1(4
(n2, n3, Sh3)).

So if A is (1, 1, I), then Xn*n(G, A) h-defines the
sequence of number-triples

(3) (1, 1, a, (1, 2, 31, (2, 3, 41, (3, 4, 5),

It is then easy by a X-formula H to erase all but the
first number of each triple so as to obtain

(4) 1, 1, 2, 3, . .)

which is the sequence of values of the predecessor
function P. Thus P is X-defined by Xn*H(n(G, A)); call
it “P”. When I brought this result to Church, he told
me that he had just about convinced himself that
there is no X-definition of the predecessor function.

The discovery that the predecessor function is after
all X-definable excited our interest in what functions
are not just definable in the full system but actually
X-definable. The exploration of this became a major
subproject for my Ph.D. thesis. Of course, I did develop
a great deal of theory of positive integers in Church’s
formalism, using many h-definitions in the process.

After my thesis was accepted (September 1933) and
before it was published (1935), Rosser and I estab-
lished that the full formal system of Church is incon-
sistent (as was suspected in the fall of 1933, finally
established in the spring of 1934, and published in
Kleene and Rosser 1935). I then (in the spring of 1934)
rewrote my thesis to retain, first, only as much of the
theory developed in Church’s full system as was used
in the proof of its inconsistency, and second, the theory
of h-definability of functions, divorced from the incon-
sistent system and standing solidly on the Church-
Rosser theorem. When it began to appear that the full
system is inconsistent, Church spoke out on the sig-
nificance of h-definability, abstracted from any formal
system of logic, as a notion of number theory. (I do
not think this significance had been escaping me. On
p. 23 of the manuscript of my thesis as submitted for
publication on October 9, 1933, before its revision,
there is a statement to the effect that all the formal
definitions in the thesis are actually h-definitions.)

Let me sketch how my subproject went, from Feb-
ruary 1932 on. Church and I knew that only effectively
calculable functions can be h-definable. We kept think-
ing of specific such functions, and of specific operations
for proceeding from such functions to others. I kept
establishing the functions to be h-definable and the
operations to preserve X-definability.

Haskell Curry with
Brace Kleene (the
author’s son) on his
shoulders at the
Kleene farm in
Hope, Maine, in
1949.

Schiinfinkel(l924) and Curry (1929,1930,1932) had
developed combinatory logic, in which variables are
not used, being replaced by constants that serve their
functions. Rosser, for his Ph.D. thesis under Church
(published 1935) brought this into relation with the
h-calculus. In Rosser’s version of combinatory logic,
two constants I and J suffice, which translate into the
h-calculus as Xx*x and Xf&z.f(x, f(z, y)). Thus, in
combinatory logic J(F, X, Y, Z) reduces (by itself, or
as part of a larger expression) to F(X, F(Z, Y)), just as
in the h-calculus {hf&z*f(x, f(z, y))} (F, X, Y, Z) does.
Let us call the formulas we get in the X-calculus using
only variables, I, and J “combinations”. Thus, a vari-
able is a combination. I and J (as translated into the
h-calculus) are combinations. If M and N are combi-
nations, so is {M}(N). The combinations are all and
only the expressions that are such by repeated appli-
cations of these three clauses. The terms in a combi-
nation are the occurrences of variables, I, and J in it.

By Rosser’s results (already known to me in the
spring of 1932), for any h-formula A there is a combi-
nation A’ such that A’ red A. (Actually, what I took
over from Rosser was that A’ conv A. But without
digging into Rosser’s arguments, we can see that A’
red A, by induction on the construction of A. Take the
case A is hxP. By the hypothesis of the induction,
there is P’ such that P’ red P. Say P’ consists of the
terms t,, . . . , t,, each either x or some other variable,
or one of I and J. Replace in P’ each of tl, . . , t, that
is an I or J by a different variable to get P”. By
Rosser’s result, there is a combination R” such t,hat

Annals of the Hlstory of Computmg, Volume 3, Number 1, January 1981 * 57

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene - Recurswe Function Theory

R” conv hxP”. However, hxP” is in normal form, so by
the Church-Rosser theorem, R” red hxP”. If we re-
place in this reduction each variable that in P” repre-
sents a term I or J of P’ by the I or J represented, the
sequence of reduction steps that worked with the
variables will still work. Thus, making the replace-
ments in R” to get R’, we have a combination R’ with
R’ red XxP’ red hxP. The basis and the induction step
for {M} (N) are immediate.)

One evening in the spring term of 1932, while listen-
ing to a concert at Princeton, I saw how to use this to
establish (inter alia) that, if A and B are any two X-
formulas with the same free variables, there is a h-
formula L such that L(1) red A and L(2) red B. The
idea for the construction of L is first to replace A and
B by combinations A’ and B’ with A’ red A and B’ red
B. The terms in these combinations can be listed. The
resulting double list of terms, but with each distinct
variable listed only once, can be trussed up into a h-
formula L with the following property. When L is
applied to the numeral 1, the terms coming from A’
are thrown into place in their original structure to give
A, while the terms coming only from B (not variables)
are disintegrated, and vice versa when applied to 2
(my 1934 pp. 537-538). This form of definition by cases
was very useful.

To illustrate, consider the problem of h-defining a
function 4 defined by a primitive recursion of the
rudimentary form 4(l) = a, @(S(n)) = $(4(n)). Sup-
posing the function II/ can be h-defined by G, we will
want to h-define a sequence of h-formulas of the form

(5) A, G(A), GtGW), G(G(GW)),

Of course, if A is reducible to a numeral, and G h-
defines a total function, A and G will contain no free
variables. But in the theory of h-definability, we can
and do consider the X-definability of this sequence
under only the obvious condition that the free vari-
ables of G are among those of A. In brief, we want to
prefix A to the sequence of h-formulas (2). (If we had
identified the positive integers, or the natural num-
bers, with @+x, hfx*f(x), hfx*f(f(r)), . . . , in the
h-K-calculus, (5) instead of (2) would have been im-
mediate.) First, consider any h-formula F with the
same free variables as A. By cases, we can get a
formula L such that L(1) red F and L(2) red hn*n(l,
A). Now take F’ to be Xn*L(n(P, 3), P(n)). It is easily
seen that, for n = 1, 2, 3, . . . , F’(n) reduces to

(6) A, F(l), P(2), F(3),

So, when F is Xn*n(G, A), which h-defines (a), F’ is the
desired X-formula h-defining (5).

Now consider the general form of a primitive recur.
sion for a function of one variable: cp(1) = a, @(S(n))
= $(n, $(n)). Now we want

(7) A, G(l, A), G(2, G(1, A)),

In (5), let its A and G be hn*n(l, A) and hm*G($
~(P(IL))), and for the F’ h-defining (5) then let F” be
hn*F’(n, P(n)). It is not hard to see that F” h-defines
(7).

Finally, in this series of illustrations, take a primitive
recursion with a parameter: $(l, x) = (u(x), @(S(n), .a$
= $(n, +(n, x), x). We want a h-formula F”’ such that,
for n = 1, 2, 3,, and any x, F”‘(n, x) reduces
respectively to

(8) A(x), (31, A(x), x), W’, GO, A(x), x), ~1,

In (7), let its A and G be A(x) and hnr*G(n, r^, x), and
take F”’ to be Xnx*F”(n).

I also treated some variations of the schema of
primitive recursion, which now we know from Peter
1934 or otherwise (see my 1952 Chapter IX) to be
reducible to primitive recursion, and further, for ex-
ample, double recursion.

In racking my brains for still more examples of
effective definitions on which to try out my ability to
X-define, I thought of the least-number operator “the
least y such that”, which since my 1938 I have written
“py”. If R(x, y) is a total (i.e., completely defined)
effectively decidable relation, and for each x there is
a y such that R(x, y), then pyR(x, y) is a total function
G(X), which I considered to be effectively calculable,
even if one can give in advance no bound for they. (If
a bound ii/(x) for the y can be found for each x, the
definition of $(x) can be effected primitive-recursively
from R(x, y) and $(x), as was known to Skolem in 1923
and Godel in 1931.) Otherwise, but with R(x, y) effec-
tively decidable, pyR(x, y) is an effectively calculable
partial function, as will appear in our treatment.

Frequently, descriptive definitions of functions of
positive integers can be expressed in terms of the p-
operator.

To treat pyR(x, y) in the X-calculus, say the relation
R(x, y) is represented by a X-formula R with R(x, y)
red 2 if R(x, y) and R(x, y) red 1 if not R(x, y). I
constructed a h-formula P such that, if D(K) red 2,
then 63(D, k) red k, and if D(k) red 1, then P(D, k)
red @(D, k+l). So @(R(x), 0) red y for the least y such
that R(x, y) red 2 and each of R(x, O), . . . ,
R(x, y-l) red 1. Thus Xx@(R(x), 0) h-defines p yR(x,
y). The letter “ 63” stood for “perpetual motion func-
tion”; if D(i) red 1 for all i, then V(D, 0) red @(D, 1)
red @(D, 2) . . . ad infinitum.

58 - Annals of the Hlstory of Computing, Volume 3, Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

This result greatly extended our horizon for render-
ing effective definitions by h-definitions. Also, it be-
came clear at once that a host of particular problems
of elementary number theory can be subsumed under
the problem of determining whether any given X-
formula C has a normal form (see Kleene 1935 pp.
232-233, Church 1936 pp. 358-359). In a sense, this
observation set the stage for the undecidability proof
by Church 1936 for this problem, and the same for the
halting problem for Turing machines (see my 1952 p.
382).

Subsequently, after writing and rewriting my thesis
and befoie July 1, 1935, I thought of what in 1952 I
called the “recursion theorem” (1938, 1952 pp. 352-
353) and established it in the h-calculus, calling it
“circular definition” (193&z, (19) p. 346 and discussion
p. 347): For any X-formula G and any positive integer
p, there is a X-formula F such that, for every ~1, . . . ,

XP,

S. C. Kleene - Recursive Function Theory

F’lh..., a+) red {Cl@‘, xl, . . . , G,
Kurt Gb;del (right) and his wife, Adele (second from left),

and, if G contains no free variables, a h-formula H with the author’s parents, Gustav A. Kleene and Alice C.
such that H(F) red 1, which enables us to erase F when Kleene, in Hope, Maine, in 1941.
it is in the way (for example, when G represents a
definition by cases with F not used in all cases).

The recursion theorem treats an absolutely general When Church proposed this thesis, I sat down to
form of recursion. If a function + is defined by saying disprove it by diagonalizing out of the class of the h-
that any value $(x1, . . . , x,,) shall be obtained by definable functions. But, quickly realizing that the
operating on the arguments x1, . . . , x, and the function diagonalization cannot be done effectively, I became
+ itself by a given functional II/, and # is h-definable in overnight a supporter of the thesis.
the obvious sense for functionals, the theorem tells us Giidel came to the Institute for Advanced Study in
that then cp is h-definable. In general, a function 4 so the fall of 1933. According to a November 29, 1935,
defined is partial. The theorem separates the issue of letter from Church to me, Gijdel “regarded as thor-
whether + is X-definable (it is) from the issue of what oughly unsatisfactory” Church’s proposal to use h-
p-tuples of ,numbers it is defined for (at worst, none). definability as a definition of effective calculability.
Actually, G here need not h-define a functional 4, but Church “replied that if [Godel] would propose any

{GIF’, XI, 11cp) may be reducible to a numeral definition of effective calculability which seemed even
depending on what h-formula F is, not just on what partially satisfactory [Church] would undertake to
partial function it X-defines. prove that it was included in lambda-definability.”

In my 1936a, X-definability theory is reworked from Soon thereafter, in his lectures in the spring of 1934,
the beginning to obtain definition by cases and the Giidel took a suggestion that had been made to him
recursion theorem quickly, and primitive recursion by Herbrand in a letter in 1931 and modified it to
and the least-number operator follow. as applications secure effectiveness. The result was what is now
of the recursion theorem, which I used in 1951 in known as “Herbrand-GGdel general recursiveness”.
studying von Neumann’s self-reproducing automata. Herbrand’s suggestion (as reported in Gijdel 2934)

Let us back up a little in time to 1933, to see how was this: “If cp denotes an unknown function, and $1,
X-definability related to other developments. The con- . . . , & are known functions, and if the $‘s and the +
cept of h-definability existed full-fledged by the fall of are substituted in one another in the most general
1933 and was circulating among the logicians at fashions and certain pairs of the resulting expressions
Princeton. Church had been speculating, and finally are equated, then if the resulting set of functional
definitely proposed, that the X-definable functions are equations has one and only one solution for 4, $I is a
all the effectively calculable functions-what he pub- recursive function.”
lished in 1936, and which I in 1952 Chapter XII (or Giidel’s modification consisted, besides in being a
almost in 1943) called “Church’s thesis”. bit more specific about the form of the eauations. in

Annals of the History of Computing, Volume 3, Number 1, January 1981 ’ 59
Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene - Recursive Functton Theory

requiring that, for each set of natural numbers x1,
. .) X~ as arguments of up, exactly one equation of the
form $(x1, . . . , x~) = m (with numerals in appropriate
symbolism) is deducible by a substitution rule and a
replacement rule from the set of functional equations
and the equations giving the values of &, . . . , $k,

presumed to be previously defined in a similar manner.
In a February 15,1965, letter to Martin Davis, Godel

wrote, “However, I was, at the time of these lectures
[1934], not at all convinced that my concept of recur-
sion comprises all possible recursions . . .“.

I somewhat edited the details in my 1936 and 1943
(see also my 1952 pp. 274-275), in particular wrapping
together all of the equations defining all of &, . . . ,
$A, cp, back to the starting point, into one system E of
equations as the recursive definition of (p.

Church (1936) and I (1936a) published equivalence
proofs for Herbrand-Godel general recursiveness to
h-definability. So, under Church’s thesis, there were
now two exact mathematical characterizations of the
intuitive notion of all effectively calculable functions,
or all functions for which algorithms exist in the sense
exemplified by many particular examples in over two
millennia of mathematical history.

People have asked me how I thought of the normal
form theorem for general recursive functions that I
gave in my 1936. (From 1936 on, my writing was in
terms of the natural numbers rather than the positive
integers.) The theorem includes that each general
recursive function is obtainable using only primitive
recursions (with explicit definitions) and the least-
number operator (used just once).

I had been preconditioned by my work on X-defin-
ability to think in terms of these elements. Thus I had
confirmed in my Ph.D. thesis that all primitive recur-
sions (as well as explicit definitions) can be effected in
the X-calculus, and likewise the least-number operator.
Part of the project for my 1936a paper was to prove
that every general recursive function is h-definable; so
I could not help but reflect that I could do that if I
could get every general recursive function by a com-
bination of primitive recursions (with explicit defini-
tions) and least-number operations.

With this motivation, I came up with an idea akin
to the following. First, we can represent the stages in
the computation of a value of a general recursive
function 4 (here, the deductions from the system E of
equations defining (p recursively) by Godel numbers,
and characterize the numbers representing such stages
(deductions) primitive-recursively. I knew the uses of
Gddel numbering very well from my study of Godel
1931. Second, we can search by the least-number
operator for the first number y that represents a stage
recognizable primitive-recursively as terminal for the

computation of the value of 4 for given arguments x1,
. . .) x~. Third, having found such a y, from it we can
extract primitive-recursively the value m. Moreover,
in this process, the system E of equations defining 4
recursively is represented by its Glide1 number e. Using
these numbers as parameters, each general recursive
function up is expressible in the form

dx1, . . . , 4 = U(py.yTte, XI, . . . , xp, Y))

for some natural number e, where U is a fixed primi-
tive recursive function, and T is a fixed primitive
recursive predicate (a (p+2)-ary relation). This sum-
marizes what seems the best version of the proof
(Kleene 1943). In this version, the method used applies
directly to any of the known characterizations of the
effectively calculable functions-for example, to h-de-
finability and to Turing computability. (In 1936, in-
stead of characterizing primitive-recursively the Godel
numbers of deductions, I enumerated primitive-recur-
sively the Godel numbers of deducible equations. The
idea of a “recursively enumerable class [set]” first
appeared there.)

That the equation just exhibited holds, for a given
general recursive function +, for some e (a Godel
number of E), for all x1, . . . , x~, depends on the
foregoing formulation whereby a system E of equa-
tions defines + recursively iff, for each x1, . . . , x~, there
is exactly one m for which an equation of the form

44x1, . . . , x~) = m is deducible from E.
It remained for me in 1938 (the work was done in

1936) to omit this assumption about E, and just talk
about those p-tuples xl, . . . , X~ for which there is an
m, still assumed to be unique, such that +(x1, . . . , x,,)
= m is deducible from E. So @(xl, . . . , x~) becomes a
partial function. The functions so definable I called
partial recursive, and for them the equation of the
normal form theorem becomes

h% . . . , s) 2 WwTte, XI, . . . , xp, Y))

where “2” means that the two members are either
both defined with the same value or both undefined.
This generalization (should I say “partialization”?) of
the notion of general recursive function had been
positively avoided by Church 1936 and Turing 1936-
37, 1937 (see my 1978 footnote 1).

In my 1938 application of partial recursive functions,
I needed the recursion theorem. Remembering that I
had it in the h-calculus, I found a proof of it less than
one line long in my theory of partial recursive func-
tions. In my 1938 footnote 7 and 1952 p. 340, I intro-
duced the notation “{e} (xl, . . . , x~)” for the right side

60 * Annals of the History of Computmg, Volume 3. Number I, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

of the normal form theorem (just above) as a partial
recursive function of e, x1, . . . , x~. Using this notation,
,the statement of the recursion theorem here exactly
parallels my statement of it above for the X-calculus:
For any natural number g and positive integerp, there
is a natural number f such that, for every x1, . . . , x,,

{ f>bl, . . , XP) = {gl(f, Xl, . . f , x,1.

This works because in the theory of partial recursive
functions any natural number, like g or f here, repre-
sents a partial (indeed, partial recursive) function. Just
as with G in the h-calculus, what g gives on the right
side may depend on f itself and not just on what
partial function f “defines recursively”. This was use-
ful in the applications.

The last of the original three equivalent exact defi-
nitions of effective calculability is computability by a
Turing machine. I assume my readers are familiar
with the concept of a Turing machine, after Turing
1936-37.

Turing learned of the work at Princeton on h-defin-
ability and general recursiveness just as he was ready
to send off his manuscript, to which he then added an
appendix outlining a proof of the equivalence of his
computability to X-definability. In 1937 he gave a
proof of the equivalence in detail. Post’s short note
1936, containing the same idea as Turing’s paper, was
independent of Turing’s work but not of the work at
Princeton.

Turing 1936-37 was concerned primarily with ma-
chines that perform the continuing computation (ad
infinitum) of infinite sequences of O’s and l’s printed
on alternate squares of the machine tape (once printed
not being erased or changed), while performing scratch
work (subject to erasures and changes) on the inter-
vening squares. A computable real number (between
0 and 1) is one whose binary expansion can be so
computed.

Turing then defined a one-place number-theoretic
function 4 to be computable iff there is a machine that
computes the sequence of O’s and l’s with ~(0) l’s
before the first 0 and, for x > 0, 4(x) l’s between the
sth and the (x+l)st 0. He remarked that a similar
definition can be given of computable functions of
several variables.

While fully honoring Turing’s conception of what
his machines could do, I was skeptical that his was the
easiest way to apply them to the computation of
number-theoretic functions. In any case, only a total
function cp(x) can be computed in his way. Hence, in
lectures at Madison, Wisconsin, in the spring of 1941
(and in my 1952 Chapter XIII), I applied his machines
differently, more like in Post 1936.

S. C. Kleene - Recursive Function Theory

First, I stipulated that any natural number n shall
be represented in computation by a block of n+l
tallies printed on consecutive squares of the machine
tape, preceded and followed by a blank square. A p-
tuple of natural numbers xl, . ,3c, is then represented
by p blocks of x1 fl, . . . , x,+1 tallies, respectively,
with a blank square before the first, between each two,
and after the last, block.

I then said that a partial function +(x1, . . . , 3cp) is
Turing computable iff some Turing machine, queried
(as I shall explain) with any p-tuple x1, . . , X~ of
natural numbers, answers with the value +(x1, . . . , x,,)
if that value is defined, and otherwise does not answer.
We query the machine with xl, . . , X~ by presenting
to it thep-tuple x1, . , x, represented as above on its
tape (assumed to be infinite to the right) with the tape
otherwise blank, with the machine scanning the right-
most tally of the representation, in what I called its
“first active state”. Machine states are what Turing
called “m-configurations”, and I supposed a given ma-
chine to have a (finite) list of “active” states (from
which the machine performs an act or in Turing’s
terminology a “move”) and one “passive” state. The
machine, so queried, answers that 4(x1, . . . , x,,) = m
iff at some later moment of time it reaches the passive
state (stops) with the (p+l)-tuple x1, , x~, m rep-
resented on its tape and the rightmost tally of that
representation scanned. Because of the determinate-
ness of each successive act, this can happen (for given
Xl, . . , xp) for at most one m.

The equivalence proofs to h-definability and recur-
siveness in Turing 1937 together with those in my 1952
Chapter XIII established the equivalence of this ver-
sion of Turing computability to Turing’s in 1936-37
when + is total; otherwise his version does not apply.
For one who would work directly from Turing 1936-
37, a useful critique is provided by the appendix to
Post 1947.

For rendering the identification with effective cal-
culability the most plausible-indeed, I believe com-
pelling-Turing computability has the advantage of
aiming directly at the goal, as is clear (and as Turing
modestly suggested in 1937 p. 153).

It seems that only after Turing’s formulation ap-
peared did Godel accept Church’s thesis, which had
then become the Church-Turing thesis. In the
Postcriptum to the Davis 1965 reprint of his 1934,
Godel wrote, “Turing’s work gives an analysis of the
concept of ‘mechanical procedure’ (alias ‘algorithm’ or
‘computation procedure’ or ‘finite combinatorial pro-
cedure’). This concept is shown to be equivalent with
that of a ‘Turing machine’.” In a conversation at San
Juan on October 31, 1979, Davis expressed to me the
opinion that the equivalence between Godel’s defini-

Annals of the HIstory of Computing. Volume 3, Number 1, January 1981 - 61

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene * Recursive Function Theory

tion of general recursiveness and mine (which equiv-
alence Godel, in his February 15, 1965, letter to Davis,
called “not quite trivial”), and my normal form theo-
rem, were considerations that combined with Turing’s
arguments to convince Godel of the Church-Turing
thesis.

Because Turing’s formulation works directly with
machines, albeit idealized ones (error-free, and with
potentially infinite memory), I think it must have
considerable practical significance, although I have
not been closely concerned with this. Turing himself
went into computing at the National Physical Labo-
ratory in 1945-48 and from 1948 on at the Computing
Machine Laboratory at Manchester, England.

The earliest notion, h-definability, has (as I have
related) the remarkable feature that it is all contained
in a very simple and almost inevitable formulation,
arising in a natural connection with no prethought of
the result. And a given h-formula engenders the com-
putation procedure for the function it defines. Of
course, the h-formula may be complicated. Under Her-
brand-Godel general recursiveness, and my partial
recursiveness adapted from it, one works with systems
E of equations that can be very unwieldy. Under
Turing computability one may have very long machine
tables. Indeed, Turing 1937 p. 153 spoke of the X-
definitions as “more convenient”. (As I see it, conve-
nience for one or another purpose requires testing in
practice.)

I myself, perhaps unduly influenced by rather chilly
receptions from audiences around 1933-35 to disqui-
sitions on h-definability, chose, after general recursive-
ness had appeared, to put my work in that format. (I
did later publish one paper 1962 on h-definability in
higher recursion theory.) I thought general recursive-
ness came the closest to traditional mathematics. It
spoke in a language familiar to mathematicians, ex-
tending the theory of special recursiveness, which
derived from formulations of Dedekind and Peano in
the mainstream of mathematics.

I cannot complain about my audiences after 1935,
although whether the improvement came from switch-
ing I do not know. In retrospect, I now feel it was too
bad I did not keep active in X-definability as well. So
I am glad that interest in h-definability has revived, as
illustrated by Dana Scott’s 1963 communication.

My normal form theorem gives a means of working
with general (or partial) recursive functions that gets
one away from contemplation of the usually compli-
cated system E of equations. This provides a formu-
lation, “p-recursiveness” (1952 p. 320), in which one
can phrase much of the theory conveniently, irrespec-
tive of what original formulation one started with.

I,. E. J.
Madisol
in 1953.

Brouwer in
1. Wiscor Isin,

Subsequently, various other equivalents of the three
notions that arose in the mid-1930’s have appeared.
Their sponsors claim that these equivalents have con-
siderable merits. (Without having worked in them, I
cannot assess their merits.) I mention Post’s formula-
tion using his “canonical systems” (1943), Markov’s
“algorithms” (1951, 1954) (akin to Post’s 1943, but
corresponding to partial, instead of general, recursive-
ness), and a formulation of Smullyan using his “ele-
mentary formal systems” (1961) (also akin to Post’s
1943).

My survey, thus far, has taken us through the basic
elements of the theory of recursive functions of posi-
tive integers or of natural numbers. Much more has
happened in recursion theory.

With the emergence of the notion of general recur-
sive function, the preexisting notions of special recur-
siveness (for example, Peter 1936) gave a subrecursive
hierarchy. Other ways of getting subrecursive hierar-
chies have been studied since then, I have barely
touched the area (my 1958 with Axt’s 1959,1963), and
I do not consider myself qualified to survey it.

The first unsolvability or undecidability results were
in Church 1936 and 1936a, my 1936 and 1943, and
Turing 1936-37. Subsequent work, beginning with
Post 1947 and Markov 1947, has established the un-
solvability of a variety of mathematical decision prob-
lems “not on their face specially related to logic” (as
Church expressed to me what he hoped would happen
on a postcard dated May 19, 1936), in algebra, topol-
ogy, and real-variable analysis. References may be
found in my 1967 p. 264 and Boone 1968.

62 - Annals of the History of Computing, Volume 3, Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene * Recursive Function Theory

The intuitionistic school of mathematics, founded Post 1944 dealt with recursively enumerable sets.
by Brouwer (1908,1918-19, etc.), accepted only math- By including as such not just the sets enumerated by
ematical proofs that are “constructive”. In the spring a general recursion function (Kleene 1936) but also
of 1941 I conjectured that this should mean that an the empty set, he made the recursively enumerable
intuitionistic proof of a proposition of the form “for all sets coincide with the sets S for which the predicate a
X, there exists a y such that R(x, y)” should implicitly e S is expressible in the form (Ex)R(a, X) with R
determine a general recursive function + such that, for recursive, which I discuss below. He proposed there
all X, R(x, G(X)). I confirmed this in my 1945 taken the problem, which (after his 1948) we can state thus:
with Nelson’s 1947 (exposition in my 1952 5 82). Sim- Are all recursively enumerable but nonrecursive sets
ilar results were obtained for intuitionistic analysis of the same degree of unsolvability? An affirmative
(Kleene and Vesley 1965). Survey in my 1973. answer would mean that all proofs of unsolvability of

Church and Kleene 1936, Church 1938, and Kleene decision problems for formal systems (or for recur-
1938 applied the notions of A-definability and recur- sively enumerable sets) can in principle be established
siveness to characterizing effectiveness in defining by “reducing” the decision problem in hand to one
transfinite ordinals. Thus arose a theory of construc- particular unsolvable such problem. “Post’s problem”,
tive ordinals, further investigated in my 1955a with as this came to be known, resisted solution until 1956.
1944, and in Spector 1955. Friedberg (1956, 1957), then a 20-year-old senior at

Recursiveness relativized to a class of number- Harvard, and Muchnik (1956, 1958), in Russia, of
theoretic problems, or, as I would apply it, to a total similar age, independently proved that there exist
number-theoretic predicate or to a set of numbers or pairs of recursively enumerable sets of incomparable
to a total number-theoretic function, was introduced degrees of unsolvability, answering Post’s question
by Turing in his 1939 (written at Princeton), with his negatively.
suggestive imagery of an “oracle”. For example, with In 1943 I introduced a hierarchy of predicates, sub-
a total function #, a function C#I is (general or partial) sequently called the “arithmetical hierarchy”, ob-
recursive in $, iff cp is computed by a machine like tained by starting with the recursive predicates and
Turing’s 1936-37 machines except for having access to prefixing more and more quantifiers (“for all x” or
an oracle, who, asked “What is the value of J/(x)?” “(x)“; “(there) exists (an) x (such that)” or “(Ex)“).
for any x that comes up in the course of the machine’s This gives a classification of the predicates used in
calculations, will always answer with the correct value. elementary number theory (or “arithmetic”). Indeed,
Following Godell934, let us represent a predicate P(x) consider the predicate forms
by the function o(x) with 4(x) = 0 when P(x) is true

bwR(a, x) (x)(Eyvw4 x, Y) - * * and G(X) = 1 when P(x) is false. Then we say P is
recursive iff cp is. Similarly, representing Q(X) by q(x), W-4
P is recursive in Q iff $I is recursive in $.

Post in 1948 defined “degrees of unsolvability” of (x)R(a, 4 uw(yMa, x, Y) * f *

predicates, sets, or functions. “Unsolvability” suggests where the R in each stands for a general recursive
that he is dealing (primarily) with predicates, etc., for predicate (equivalently after the first, a primitive re-
which there is no algorithm or solution to the “decision cursive predicate). To each of the forms after the first,
problem” for whether the predicate holds for given there is a predicate of the variable a expressible in
arguments or whether a given number belongs to the that form, but not in the other form with the same
set or to the “computation problem” of finding an number of quantifiers, nor in any of the forms with
algorithm to compute the function. A predicate P is of fewer quantifiers. This result (obtained in 1940) marks
the same degree as Q, iff P is recursive (after Turing the beginning of the use of applications and adapta-
1939) in Q and vice versa; of lower degree than Q, iff tions of recursive function theory to reveal structure
P is recursive in Q but not vice versa. A degree is the in parts of classical mathematics where effectiveness
set of all the predicates, sets, and functions that have does not in general obtain. The farther up in this
the same degree as a given one of them. The lowest arithmetical hierarchy one must go to define a predi-
“degree of unsolvability”, called “solvability”, consists cate, the higher is its degree in the sense of Post 1948.
of the general recursive predicates, sets, and functions. By Kleene and Post 1954, Post’s degrees give a fine
In 1944 I joined Post in studying the structure of the structure of differing degrees within each level of the
system of his degrees. An extensive field of research arithmetical hierarchy above the lowest. Mostowski
grew out of this (for example, Sacks 1963, Shoenfield 1947 obtained the arithmetical hierarchy indepen-
1971). dently, in a little different format in which he gave it

Annals of the History of Computing, Volume 3, Number 1, January 1981 * 63

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S C Kleene * Recurswe Function Theory

as analogous to the hierarchy of projective sets in
descriptive set theory. Addison 1954, 1955, 1958, 1960
investigated this analogy and others.

By considering Turing’s computation by a machine
having access to an oracle, but, with the rules govern-
ing the machine (including how it puts questions to
the oracle and what it does when the oracle gives any
answer) fixed, varying the oracle so that she answers
for one or another value of a one-place function vari-
able a, I obtained in 1950 the notion of a general
recursive function with a function variable. In brief,
+(a) can be regarded as a recursive function +(a, a) of
two variables, iff $(a) is recursive in (Y (by a Turing
oracle-machine) uniformly in cr. We can omit the num-
ber variable here, or, in general, we can have any finite
number of variables of each type, number and one-
place function. (I did this then for my studies of
intuitionism.)

In 1955, I used this to build a hierarchy of number-
theoretic predicates of a by applying quantifiers with
function variables to arithmetical predicates: the “an-
alytic hierarchy”. The arithmetical hierarchy consti-
tutes the lowest level in the analytic hierarchy, just as
the general recursive predicates constitute the lowest
level in the arithmetical hierarchy. The arithmetical
hierarchy can alternatively be extended, less steeply,
to transfinite levels (indexed by constructive ordinals
of the first and second number classes). In effect, we
use transfinite successions of number quantifiers. This
gives the “hyperarithmetical hierarchy”. In 19556, I
showed that the predicates falling in this hierarchy
are exactly those that are expressible in both one-
quantifier forms of the analytic hierarchy. This is the
analog of the result of my 1943, Post 1944, and Mos-
towski 1947 that a predicate is general recursive ex-
actly if it is expressible in both one-quantifier forms of
the arithmetical hierarchy.

Addison initiated discussions at Madison and at
Warsaw that led to the proposal of the notations C$?,
II+?,, which are now standard for these hierarchies (Ad-
dison 1958, Mostowski 1959). Here ZZz is the class of
the sets S for which the predicate a t S is expressible
(or of the predicates expressible) in the K-quantifier
form of the arithmetical (or hyperarithmetical) hier-
archy with an existential quantifier first; II;, with a
universal quantifier first. E,& II; relate similarly to the
analytic hierarchy; for j > 1, Xi, II% to the hierarchies
with quantifiers of higher finite types which I pre-
dicted in 1955 p. 312 and 1955b p. 212 and studied in
1959 and 1963. The further notation A/, = Es f? IIA
came into use in the late 1960’s. Thereby, the two
theorems just stated can be written concisely:

hyperarithmetical = Ai and general recursive = Ah.

Currently, research is in progress on a theory usiql
recursive functions of any finite types 0, 1, 2, . . . 01:

variables. Type 0 is the natural numbers, and type!
j+l is the one-place functions from type j to type 0.i
This theory was opened up by my 1959 and 1962/
(survey in Kechris-Moschovakis 1977). Also, the “in.;
ductive definitions”, of which many examples were’
used in the foregoing developments, have become ‘a’
subject of study in general (for example, Spector 1961,!
Moschovakis 1974).

My invitation to lecture at the FOCS meeting men.’
tioned interest in my work published as “Representa.;
tion of events in nerve nets and finite automata” 1956
(and 1951). About the genesis of that, I can say little)
more than that I had the luck to find myself again,
working in a context in which significant developments
were implicit but not yet explicit-just as in 1931-32
when I was given Church’s formalism to study, in:
which the h-calculus was maybe implicit or maybe
explicit, but all that it developed to be was certainly
only implicit.

In the summer of 1951, as a visitor at the RAND’
Corporation in Santa Monica (through an invitation
obtained by my old friend of Princeton days, Merrill,
Flood), I was given the McCulloch and Pitts paper
1943, with their mathematical model for nerve nets, to
see what I would make of it. I found their model to be
very interesting-an original contribution-but their
analysis of it to fall quite short of what was possible.
So I did what cried out to be done with it (as it seemed
to me), having newly in mind also the idea of a finite
automaton, which came to me that summer at RAND
through reading in printer’s proof (?) von Neumann’s
Hixon Symposium lecture 1951. My work in this area
was all done in a few months in 1951 at Santa Monica
and back at Madison, and a bit of time in 1955 in
editing the resulting Project RAND Research Memo-
randum for Automata Studies. This work was an
interpolation into the midst of a very pressing program
of research in recursive function theory, broadly con-
strued. I had then much work long in progress but not
yet in final form. Therefore, I felt compelled to invest
my further time where I already had a large invest-
ment to protect. This was painful to me, because I
could see many alluring problems opening up in the
field of automata theory that I had just touched.

Herewith I conclude my testimony.

Acknowledgment

The preparation of this paper was supported in part
by the National Science Foundation under Grant No.
MCS79-01439.

64 - Annals of the History of Computmg, Volume 3, Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
Ackermann, Wilhelm

1928. Zum Hilbertschen Aufbau der reellen Zahlen. Math-
ematische Annalen 99, 118-133 (English trans. in van
Heijenoort, 1967, pp. 493-507).

Addison, John W.
1954. On Some Points of the Theory of Recursirle Func-

tzons. Ph.D. dissertation, University of Wisconsin.
1955. Analogies in the Borel, Luzin, and Kleene hierar-
chies, I and II. Abstracts, Bul. Amer. Math. Sot. 61, 75
and 171-172.

1958. Separation principles in the hierarchies of classical
and effective descriptive set theory. Fundamenfa Math-
ematzcae 46, 123-135.

1960. The theory of hierarchies. Logic, Methodology and
Philosophy of Science. Proc. of 1960 International Con-
gress. E. Nagel, P. Suppes, and A. Tarski, eds. Stanford,
Stanford University Press, 1962, pp. 26-37.

Axt, Paul
1959. On a subrecursive hierarchy and primitive recursive

degrees. Trans. Amer. Math. Sot. 92, 85-105.
1963. Enumeration and the Grzegorczyk hierarchy. Zeit-

achrift fur mathematische Logik und Grundlagen der
Mathematik 9, 53-65.

Boone, William W.
1968. Decision problems about algebraic and logical sys-

tems as a whole and recursively enumerable degrees of
unsolvability. Contributions to Mathematical Logic. K.
Schutte, ed. Amsterdam, North-Holland, pp. 13-33, 72-
74.

Brouwer, L. E. J.
1908. De onbetrouwbaarheid der logische principes (The

untrustworthiness of the principles of logic). Tildschrift
1’oor Wqsbegeerte 2, 152-158.

1918-19. Begrundung der Mengenlehre unabhangig vom
logischen Satz vom ausgeschlossenen Dritten. Verhan-
dehngen der KoninklGke Akademie van Wetenschap-
pen te Amsterdam (Eerste sectie) 12, 5 (1918), 43 pp.; 7
(1919) 33 pp.

Church, Alonzo
1932. A set of postulates for the foundation of logic. Annals

of Math., 2s. 33, 346-366.
1933. A set of postulates for the foundation of logic (second

paper). Annals of Math., 2s. 34, 839-864.
1936. An unsolvable problem of elementary number the-

ory. Amer. J. Math. 58, 345-363.
1936a. A note on the Entscheidungsproblem. J. Symbolic

Logic 1, 40-41. Correction, 101-102.
1938. The constructive second number class. Bul. Amer.

Math. Sot. 44, 224-232.
Church, Alonzo, and S. C. Kleene

1936. Formal definitions in the theory of ordinal numbers.
Fundamenta Mathematicae 28, 11-21.

Church, Alonzo, and J. B. Rosser
1936. Some properties of conversion. Trans. Amer. Math.

Sot. 39, 472-482.
Curry, Haskell B.

1929. An analysis of logical substitution. Amer. J. Math.
51, 363-384.

S. C. Kleene . Recursive Function Theory

1930. Grundlagen der kombinatorischen Logik. Amer. J.
Math. <52, 509-536, 789-834.

1932. Some additions to the theory of combinators. Amer.
,I: Math. 54, 551-558.

Davis, Martin
1965. The Undecidable. Basic Papers on Undecidable

Propositions, &solvable Problems and Computable
Functions. Hewlett, N.Y., Raven Press, 440 pp.

Dedekind, Richard
1888. Was sind und was sollen die Zahlen? Braunschweig

(English trans. in Dedekind, Essays on the Theory of

Numbers. Chicago, Open Court, 1901, 29-115).
Friedberg, Richard M.

1956. [Article concerning him.] Time 67, 12 (March 19,
1956), 83.

1957 (abstract 1956). Two recursively enumerable sets of
incomparable degrees of unsolvability (solution of Post’s
problem. 1944). Proc. Nat. Acad. Sci. 4s 236-238. Ab-
stract, Bul. Amer. Math. Sot. 62 (1956), 260.

Godel, Kurt
1931. Uber formal unentscheidbare Satze der Principia

Mathematics und verwandter Systeme I. Monatshefte
ftir Mathematik und Physik 38, 173-198 (English trans.
in Davis, 1965, 4-38, and in van Heijenoort, 1967, 592-
616).

1931-32a. [Remarks in] Diskussion zur Grundlegung der
Mathematik. Erkenntnis 2, 147-148.

1934. On undecidable propositions of formal mathemati-
cal systems. Mimeographed notes by S. C. Kleene and .J.
B. Rosser on lectures at the Institute for Advanced
Study, 1934, 30 pp. (reprinted in Davis, 1965, 39-74).

1938. The consistency of the axiom of choice and of the
generalized continuum-hypothesis. Proc. Nat. Acad. Sci.
24, 556-557.

1939. Consistency-proof for t.he generalized continuum-
hypothesis. Proc. Nat. Acad. Sci. 25, 220-224.

1940. The consistency of the axiom of choice and of the
generalized continuum-hypothesis with the axioms of

set theory. Notes by George W. Brown on lectures at the
Institute for Advanced Study, 1938-39. Annals of Math-
ematics Studies 3, Princeton, Princeton University
Press, 66 pp.

Hilbert, David
1926. Uber das Unendliche. Mathematische Annalen 9,5,

161-190 (English trans. in van Heijenoort, 1967, 367-
392).

Kechris, Alexander S., and Yiannis N. Moschovakis
1977. Recursion in higher types. Handbook of Mathemat-

ical Logic. Jon Barwise, ed. Amsterdam, North-Holland,
pp. 681-737.

Kleene, Stephen C.
1934. Proof by cases in formal logic. Annals of Math., 2s.

35, 529-544.
1935. A theory of positive integers in formal logic. Amer.

J. Math. 57, 153-173, 219-244.
1936. General recursive functions of natural numbers.

Mathematische Annalen 112, 727-742.
1936a. X-definability and recursiveness. Duke Math. ,I. 2,

340-353.

Annals of the Hlstory of Computing, Volume 3, Number 1, January 1981 * 65
Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene * Recursive Function Theory

Kleene, Stephen C. (confznued)
1938. On notation for ordinal numbers. J. Symbolic Logic

3, 150-155.

1943. Recursive predicates and quantifiers. Trans. Amer.
Math. Sot. 53, 41-73.

1944. On the forms of the predicates in the theory of
constructive ordinals. Amer. J. Math. 66, 41-58.

1945. On the interpretation of intuitionistic number the-
ory. <J. Symbohc Logw 10, 109-124.

1950. Recursive functions and intuitionistic mathematics.
Proc. Int. Congress of Mathematlccans, Cambridge,
I4 1 ass. Providence, Amer. Math. Sot., 1952, I, 679-685.

1952. Introductzon to Metamathematrcs. Amsterdam,
Nor(,h-Holland, xi+550 pp. (eighth reprint 1980).

1955. Arithmetical predicates and function quantifiers.
Trans. Amer. Math. Sot. 79, 312-340.

1955a. On the forms of the predicates in the theory of
constructive ordinals (second paper). Amer. J. Math. 77,
405-428.

1955b. Hierarchies of number-theoretic predicates. Bul.
Amer. Math. Sot. 61, 193-213.

1956. Representation of events in nerve nets and finite
automata. Automata Studies. C. E. Shannon and .J.
McCarthy, eds. Annals of Mathematkcs Studies 34,3-41
(slightly altered from Project RAND Research Memo-
randum RM-704, 15 December 1951, 101 pp.).

1958. Extension of an effectively generated class of func-
tions by enumeration. Colloqutum Mathematicum 6,67-
78.

1959. Recursive functionals and quantifiers of finite types
I. Trans. Amer. Math. Sot. 91, l-52.

1962. Lambda-definable functionals of finite types. Fun-
damenta MathematLcae 50, 281-303.

1963. Recursive functionals and quantifiers of finite types
II. Trans. Amer. Math. Sot. 108, 106-142.

1967. MathematLcal LogLc. New York, John Wiley & Sons,
xiii+398 pp.

1973. Realizability: a retrospective survey. Cambridge
Summer School m MathematLcal Logic, 1971. A. R. D.
Mathias and H. Rogers, eds. Lecture Notes in Mathe-
ma&s 337, Berlin, Springer-Verlag, 95-112.

1976. The work of Kurt Godel. J. SymbolLc Logzc 47, 761-
778. An addendum, 43 (1978), 613.

1978. Recursive functionals and quantifiers of finite types
revisited I. Generalized recurskon theory II, Proc. 1977
Oslo Symposrum. J. E. Fenstad, R. 0. Gandy, and G.
Sacks, eds. Amsterdam, North-Holland, 185-222.

Kleene, S. C., and Emil I,. Post
1954. The upper semi-lattice of degrees of recursive un-

solvability. Annals of Math., 2s. 59, 379-407.
Kleene, S. C., and J. B. Rosser

1935. The inconsistency of certain formal logics. Annals
of Math., 2s. .?6, 630-636.

Kleene, S. C., and R. E. Vesley
1965. The Foundattons of IntuLtLonLstLc Mathematics.

Amsterdam, North-Holland, viii-1206 pp.
Markov, A. A.

1947. On the impossibility of certain algorithms in the
theory of associative systems (A. A. Markoff). Comptes

rendus (Doklady) de l’iicaddmie des Sciences de1
I’URSS, n.s. 55, 583-586 (English trans. of Russian orig-i
inal).

1951. Theory of algorithms. Amer. Math. Sot. Transla.~
tions, 2s. 15 (1960), 1-14 (English trans. of Russian:
original).

1954. Theory ofdlgorithms. National Science Foundation,
U.S. Department of Commerce, and Israel Program for’
Scientific Translation (1961), vi+444 pp. (English trans..
of Russian original).

McCulloch, Warren S., and Walter Pitts
1943. A logical calculus of the ideas immanent in nervous

activity. Bul. Math. Biophysics ,5, 115-133.

Moschovakis, Yiannis N.
1974. Elementary Induction on Abstract Structures. Am.

sterdam, North-Holland, 174 pp.
Mostowski, Andrzej

1947. On definable sets of positive integers. Fundamenta
Mathematicae 34, 81-112.

1959. On various degrees of constructivism. Constructiuity
in Mathematics. Proc. of Colloquium, Amsterdam,
/9#57, A. Heyting, ed., Amsterdam, North-Holland, 178-
194.

Muchnik, A. A.
1956. NerazreBimost problemy svodimosti teorii algorit-

mov (Negative answer to the problem of reducibility of
the theory of algorithms). Doklady Akademii Nauk
S.S.‘S.R., n.s. 108, 194-197.

1958. Solution of Post’s reduction problem and some other’
problems of the theory of algorithms. I. Amer. Math.’
Sot. Translations, 2s. 29 (1963), 197-215 (English trans.
of Russian original).

Nelson, David
1947. Recursive functions and intuitionistic number the-,

ory. Trans. Amer. Math. Sot. 61, 307-368.
Peano, Giuseppe.

1889. Arithmetices Principia, Nova Method0 Exposita.
Turin, Bocca, xvi+20 pp. (English trans. in van Heijen-
oort, 1967, 83-97).

1891. Sul concetto di numero. Riuista di Matematica 1,
87-102, 256-267.

Peter, Rozsa
1932. Rekursive Funktionen. Verhandlungen des Inter-

nationalen Mathematiker-Kongresses &rich 2, 336-’
337.

1934. iiber den Zusammenhang der verschiedenen Be-
griffe der rekursiven Funktion. Mathematische Annalen
110,. 612-632.

1935. Konstruktion nichtrekursiver Funktionen. Mathe-
matische Annalen 111, 42-60.

1936. iiber die mehrfache Rekursion. Mathematische An-
nalen 113, 489-527.

1951. Rekursirle Funktionen. Budapest, AkadGmiai Kiadt,
(Akademischer Verlag), 206 pp. Recursive Functions,
Third revised edition, New York, Academic Press, 1967,
300 pp.

Post, Emil L.
1936. Finite combinatory processes-formulation 1. J.

Symbolic Logic I, 103-105.

66 * Annals of the Hlstory of Computmg, Volume 3, Number 1, January 1981

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

S. C. Kleene . Recursive Function Theory

1943. Formal reductions of the general combinatorial de-
cision problem. Amer. J. Math. 6.5, 197-215.

1944. Recursively enumerable sets of positive integers and
their decision problems. Bul. Amer. Math. Sot. 50, 284-
316.

1947. Recursive unsolvability of a problem of Thue. J.
Symbolic Logic 12, 1-11.

1948. Degrees of recursive unsolvability. Abstract (Prelim-
inary report). Bul. Amer. Math. Sot. 54, 641-642.

Rosser, J. Barkley
1935. A mathematical logic without variables. Annals of

Math., 2s. X, 127-150; Duke Math. J. 1, 328-355.
Russell, Bertrand

1919. Introduction to Mathematical Philosophy. London,
Geo. Allen and Unwin; New York, Macmillan, viii+208
PP.

Sacks, Gerald E.
1963. Degrees of unsolvability. Annals of Mathematics

Studies 55, ix+174 pp.
Schonfinkel, Moses

1924. CJber die Bausteine der mathematischen Logik.
Mathematische Annalen 92, 305-316 (English trans. in
van Heijenoort, 1967, 355-366).

Shoenfield, *Joseph R.
1971, Degrees of Unsolvability. Amsterdam, North-Hol-

land, viii+111 pp.
Skolem, Thoralf

1923. Begrundung der elementaren Arithmetik durch die
rekurrierende Denkweise ohne Anwendung scheinbare
Veranderlichen mit unendlichem Ausdehnungsbereich.
Skrifter utgit av Viden.skapsselskapet i Kristiania, I.

Matematisk-Naturvidenskabelig Klasse 1923 6, 38 pp.
(English trans. in van Heijenoort, 1967, 302-333).

Smullyan, Raymond M.
1961. Theory of formal systems. Annals of Mathematics

Studies 47, xi+142 pp.
Spector, Clifford

1955. Recursive well-orderings. J. Sym. Logic 20, 151-163.
1961. Inductively defined sets of natural numbers. Irzfinz-

tistic methods, Proc. Symposium on Foundattons of
Mathematccs, Warsaw, 1959, Oxford, Pergamon; War-
saw, Panstwowe Wydawnictwo Naukowe, pp. 97-102.

Turing, Alan M.
1936-37. On computable numbers, with an application to

the Entscheidungsproblem. Proc. London Math. Sot.,
2s. 42, 230-265. A correction, 43 (1937), 544-546.

1937. Computability and X-definability. J. Symbolic Logic
2, 153-163.

1939. Systems of logic based on ordinals. Proc. London
Math. Sot., 2s. 45, 161-228.

van Heijenoort, Jean
1967. From Frege to Godel: a Source Book in Mathemat-

ical Logic, 1879-19.91. Cambridge, Harvard University
Press, xi+660 pp.

von Neumann, John
1951. The general and logical theory of automata. Cerebral

Mechantsms in Behavior: The Hixon Symposium, Sep-
tember 1948, Pasadena. L. A. Jeffress, ed. New York,
John Wiley & Sons, pp. 1-31.

Whitehead, Alfred North
1911. An Introduction to Mathematics. London, Williams

and Norgate; New York, Henry Holt, vi+256 pp.

Annals of the History of Computing, Volume 3, Number 1, January 1981 * 67

Authorized licensed use limited to: Charles University. Downloaded on February 17,2020 at 14:28:39 UTC from IEEE Xplore. Restrictions apply.

