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I could entitle this paper “Four Dozen Years in Re- 
cursionland” (1979 - 1931 = 48). When I was invited 
to lecture at the FOCS symposium, it was indicated 
that my hearers would be interested in how recursion 
theory (and the theory of regular events in finite 
automata theory) originated, as viewed through the 
eyes of one who was there. 

I began my intensive study of the foundations of 
mathematics with the course given by Alonzo Church 
at Princeton in the fall semester of 1931-32. My only 
previous acquaintance with the area had been very 
general, from Alfred North Whitehead’s An Introduc- 
tion to Mathematics (1911)’ and Bertrand Russell’s 
Introduction to Mathematical Philosophy (1919). 

Church’s course consisted, except for one interpo- 
lation, in the presentation of the contents of his two 
papers “A set of postulates for the foundation of logic” 
1932 and 1933. 
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The interpolation? During the fall of 1931, John von 
Neumann was the speaker one day at the mathematics 
colloquium. He chose to speak, not on work of his 
own, but on Godel’s results on formally undecidable 
sentences; von Neumann had received a preview of 
them at a meeting at Konigsberg in September 1930, 
which von Neumann and Godel both attended (Godel 
1931-32a). This topic was thereupon incorporated into 
the course, and I at once read very carefully Godel’s 
1931 paper in the Monatshefte. 

This paper contains Godel’s celebrated proof of the 
existence of undecidable sentences in formal systems 
embodying the usual elementary number theory, and 
his “second theorem” on the impossibility of a proof 
of the consistency of such a system within the system 
itself. Church’s immediate reaction was that his formal 
system, about which I am going to say more, is suffi- 
ciently different from the systems Godel dealt with 
that Godel’s second theorem might not apply to it (see 
Church 1933 top p. 843). Indeed, Church was right! In 
his system there is a proof of its own consistency, since 
in fact it is inconsistent (so all its sentences are prov- 
able), as Church had thought possible (1933 top p. 
842) and as Rosser and I showed later (Kleene and 
Rosser 1935). 

I wrote about Godel’s 1931 paper and his work 
generally in 1976. In 1931 Godel employed as a tool a 

‘A date shown in italics refers to a work listed in the References 
(under the name of the adjacent author). 
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class of number-theoretic functions, which he called 
“recursive” and which since my 1936 paper on general 
recursive functions have instead been called “primitive 

i recursive”. 
Let me summarize at this point what was known 

about recursive functions in 1931, although it was not 
until later that I read more about them. 

What are familiar as Peano’s five axioms for the 
positive integers { 1,2,3, . . . } appeared in his 1889 and 
1891. As a companion to the fifth of these axioms, 
mathematical induction, he used definition by induc- 
tion-in fact, primitive recursion (so called since P6ter 
1934). Peano’s axioms indeed come from Dedekind 
1888, who proved the theorem that a primitive recur- 
sion defines a function on the positive integers and 
applied it to the definition of the functions m + n, 
m X n, and mn. For agreement with the currently more 
usual setting for this theory, we can transpose from 
the positive integers (1, 2, 3, . . . } to the globally more 
convenient natural numbers (0, 1, 2, . . . } (used, for 
example, by Giidell931). 

The richness of the possibilities for the development 
of number theory on this basis was brought out by 
Skolem in his 1923 paper on the foundation of elemen- 
tary arithmetic through the recursive mode of thought. 
Some of the devices used by Gadell931 with primitive 
recursive functions were anticipated therein. 

Hilbert 1926 made a bold attempt to prove Cantor’s 
continuum hypothesis by using recursions of more and 
more complicated kinds to generate the number- 
theoretic functions and by associating them with in- 
creasing ordinals of the second number class. The 
attempt failed, although something of its method sur- 
vived in Godel’s proof of the consistency of the contin- 
uum hypothesis (1938, 1939, 1940). In the course of 
this attempt, Hilbert ‘used an example of a function 
definable by a transfinite recursion (or by a recursion 
on two variables simultaneously) for which Acker- 
mann had a proof (published in 1928) that it is not 
primitive recursive. 

This is what existed in 1931. Immediately thereafter, 
it was elaborated and extensively developed by P&er 
in a series of papers (1932, 1934, 1935, 1936, etc.) 

depicting a hierarchy of levels of recursive functions: 
the primitive recursive functions, the double recursive 
functions, the triple recursive functions, and so on. 
The theory is expounded in her book 1951. 

Besides this theory of special recursive functions, 
for which the basis had been laid by 1931, there had 
existed since antiquity (for example, in Euclid’s 
Elements, written about 330-320 B.C.) examples of 

Note: The photographs in this article are from the author’s personal 
collection. 
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algorithms as methods of deciding questions (predi- 
cates) or computing functions. The name “algorithm” 
is a corruption of the name of the ninth-century Ara- 
bian mathematician Al-Khowarizmi. (I participated in 
a scientific pilgrimage in September 1979 to his re- 
puted birthplace at the Khowarizm oasis in Uzbeki- 
stan.) 

As I said, in the fall semester of 1931-32 I was taking 
Church’s course in which, besides reading Gijdell931, 
I was made acquainted with Church’s postulates for 
the foundation of logic. I shall not go into these in full. 
They included one ingredient that has proved to be 
extraordinarily fruitful. 

As calculus is usually taught, the undergraduate 
mathematics student is introduced to functions, some 
of which have been given closed names, permanent 
such as “sine” or temporary such as “f “; others are 
named by expressions, such as “x4 + 3x2 + 2” contain- 
ing a variable “x”, that tell us what the value of the 
function is for each value of that variable as argument. 
The calculus student is unlikely to worry whether the 
expression “x4 + 3x2 + 2” really denotes a number (a 
different one for each number x that “x” denotes) or 
a function. That there is an ambiguity here (indeed, 
“x4 + 3s’ + 2” is called the “ambiguous-value” nota- 
tion for the said function) may be illustrated by com- 
paring two statements: “x4 + 3x2 + 2 is not less than 
2” and “x4 + 3x2 + 2 is even” (a function f is even iff, 
for all x, f(-x) = f(x)). The first statement can be read 
as about any one of the numbers that are the values 
of the function. The second statement is about the 
function. (Mathematicians have been accustomed to 
stating definitions using “if” where “if and only if” is 
meant. Recently, an elegant way of making their writ- 
ing accurate has won acceptance: spell such an “if” as 
“iff “.) 

The ambiguity can be banished by adopting “Xx[x4 
+ 3x’ + 21” as a notation, with “x” now bound by the 
prefix “Ax”, for the function itself. 

Once this notation is introduced, there are three 
obvious operations with it. (For simplicity, I usually 
omit the quotation marks from now on.) First, if f = 
Xx[x4 + 3x2 + 21, then f(2) = 24 + 3(2’) + 2 = 30. So, 
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Stephen C. Kleene (left) and Alonzo Church 
(center) with Anatol Ivanovic Malcev (back to 
camera) at a reception in Moscow in 1966. 

without introducing f, {Xx[x” + 3x2 + 2]}(2) reduces 
(equivalently) to 2* + 3(2’) + 2. Second, inversely, 2* 
+ 3(2’) + 2 expands (equivalently) to {hx[x* + 3x2 + 
2]}(2) (or indeed also to various other expressions, 
such as {hx[x4 + 3x’! + x]}(2)). Third, there is the 
usual principle that a bound variable can be changed 
to any other with the same range, so long as (in 
complicated situations) there is no “collision”. Thus 
our expression hx[x* + 3x2 + 21 means the same as 
the expression ;ly[ y* + 3~’ + 21. 

The device of this h-notation with its operations is 
so simple that one wonders why in beginning calculus 
courses some bright student did not think of it. 

Church introduced the h-notation in the context of 
his system of postulates. In my illustration hx[x4 + 3x” 
+ 21, the context is the arithemtic of the real numbers, 
where there are available some constants (such as 2 
and 3) and some functions already symbolized (such 
as sum and product). This brings us to the observation 
that, to make the “h-calculus” precise, we need to 
describe in advance the class of the meaningful expres- 
sions in which we use it. 

Let us be bold enough to do so in a minimal lan- 
guage, with just one category of variables (without 
type or sort), infinite in supply, constituting the atoms. 
We get this from Church’s formalism by stripping 
away all the other elements, which for this purpose do 
not need to be present. (In my 1934 I got the same 
effect by treating the constants no differently than the 
variables, calling them all “proper symbols”.) 

The meaningful formulas we get in this way I call 
“h-formulas”. First, the variables are X-formulas. Sec- 
ond, if P is a h-formula already built up containing x 
as a free variable, hx[P] is also a h-formula. (There is 
also a version of this theory, called the “h-K-calculus”, 
in which P is not required to contain x free.) I assume 
my readers understand free and bound occurrences of 
variables, where for us Xx is the only operator that 
binds variables. I could build in the definition of this 
simultaneously with that of the class of the X-formu- 
las. We think of hx[P] as denoting that function of x 
whose value (if defined), for each value taken by x, is 
the value then taken by P. Third, if M and N are h- 

formulas, so is {M}(N). We think of {M}(N) as the 
result of the application of a function M to an argu- 
ment N. The h-formulas are all and only the expres- 
sions that are such by repeated application of these 
three clauses. This is an example of an “inductive 
definition”, a class of objects (in the present example, 
“h-formulas”) being defined to comprise all the objects 
that are required to be in it by the repeated application 
of certain clauses (here the three clauses identified by 
their opening words “First”, “Second,” and “Third”), 
and to comprise no other objects. 

There are now the three operations by which h- 
formulas can be transformed without altering their 
meanings. I shall state them in general. (I illustrated 
them above, but not in the present purified language.) 
First, there is reduction whereby {hx[P]}(N) is 
changed to the result S$J P 1 of substituting N for the 
free occurrences of x in P, provided no “collision” of 
variables results. Second, there is expansion, the in- 
verse of reduction. Third, there is the change of a 
bound uariable, Xx[P] becoming Xy[S: PI], again 
avoiding “collision”. Each of these steps can be made 
on a whole X-formula, or on a consecutive part that is 
a h-formula, except that we do not apply expansion to 
the x of a prefix hx, as I noted in my 1934 emending 
Church’s formulation. 

As I have said, this and more are in Church’s for- 
mulation of his language and postulates. We just leave 
out the more. Before research was done, no one 
guessed the richness of this subsystem. Who would 
have guessed that this formulation, generated as I 
have described to clarify the,notation for functions, 
has implicit in it the notion (not known in mathemat- 
ics in 1931 in a precise version) of all functions on the 
positive integers (or on the natural numbers) for which 
there are algorithms? 

This requires that the positive integers (or the nat- 
ural numbers) be identified within the class of the h- 
formulas. 

Before presenting Church’s identification, I shall 
introduce some abbreviations, mainly his. Xx[P] will 
often be written hx*P or simply hx P. {M} (N) when M 
is (or is named by) a single symbol can be simplified 
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to M(N). Moreover, Xx[Xy[P]] can be abbreviated 
Xxy[P] or Xxy*P or hxy P; ({M}(N)}(P) can be abbre- 
viated (M) (N, P) or M(N, P). Herein is a workable 
definition by Schonfinkel 1924 (however, Xxy[P] first 
appears in my 1934) of two-place functions from one- 
place functions. A similar situation applies with more 
places (functions of p variables for p > 2). 

For A and B h-formulas, I now write “A red B” 
(read “A (is) reducible (to) B”) to say that A is 
transformable to B by zero or more reductions of the 
above described form ({Xx[P]} (N) to Sk P ] , as a whole 
or part) with zero or more changes of bound variables. 
(This suits my present summary. At the time and in 
the literature, we were using instead “A conv B” (read 
“A (is) convertible (to) B”) in which expansions are 
also allowed. In the case of the results taken over here 
from my writings, it will be clear from the construc- 
tions that they hold with “red” instead of “conv”.) 

Iff no reduction is possible on B, either immediately 
or after some changes of bound variables, B is said to 
be in normal form; and then, iff A red B, B is a normal 
form of A. (These notions were introduced in Church’s 
1931 lectures.) 

Church identified the positive integers 1, 2, 3, . . . 
with the following h-formulas (in normal form): 

(1) Afx*f(x), hfx*f(f(x)), Afx*f(f(f(r))), . . . . 

Here I am using the italic letters “f” and “x” as 
particular variables, while above the Roman “x” and 
“y” were names for any variables (distinct names 
standing for distinct variables). 

Beginning in 1936a, I instead identified the natural 
numbers 0, 1, 2, . . . with the h-formulas (l), partly 
because the primitive and general recursive functions 
I took over from Godel were defined on the natural 
numbers. But here, while I am speaking of develop- 
ments through 1935, it will be easier to stick in this 
respect with Church than to keep annotating the 
difference. 

I call the X-formulas (1) numerals, and specifically 
Xf.x*f(x) the numeral for 1, Afx*f(f(x)) the numeral for 
2, etc. When I use “n” to denote a positive integer, I 
use “n” to denote the corresponding numeral. 

Now we cannot escape the following. Each X-for- 
mula F containing no free variables has an interpre- 
tation as a partial one-place function #I from the 
positive integers to positive integers, as I will indicate 
in a moment. A “partial” function d, is one such that, 
for each positive integer n, 6(n) either is defined with 
a positive integer as its value or is undefined. 

“Partial” functions were first used explicitly in re- 
cursion theory in my 1938 (using the natural numbers). 
What I am stating now was formulated in 1931-32 as 
a condition when a A-formula defines an ordinary or 
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“total” one-place function $I from the positive integers 
to positive integers. 

The partial function $J that a h-formula F containing 
no free variables expresses is the function + such that, 
for each positive integer n, +(n) = m or G(n) is unde- 
fined, according to whether F(n) red m for some 
positive integer m or not. That this defines a partial 
(single-valued) function depends on there being at 
most one m (for a given F and n) such that F(n) red 
m. At the time of which I am speaking, we felt assured 
of this by the interpretation of the h-calculus or of 
Church’s full system. Subsequently, the Church-Ros- 
ser theorem 1936 became available, whereby A red B 
with B in normal form can hold, with a given A, for at 
most one B apart from the choices of the bound 
variables in it. Thereby, with a given F and n, F(n) 
red m for at most one m. 

A formula F with the property just described we say 
h-defines the function 9, and we then say that #I is h- 
definable. (This terminology was not published, al- 
though we had been working with the concept since 
1931-32, until in Church 1936 and my 1936a.) Simi- 
larly, with functions of more variables, taking +(n,, 
. . . , nP) = m iff F(nl, . . . , np) red m. 

If F contains free variables, F(n) red m for no n and 
m, since a sequence of reductions leaves the set of the 
free variables unaltered. So such an F simply X-defines 
the totally undefined function. 

Church’s particular identification (1) of h-formulas 
with 1, 2, 3, . . . was made with a view to facilitating 
definitions by induction. Thus, if F is the h-formula 
hn*n(G, A), F(n) 1or n = 1, 2, 3, . . . is reducible 
respectively to 

(2) G(A), G(G(A)), G(G(GW)), . . . . 

We can say the sequence (2) of A-formulas is X-defined 
by this F. In the case A has a numeral a as its normal 
form, and G X-defines a total function #, F h-defines 
the function whose sequence of values is #(a), $($(a)), 
4444+(a))), *. . * 

Church (1933 p. 863, and in his lectures in 1931-32) 
gave two examples of X-definable (total) functions. 
First, the successor function S (where S(n) = n+l) is 
X-defined by hnfx*f(n( f, x)), call it “S”. To illustrate 
for n = 2, we must verify that S(2) red 3. After 
unabbreviating S and 2, we have 
{Xnf~sf({{n)(f))(r)))(hfx*f(f(x))) red 
Xfx~f({{Xf~.f(f(x)))(f))(X)) red 
xf~*f({Xx*f(f(x)))(x)) red hfx*f(f(f(x))), which is 3. 
Second, the sum function m-+-n is h-defined by 
hmn*n(S, m) (abbreviate it “+“), as is easily seen. 

In Church’s postulates, means were provided to 
express propositional functions (predicates), and a de- 
scriptive operator 1 such that 1 (F) expresses “the x 
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Left to right: .J. Barkley Rosser, Solomon Lefschetz, 
Stephen C. Kleene, and Edward J. McShane in Princeton 
in 1935. 

such that F(x)“. I (hx[G]) is abbreviated I x[G] or 
1x-G. Having h-defined S and +, Church did not 
continue to give h-definitions of other functions, but 
instead he gave for subtraction - and product X the 
respective defining formulas Xrs. I X[ { +) (x, s) = I”] and 
hmn.{-}(m(n(S),l),l),usinghisdescriptiveoperator~. 

We can observe that all the h-definable functions, 
in contrast to some of the functions that are definable 
using, for example, Church’s I -symbol and other con- 
stants, are “effectively calculable” or calculable by 
algorithms. 

To justify this, I can appeal to the Church-Rosser 
theorem 1936, which, beyond what I stated above, tells 
us that, if we get A red B with B in normal form by 
one series of reductions (with changes of bound vari- 
ables), then any such series pursued long enough (or 
even any such series after any preliminary spree of 
using expansions or mixed expansions and reductions) 
must eventually lead to the same B, apart from alpha- 
betical differences in the bound variables. 

So, considering for the moment only the total func- 
tions, an algorithm for computing the function 4 h- 
defined by F is the following. For a given n, look for 
the part of F(n) of the form {Xx[P]}(N) beginning 
leftmost and reduce it immediately, or immediately 
after changes of bound variables if necessary, and keep 
repeating. This makes the computation procedure de- 
terminate (apart from details in the choices of bound 
variables, which could also be made determinate by 
some conventions). We could vary it, without changing 
the fact of termination and the result, at any step 
where there is more than one part of the form 
{hx[P]}(N) by choosing to reduce one or another of 
those parts. 

For partial functions, the “effective calculability” of 
+ means that there is an algorithm that leads in a 

finite number of steps to the value of +(n) for any n 
for which the value is defined, and that for any other 
n leads to no value (either by terminating in a situation 
that does not give a value or else by continuing ad 
infinitum). 

My study of the class of the h-definable functions 
came about as follows. At the conclusion of Church’s 
course in January 1932, I undertook as a Ph.D. thesis 
project to develop the theory of positive integers in 
the formal system of his 1932 and 1933. Indeed, I took 
over the first part of the project proposed on the final 
page of his 1933. This called at the outset for proving 
Peano’s axioms in Church’s formalism. 

Proofs of three of them were “immediately evident”, 
although I formulated the fifth axiom a little differ- 
ently than Church (see my 1935 p. 157). 

But the third axiom (if the successors of two num- 
bers are equal, so are the numbers) offered a challenge. 
I proposed to handle it by defining the predecessor 
function P (where P(1) = 1, P(S(n)) = n) in the 
system, and indeed using only the h-calculus. 

Almost at once, I saw a way to change the identifi- 
cation of the integers with X-formulas which made the 
predecessor function come out immediately. When I 
showed this to Church, he responded that my alter- 
native identification would not do, because his was 
specifically chosen to give definition by induction (as 
indicated at (2) above, and illustrated by the h-defi- 
nition of +). I might have challenged this “put-down” 
by investigating whether in fact, with my alternative 
identification, definition by induction and further de- 
velopments could not be managed reasonably well. I 
did not. The fact that I did not and the use of the h- 
calculus instead of the X-K-calculus in Church’s system 
may have meant that I developed h-definability in a 
more difficult but perhaps more challenging version. 
Thirty-one years later, in a letter dated January 20, 
1963, Dana Scott communicated to me an alternative 
identification of the positive integers with h-formulas 
making the predecessor function immediate (the same 
as, or similar to, mine of 1932, of which I preserved no 
record), and indicated success in the further develop- 
ment of the theory using that alternative. I am not 
sufficiently familiar with Scott’s development and 
other recent work to be able to say as of 1979 what 
version of the theory is the best. 

Soon after returning to Church’s identification, one 
day late in January or early in February 1932, while in 
a dentist’s office, it came to me that I could X-define 
t,he predecessor function by using the h-definability of 
(2) by hn*n(G, A) in the following way. The ordered 
number-triples (n,, a, n3) can be represented by the 
X-formulas Xfghx*f( . . . f(g( . . . g(h( . . h(x) . . . )) 
. . )) . . .) with nl f’s, n2 g’s, and nn h’s after the prefix 
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Xfghx. And a h-formula G is easily constructed to 
perform the following operation on any number triple: 

(nl, n2, n3) 

1(1( 4 
(n2, n3, Sh3)). 

So if A is (1, 1, I), then Xn*n(G, A) h-defines the 
sequence of number-triples 

(3) (1, 1, a, (1, 2, 31, (2, 3, 41, (3, 4, 5), . . . . 

It is then easy by a X-formula H to erase all but the 
first number of each triple so as to obtain 

(4) 1, 1, 2, 3, . . ) 

which is the sequence of values of the predecessor 
function P. Thus P is X-defined by Xn*H(n(G, A)); call 
it “P”. When I brought this result to Church, he told 
me that he had just about convinced himself that 
there is no X-definition of the predecessor function. 

The discovery that the predecessor function is after 
all X-definable excited our interest in what functions 
are not just definable in the full system but actually 
X-definable. The exploration of this became a major 
subproject for my Ph.D. thesis. Of course, I did develop 
a great deal of theory of positive integers in Church’s 
formalism, using many h-definitions in the process. 

After my thesis was accepted (September 1933) and 
before it was published (1935), Rosser and I estab- 
lished that the full formal system of Church is incon- 
sistent (as was suspected in the fall of 1933, finally 
established in the spring of 1934, and published in 
Kleene and Rosser 1935). I then (in the spring of 1934) 
rewrote my thesis to retain, first, only as much of the 
theory developed in Church’s full system as was used 
in the proof of its inconsistency, and second, the theory 
of h-definability of functions, divorced from the incon- 
sistent system and standing solidly on the Church- 
Rosser theorem. When it began to appear that the full 
system is inconsistent, Church spoke out on the sig- 
nificance of h-definability, abstracted from any formal 
system of logic, as a notion of number theory. (I do 
not think this significance had been escaping me. On 
p. 23 of the manuscript of my thesis as submitted for 
publication on October 9, 1933, before its revision, 
there is a statement to the effect that all the formal 
definitions in the thesis are actually h-definitions.) 

Let me sketch how my subproject went, from Feb- 
ruary 1932 on. Church and I knew that only effectively 
calculable functions can be h-definable. We kept think- 
ing of specific such functions, and of specific operations 
for proceeding from such functions to others. I kept 
establishing the functions to be h-definable and the 
operations to preserve X-definability. 

Haskell Curry with 
Brace Kleene (the 
author’s son) on his 
shoulders at the 
Kleene farm in 
Hope, Maine, in 
1949. 

Schiinfinkel(l924) and Curry (1929,1930,1932) had 
developed combinatory logic, in which variables are 
not used, being replaced by constants that serve their 
functions. Rosser, for his Ph.D. thesis under Church 
(published 1935) brought this into relation with the 
h-calculus. In Rosser’s version of combinatory logic, 
two constants I and J suffice, which translate into the 
h-calculus as Xx*x and Xf&z.f(x, f(z, y)). Thus, in 
combinatory logic J(F, X, Y, Z) reduces (by itself, or 
as part of a larger expression) to F(X, F(Z, Y)), just as 
in the h-calculus {hf&z*f(x, f(z, y))} (F, X, Y, Z) does. 
Let us call the formulas we get in the X-calculus using 
only variables, I, and J “combinations”. Thus, a vari- 
able is a combination. I and J (as translated into the 
h-calculus) are combinations. If M and N are combi- 
nations, so is {M}(N). The combinations are all and 
only the expressions that are such by repeated appli- 
cations of these three clauses. The terms in a combi- 
nation are the occurrences of variables, I, and J in it. 

By Rosser’s results (already known to me in the 
spring of 1932), for any h-formula A there is a combi- 
nation A’ such that A’ red A. (Actually, what I took 
over from Rosser was that A’ conv A. But without 
digging into Rosser’s arguments, we can see that A’ 
red A, by induction on the construction of A. Take the 
case A is hxP. By the hypothesis of the induction, 
there is P’ such that P’ red P. Say P’ consists of the 
terms t,, . . . , t,, each either x or some other variable, 
or one of I and J. Replace in P’ each of tl, . . , t, that 
is an I or J by a different variable to get P”. By 
Rosser’s result, there is a combination R” such t,hat 
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R” conv hxP”. However, hxP” is in normal form, so by 
the Church-Rosser theorem, R” red hxP”. If we re- 
place in this reduction each variable that in P” repre- 
sents a term I or J of P’ by the I or J represented, the 
sequence of reduction steps that worked with the 
variables will still work. Thus, making the replace- 
ments in R” to get R’, we have a combination R’ with 
R’ red XxP’ red hxP. The basis and the induction step 
for {M} (N) are immediate.) 

One evening in the spring term of 1932, while listen- 
ing to a concert at Princeton, I saw how to use this to 
establish (inter alia) that, if A and B are any two X- 
formulas with the same free variables, there is a h- 
formula L such that L(1) red A and L(2) red B. The 
idea for the construction of L is first to replace A and 
B by combinations A’ and B’ with A’ red A and B’ red 
B. The terms in these combinations can be listed. The 
resulting double list of terms, but with each distinct 
variable listed only once, can be trussed up into a h- 
formula L with the following property. When L is 
applied to the numeral 1, the terms coming from A’ 
are thrown into place in their original structure to give 
A, while the terms coming only from B (not variables) 
are disintegrated, and vice versa when applied to 2 
(my 1934 pp. 537-538). This form of definition by cases 
was very useful. 

To illustrate, consider the problem of h-defining a 
function 4 defined by a primitive recursion of the 
rudimentary form 4(l) = a, @(S(n)) = $(4(n)). Sup- 
posing the function II/ can be h-defined by G, we will 
want to h-define a sequence of h-formulas of the form 

(5) A, G(A), GtGW), G(G(GW)), . . . . 

Of course, if A is reducible to a numeral, and G h- 
defines a total function, A and G will contain no free 
variables. But in the theory of h-definability, we can 
and do consider the X-definability of this sequence 
under only the obvious condition that the free vari- 
ables of G are among those of A. In brief, we want to 
prefix A to the sequence of h-formulas (2). (If we had 
identified the positive integers, or the natural num- 
bers, with @+x, hfx*f(x), hfx*f( f(r)), . . . , in the 
h-K-calculus, (5) instead of (2) would have been im- 
mediate.) First, consider any h-formula F with the 
same free variables as A. By cases, we can get a 
formula L such that L(1) red F and L(2) red hn*n(l, 
A). Now take F’ to be Xn*L(n(P, 3), P(n)). It is easily 
seen that, for n = 1, 2, 3, . . . , F’(n) reduces to 

(6) A, F(l), P(2), F(3), . . . . 

So, when F is Xn*n(G, A), which h-defines (a), F’ is the 
desired X-formula h-defining (5). 

Now consider the general form of a primitive recur. 
sion for a function of one variable: cp(1) = a, @(S(n)) 
= $(n, $(n)). Now we want 

(7) A, G(l, A), G(2, G(1, A)), . . . . 

In (5), let its A and G be hn*n(l, A) and hm*G($ 
~(P(IL))), and for the F’ h-defining (5) then let F” be 
hn*F’(n, P(n)). It is not hard to see that F” h-defines 
(7). 

Finally, in this series of illustrations, take a primitive 
recursion with a parameter: $(l, x) = (u(x), @(S(n), .a$ 
= $(n, +(n, x), x). We want a h-formula F”’ such that, 
for n = 1, 2, 3, . . . ., and any x, F”‘(n, x) reduces 
respectively to 

(8) A(x), (31, A(x), x), W’, GO, A(x), x), ~1, . . . . 

In (7), let its A and G be A(x) and hnr*G(n, r^, x), and 
take F”’ to be Xnx*F”(n). 

I also treated some variations of the schema of 
primitive recursion, which now we know from Peter 
1934 or otherwise (see my 1952 Chapter IX) to be 
reducible to primitive recursion, and further, for ex- 
ample, double recursion. 

In racking my brains for still more examples of 
effective definitions on which to try out my ability to 
X-define, I thought of the least-number operator “the 
least y such that”, which since my 1938 I have written 
“py”. If R(x, y) is a total (i.e., completely defined) 
effectively decidable relation, and for each x there is 
a y such that R(x, y), then pyR(x, y) is a total function 
G(X), which I considered to be effectively calculable, 
even if one can give in advance no bound for they. (If 
a bound ii/(x) for the y can be found for each x, the 
definition of $(x) can be effected primitive-recursively 
from R(x, y) and $(x), as was known to Skolem in 1923 
and Godel in 1931.) Otherwise, but with R(x, y) effec- 
tively decidable, pyR(x, y) is an effectively calculable 
partial function, as will appear in our treatment. 

Frequently, descriptive definitions of functions of 
positive integers can be expressed in terms of the p- 
operator. 

To treat pyR(x, y) in the X-calculus, say the relation 
R(x, y) is represented by a X-formula R with R(x, y) 
red 2 if R(x, y) and R(x, y) red 1 if not R(x, y). I 
constructed a h-formula P such that, if D(K) red 2, 
then 63(D, k) red k, and if D(k) red 1, then P(D, k) 
red @(D, k+l). So @(R(x), 0) red y for the least y such 
that R(x, y) red 2 and each of R(x, O), . . . , 
R(x, y-l) red 1. Thus Xx@(R(x), 0) h-defines p yR(x, 
y). The letter “ 63” stood for “perpetual motion func- 
tion”; if D(i) red 1 for all i, then V(D, 0) red @(D, 1) 
red @(D, 2) . . . ad infinitum. 
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This result greatly extended our horizon for render- 
ing effective definitions by h-definitions. Also, it be- 
came clear at once that a host of particular problems 
of elementary number theory can be subsumed under 
the problem of determining whether any given X- 
formula C has a normal form (see Kleene 1935 pp. 
232-233, Church 1936 pp. 358-359). In a sense, this 
observation set the stage for the undecidability proof 
by Church 1936 for this problem, and the same for the 
halting problem for Turing machines (see my 1952 p. 
382). 

Subsequently, after writing and rewriting my thesis 
and befoie July 1, 1935, I thought of what in 1952 I 
called the “recursion theorem” (1938, 1952 pp. 352- 
353) and established it in the h-calculus, calling it 
“circular definition” (193&z, (19) p. 346 and discussion 
p. 347): For any X-formula G and any positive integer 
p, there is a X-formula F such that, for every ~1, . . . , 

XP, 
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F’lh..., a+) red {Cl@‘, xl, . . . , G, 
Kurt Gb;del (right) and his wife, Adele (second from left), 

and, if G contains no free variables, a h-formula H with the author’s parents, Gustav A. Kleene and Alice C. 
such that H(F) red 1, which enables us to erase F when Kleene, in Hope, Maine, in 1941. 
it is in the way (for example, when G represents a 
definition by cases with F not used in all cases). 

The recursion theorem treats an absolutely general When Church proposed this thesis, I sat down to 
form of recursion. If a function + is defined by saying disprove it by diagonalizing out of the class of the h- 
that any value $(x1, . . . , x,,) shall be obtained by definable functions. But, quickly realizing that the 
operating on the arguments x1, . . . , x, and the function diagonalization cannot be done effectively, I became 
+ itself by a given functional II/, and # is h-definable in overnight a supporter of the thesis. 
the obvious sense for functionals, the theorem tells us Giidel came to the Institute for Advanced Study in 
that then cp is h-definable. In general, a function 4 so the fall of 1933. According to a November 29, 1935, 
defined is partial. The theorem separates the issue of letter from Church to me, Gijdel “regarded as thor- 
whether + is X-definable (it is) from the issue of what oughly unsatisfactory” Church’s proposal to use h- 
p-tuples of ,numbers it is defined for (at worst, none). definability as a definition of effective calculability. 
Actually, G here need not h-define a functional 4, but Church “replied that if [Godel] would propose any 

{GIF’, XI, . . . . 11cp) may be reducible to a numeral definition of effective calculability which seemed even 
depending on what h-formula F is, not just on what partially satisfactory [Church] would undertake to 
partial function it X-defines. prove that it was included in lambda-definability.” 

In my 1936a, X-definability theory is reworked from Soon thereafter, in his lectures in the spring of 1934, 
the beginning to obtain definition by cases and the Giidel took a suggestion that had been made to him 
recursion theorem quickly, and primitive recursion by Herbrand in a letter in 1931 and modified it to 
and the least-number operator follow. as applications secure effectiveness. The result was what is now 
of the recursion theorem, which I used in 1951 in known as “Herbrand-GGdel general recursiveness”. 
studying von Neumann’s self-reproducing automata. Herbrand’s suggestion (as reported in Gijdel 2934) 

Let us back up a little in time to 1933, to see how was this: “If cp denotes an unknown function, and $1, 
X-definability related to other developments. The con- . . . , & are known functions, and if the $‘s and the + 
cept of h-definability existed full-fledged by the fall of are substituted in one another in the most general 
1933 and was circulating among the logicians at fashions and certain pairs of the resulting expressions 
Princeton. Church had been speculating, and finally are equated, then if the resulting set of functional 
definitely proposed, that the X-definable functions are equations has one and only one solution for 4, $I is a 
all the effectively calculable functions-what he pub- recursive function.” 
lished in 1936, and which I in 1952 Chapter XII (or Giidel’s modification consisted, besides in being a 
almost in 1943) called “Church’s thesis”. bit more specific about the form of the eauations. in 
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requiring that, for each set of natural numbers x1, 
. . ) X~ as arguments of up, exactly one equation of the 
form $(x1, . . . , x~) = m (with numerals in appropriate 
symbolism) is deducible by a substitution rule and a 
replacement rule from the set of functional equations 
and the equations giving the values of &, . . . , $k, 

presumed to be previously defined in a similar manner. 
In a February 15,1965, letter to Martin Davis, Godel 

wrote, “However, I was, at the time of these lectures 
[1934], not at all convinced that my concept of recur- 
sion comprises all possible recursions . . .“. 

I somewhat edited the details in my 1936 and 1943 
(see also my 1952 pp. 274-275), in particular wrapping 
together all of the equations defining all of &, . . . , 
$A, cp, back to the starting point, into one system E of 
equations as the recursive definition of (p. 

Church (1936) and I (1936a) published equivalence 
proofs for Herbrand-Godel general recursiveness to 
h-definability. So, under Church’s thesis, there were 
now two exact mathematical characterizations of the 
intuitive notion of all effectively calculable functions, 
or all functions for which algorithms exist in the sense 
exemplified by many particular examples in over two 
millennia of mathematical history. 

People have asked me how I thought of the normal 
form theorem for general recursive functions that I 
gave in my 1936. (From 1936 on, my writing was in 
terms of the natural numbers rather than the positive 
integers.) The theorem includes that each general 
recursive function is obtainable using only primitive 
recursions (with explicit definitions) and the least- 
number operator (used just once). 

I had been preconditioned by my work on X-defin- 
ability to think in terms of these elements. Thus I had 
confirmed in my Ph.D. thesis that all primitive recur- 
sions (as well as explicit definitions) can be effected in 
the X-calculus, and likewise the least-number operator. 
Part of the project for my 1936a paper was to prove 
that every general recursive function is h-definable; so 
I could not help but reflect that I could do that if I 
could get every general recursive function by a com- 
bination of primitive recursions (with explicit defini- 
tions) and least-number operations. 

With this motivation, I came up with an idea akin 
to the following. First, we can represent the stages in 
the computation of a value of a general recursive 
function 4 (here, the deductions from the system E of 
equations defining (p recursively) by Godel numbers, 
and characterize the numbers representing such stages 
(deductions) primitive-recursively. I knew the uses of 
Gddel numbering very well from my study of Godel 
1931. Second, we can search by the least-number 
operator for the first number y that represents a stage 
recognizable primitive-recursively as terminal for the 

computation of the value of 4 for given arguments x1, 
. . . ) x~. Third, having found such a y, from it we can 
extract primitive-recursively the value m. Moreover, 
in this process, the system E of equations defining 4 
recursively is represented by its Glide1 number e. Using 
these numbers as parameters, each general recursive 
function up is expressible in the form 

dx1, . . . , 4 = U(py.yTte, XI, . . . , xp, Y)) 

for some natural number e, where U is a fixed primi- 
tive recursive function, and T is a fixed primitive 
recursive predicate (a (p+2)-ary relation). This sum- 
marizes what seems the best version of the proof 
(Kleene 1943). In this version, the method used applies 
directly to any of the known characterizations of the 
effectively calculable functions-for example, to h-de- 
finability and to Turing computability. (In 1936, in- 
stead of characterizing primitive-recursively the Godel 
numbers of deductions, I enumerated primitive-recur- 
sively the Godel numbers of deducible equations. The 
idea of a “recursively enumerable class [set]” first 
appeared there.) 

That the equation just exhibited holds, for a given 
general recursive function +, for some e (a Godel 
number of E), for all x1, . . . , x~, depends on the 
foregoing formulation whereby a system E of equa- 
tions defines + recursively iff, for each x1, . . . , x~, there 
is exactly one m for which an equation of the form 

44x1, . . . , x~) = m is deducible from E. 
It remained for me in 1938 (the work was done in 

1936) to omit this assumption about E, and just talk 
about those p-tuples xl, . . . , X~ for which there is an 
m, still assumed to be unique, such that +(x1, . . . , x,,) 
= m is deducible from E. So @(xl, . . . , x~) becomes a 
partial function. The functions so definable I called 
partial recursive, and for them the equation of the 
normal form theorem becomes 

h% . . . , s) 2 WwTte, XI, . . . , xp, Y)) 

where “2” means that the two members are either 
both defined with the same value or both undefined. 
This generalization (should I say “partialization”?) of 
the notion of general recursive function had been 
positively avoided by Church 1936 and Turing 1936- 
37, 1937 (see my 1978 footnote 1). 

In my 1938 application of partial recursive functions, 
I needed the recursion theorem. Remembering that I 
had it in the h-calculus, I found a proof of it less than 
one line long in my theory of partial recursive func- 
tions. In my 1938 footnote 7 and 1952 p. 340, I intro- 
duced the notation “{e} (xl, . . . , x~)” for the right side 
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of the normal form theorem (just above) as a partial 
recursive function of e, x1, . . . , x~. Using this notation, 
,the statement of the recursion theorem here exactly 
parallels my statement of it above for the X-calculus: 
For any natural number g and positive integerp, there 
is a natural number f such that, for every x1, . . . , x,, 

{ f>bl, . . , XP) = {gl(f, Xl, . . f , x,1. 

This works because in the theory of partial recursive 
functions any natural number, like g or f here, repre- 
sents a partial (indeed, partial recursive) function. Just 
as with G in the h-calculus, what g gives on the right 
side may depend on f itself and not just on what 
partial function f “defines recursively”. This was use- 
ful in the applications. 

The last of the original three equivalent exact defi- 
nitions of effective calculability is computability by a 
Turing machine. I assume my readers are familiar 
with the concept of a Turing machine, after Turing 
1936-37. 

Turing learned of the work at Princeton on h-defin- 
ability and general recursiveness just as he was ready 
to send off his manuscript, to which he then added an 
appendix outlining a proof of the equivalence of his 
computability to X-definability. In 1937 he gave a 
proof of the equivalence in detail. Post’s short note 
1936, containing the same idea as Turing’s paper, was 
independent of Turing’s work but not of the work at 
Princeton. 

Turing 1936-37 was concerned primarily with ma- 
chines that perform the continuing computation (ad 
infinitum) of infinite sequences of O’s and l’s printed 
on alternate squares of the machine tape (once printed 
not being erased or changed), while performing scratch 
work (subject to erasures and changes) on the inter- 
vening squares. A computable real number (between 
0 and 1) is one whose binary expansion can be so 
computed. 

Turing then defined a one-place number-theoretic 
function 4 to be computable iff there is a machine that 
computes the sequence of O’s and l’s with ~(0) l’s 
before the first 0 and, for x > 0, 4(x) l’s between the 
sth and the (x+l)st 0. He remarked that a similar 
definition can be given of computable functions of 
several variables. 

While fully honoring Turing’s conception of what 
his machines could do, I was skeptical that his was the 
easiest way to apply them to the computation of 
number-theoretic functions. In any case, only a total 
function cp(x) can be computed in his way. Hence, in 
lectures at Madison, Wisconsin, in the spring of 1941 
(and in my 1952 Chapter XIII), I applied his machines 
differently, more like in Post 1936. 

S. C. Kleene - Recursive Function Theory 

First, I stipulated that any natural number n shall 
be represented in computation by a block of n+l 
tallies printed on consecutive squares of the machine 
tape, preceded and followed by a blank square. A p- 
tuple of natural numbers xl, . ,3c, is then represented 
by p blocks of x1 fl, . . . , x,+1 tallies, respectively, 
with a blank square before the first, between each two, 
and after the last, block. 

I then said that a partial function +(x1, . . . , 3cp) is 
Turing computable iff some Turing machine, queried 
(as I shall explain) with any p-tuple x1, . . , X~ of 
natural numbers, answers with the value +(x1, . . . , x,,) 
if that value is defined, and otherwise does not answer. 
We query the machine with xl, . . , X~ by presenting 
to it thep-tuple x1, . , x, represented as above on its 
tape (assumed to be infinite to the right) with the tape 
otherwise blank, with the machine scanning the right- 
most tally of the representation, in what I called its 
“first active state”. Machine states are what Turing 
called “m-configurations”, and I supposed a given ma- 
chine to have a (finite) list of “active” states (from 
which the machine performs an act or in Turing’s 
terminology a “move”) and one “passive” state. The 
machine, so queried, answers that 4(x1, . . . , x,,) = m 
iff at some later moment of time it reaches the passive 
state (stops) with the (p+l)-tuple x1, , x~, m rep- 
resented on its tape and the rightmost tally of that 
representation scanned. Because of the determinate- 
ness of each successive act, this can happen (for given 
Xl, . . , xp) for at most one m. 

The equivalence proofs to h-definability and recur- 
siveness in Turing 1937 together with those in my 1952 
Chapter XIII established the equivalence of this ver- 
sion of Turing computability to Turing’s in 1936-37 
when + is total; otherwise his version does not apply. 
For one who would work directly from Turing 1936- 
37, a useful critique is provided by the appendix to 
Post 1947. 

For rendering the identification with effective cal- 
culability the most plausible-indeed, I believe com- 
pelling-Turing computability has the advantage of 
aiming directly at the goal, as is clear (and as Turing 
modestly suggested in 1937 p. 153). 

It seems that only after Turing’s formulation ap- 
peared did Godel accept Church’s thesis, which had 
then become the Church-Turing thesis. In the 
Postcriptum to the Davis 1965 reprint of his 1934, 
Godel wrote, “Turing’s work gives an analysis of the 
concept of ‘mechanical procedure’ (alias ‘algorithm’ or 
‘computation procedure’ or ‘finite combinatorial pro- 
cedure’). This concept is shown to be equivalent with 
that of a ‘Turing machine’.” In a conversation at San 
Juan on October 31, 1979, Davis expressed to me the 
opinion that the equivalence between Godel’s defini- 
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tion of general recursiveness and mine (which equiv- 
alence Godel, in his February 15, 1965, letter to Davis, 
called “not quite trivial”), and my normal form theo- 
rem, were considerations that combined with Turing’s 
arguments to convince Godel of the Church-Turing 
thesis. 

Because Turing’s formulation works directly with 
machines, albeit idealized ones (error-free, and with 
potentially infinite memory), I think it must have 
considerable practical significance, although I have 
not been closely concerned with this. Turing himself 
went into computing at the National Physical Labo- 
ratory in 1945-48 and from 1948 on at the Computing 
Machine Laboratory at Manchester, England. 

The earliest notion, h-definability, has (as I have 
related) the remarkable feature that it is all contained 
in a very simple and almost inevitable formulation, 
arising in a natural connection with no prethought of 
the result. And a given h-formula engenders the com- 
putation procedure for the function it defines. Of 
course, the h-formula may be complicated. Under Her- 
brand-Godel general recursiveness, and my partial 
recursiveness adapted from it, one works with systems 
E of equations that can be very unwieldy. Under 
Turing computability one may have very long machine 
tables. Indeed, Turing 1937 p. 153 spoke of the X- 
definitions as “more convenient”. (As I see it, conve- 
nience for one or another purpose requires testing in 
practice.) 

I myself, perhaps unduly influenced by rather chilly 
receptions from audiences around 1933-35 to disqui- 
sitions on h-definability, chose, after general recursive- 
ness had appeared, to put my work in that format. (I 
did later publish one paper 1962 on h-definability in 
higher recursion theory.) I thought general recursive- 
ness came the closest to traditional mathematics. It 
spoke in a language familiar to mathematicians, ex- 
tending the theory of special recursiveness, which 
derived from formulations of Dedekind and Peano in 
the mainstream of mathematics. 

I cannot complain about my audiences after 1935, 
although whether the improvement came from switch- 
ing I do not know. In retrospect, I now feel it was too 
bad I did not keep active in X-definability as well. So 
I am glad that interest in h-definability has revived, as 
illustrated by Dana Scott’s 1963 communication. 

My normal form theorem gives a means of working 
with general (or partial) recursive functions that gets 
one away from contemplation of the usually compli- 
cated system E of equations. This provides a formu- 
lation, “p-recursiveness” (1952 p. 320), in which one 
can phrase much of the theory conveniently, irrespec- 
tive of what original formulation one started with. 

I,. E. J. 
Madisol 
in 1953. 

Brouwer in 
1. Wiscor Isin, 

Subsequently, various other equivalents of the three 
notions that arose in the mid-1930’s have appeared. 
Their sponsors claim that these equivalents have con- 
siderable merits. (Without having worked in them, I 
cannot assess their merits.) I mention Post’s formula- 
tion using his “canonical systems” (1943), Markov’s 
“algorithms” (1951, 1954) (akin to Post’s 1943, but 
corresponding to partial, instead of general, recursive- 
ness), and a formulation of Smullyan using his “ele- 
mentary formal systems” (1961) (also akin to Post’s 
1943). 

My survey, thus far, has taken us through the basic 
elements of the theory of recursive functions of posi- 
tive integers or of natural numbers. Much more has 
happened in recursion theory. 

With the emergence of the notion of general recur- 
sive function, the preexisting notions of special recur- 
siveness (for example, Peter 1936) gave a subrecursive 
hierarchy. Other ways of getting subrecursive hierar- 
chies have been studied since then, I have barely 
touched the area (my 1958 with Axt’s 1959,1963), and 
I do not consider myself qualified to survey it. 

The first unsolvability or undecidability results were 
in Church 1936 and 1936a, my 1936 and 1943, and 
Turing 1936-37. Subsequent work, beginning with 
Post 1947 and Markov 1947, has established the un- 
solvability of a variety of mathematical decision prob- 
lems “not on their face specially related to logic” (as 
Church expressed to me what he hoped would happen 
on a postcard dated May 19, 1936), in algebra, topol- 
ogy, and real-variable analysis. References may be 
found in my 1967 p. 264 and Boone 1968. 
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The intuitionistic school of mathematics, founded Post 1944 dealt with recursively enumerable sets. 
by Brouwer (1908,1918-19, etc.), accepted only math- By including as such not just the sets enumerated by 
ematical proofs that are “constructive”. In the spring a general recursion function (Kleene 1936) but also 
of 1941 I conjectured that this should mean that an the empty set, he made the recursively enumerable 
intuitionistic proof of a proposition of the form “for all sets coincide with the sets S for which the predicate a 
X, there exists a y such that R(x, y)” should implicitly e S is expressible in the form (Ex)R(a, X) with R 
determine a general recursive function + such that, for recursive, which I discuss below. He proposed there 
all X, R(x, G(X)). I confirmed this in my 1945 taken the problem, which (after his 1948) we can state thus: 
with Nelson’s 1947 (exposition in my 1952 5 82). Sim- Are all recursively enumerable but nonrecursive sets 
ilar results were obtained for intuitionistic analysis of the same degree of unsolvability? An affirmative 
(Kleene and Vesley 1965). Survey in my 1973. answer would mean that all proofs of unsolvability of 

Church and Kleene 1936, Church 1938, and Kleene decision problems for formal systems (or for recur- 
1938 applied the notions of A-definability and recur- sively enumerable sets) can in principle be established 
siveness to characterizing effectiveness in defining by “reducing” the decision problem in hand to one 
transfinite ordinals. Thus arose a theory of construc- particular unsolvable such problem. “Post’s problem”, 
tive ordinals, further investigated in my 1955a with as this came to be known, resisted solution until 1956. 
1944, and in Spector 1955. Friedberg (1956, 1957), then a 20-year-old senior at 

Recursiveness relativized to a class of number- Harvard, and Muchnik (1956, 1958), in Russia, of 
theoretic problems, or, as I would apply it, to a total similar age, independently proved that there exist 
number-theoretic predicate or to a set of numbers or pairs of recursively enumerable sets of incomparable 
to a total number-theoretic function, was introduced degrees of unsolvability, answering Post’s question 
by Turing in his 1939 (written at Princeton), with his negatively. 
suggestive imagery of an “oracle”. For example, with In 1943 I introduced a hierarchy of predicates, sub- 
a total function #, a function C#I is (general or partial) sequently called the “arithmetical hierarchy”, ob- 
recursive in $, iff cp is computed by a machine like tained by starting with the recursive predicates and 
Turing’s 1936-37 machines except for having access to prefixing more and more quantifiers (“for all x” or 
an oracle, who, asked “What is the value of J/(x)?” “(x)“; “(there) exists (an) x (such that)” or “(Ex)“). 
for any x that comes up in the course of the machine’s This gives a classification of the predicates used in 
calculations, will always answer with the correct value. elementary number theory (or “arithmetic”). Indeed, 
Following Godell934, let us represent a predicate P(x) consider the predicate forms 
by the function o(x) with 4(x) = 0 when P(x) is true 

bwR(a, x) (x)(Eyvw4 x, Y) - * * and G(X) = 1 when P(x) is false. Then we say P is 
recursive iff cp is. Similarly, representing Q(X) by q(x), W-4 
P is recursive in Q iff $I is recursive in $. 

Post in 1948 defined “degrees of unsolvability” of (x)R(a, 4 uw(yMa, x, Y) * f * 

predicates, sets, or functions. “Unsolvability” suggests where the R in each stands for a general recursive 
that he is dealing (primarily) with predicates, etc., for predicate (equivalently after the first, a primitive re- 
which there is no algorithm or solution to the “decision cursive predicate). To each of the forms after the first, 
problem” for whether the predicate holds for given there is a predicate of the variable a expressible in 
arguments or whether a given number belongs to the that form, but not in the other form with the same 
set or to the “computation problem” of finding an number of quantifiers, nor in any of the forms with 
algorithm to compute the function. A predicate P is of fewer quantifiers. This result (obtained in 1940) marks 
the same degree as Q, iff P is recursive (after Turing the beginning of the use of applications and adapta- 
1939) in Q and vice versa; of lower degree than Q, iff tions of recursive function theory to reveal structure 
P is recursive in Q but not vice versa. A degree is the in parts of classical mathematics where effectiveness 
set of all the predicates, sets, and functions that have does not in general obtain. The farther up in this 
the same degree as a given one of them. The lowest arithmetical hierarchy one must go to define a predi- 
“degree of unsolvability”, called “solvability”, consists cate, the higher is its degree in the sense of Post 1948. 
of the general recursive predicates, sets, and functions. By Kleene and Post 1954, Post’s degrees give a fine 
In 1944 I joined Post in studying the structure of the structure of differing degrees within each level of the 
system of his degrees. An extensive field of research arithmetical hierarchy above the lowest. Mostowski 
grew out of this (for example, Sacks 1963, Shoenfield 1947 obtained the arithmetical hierarchy indepen- 
1971). dently, in a little different format in which he gave it 
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as analogous to the hierarchy of projective sets in 
descriptive set theory. Addison 1954, 1955, 1958, 1960 
investigated this analogy and others. 

By considering Turing’s computation by a machine 
having access to an oracle, but, with the rules govern- 
ing the machine (including how it puts questions to 
the oracle and what it does when the oracle gives any 
answer) fixed, varying the oracle so that she answers 
for one or another value of a one-place function vari- 
able a, I obtained in 1950 the notion of a general 
recursive function with a function variable. In brief, 
+(a) can be regarded as a recursive function +(a, a) of 
two variables, iff $(a) is recursive in (Y (by a Turing 
oracle-machine) uniformly in cr. We can omit the num- 
ber variable here, or, in general, we can have any finite 
number of variables of each type, number and one- 
place function. (I did this then for my studies of 
intuitionism.) 

In 1955, I used this to build a hierarchy of number- 
theoretic predicates of a by applying quantifiers with 
function variables to arithmetical predicates: the “an- 
alytic hierarchy”. The arithmetical hierarchy consti- 
tutes the lowest level in the analytic hierarchy, just as 
the general recursive predicates constitute the lowest 
level in the arithmetical hierarchy. The arithmetical 
hierarchy can alternatively be extended, less steeply, 
to transfinite levels (indexed by constructive ordinals 
of the first and second number classes). In effect, we 
use transfinite successions of number quantifiers. This 
gives the “hyperarithmetical hierarchy”. In 19556, I 
showed that the predicates falling in this hierarchy 
are exactly those that are expressible in both one- 
quantifier forms of the analytic hierarchy. This is the 
analog of the result of my 1943, Post 1944, and Mos- 
towski 1947 that a predicate is general recursive ex- 
actly if it is expressible in both one-quantifier forms of 
the arithmetical hierarchy. 

Addison initiated discussions at Madison and at 
Warsaw that led to the proposal of the notations C$?, 
II+?,, which are now standard for these hierarchies (Ad- 
dison 1958, Mostowski 1959). Here ZZz is the class of 
the sets S for which the predicate a t S is expressible 
(or of the predicates expressible) in the K-quantifier 
form of the arithmetical (or hyperarithmetical) hier- 
archy with an existential quantifier first; II;, with a 
universal quantifier first. E,& II; relate similarly to the 
analytic hierarchy; for j > 1, Xi, II% to the hierarchies 
with quantifiers of higher finite types which I pre- 
dicted in 1955 p. 312 and 1955b p. 212 and studied in 
1959 and 1963. The further notation A/, = Es f? IIA 
came into use in the late 1960’s. Thereby, the two 
theorems just stated can be written concisely: 

hyperarithmetical = Ai and general recursive = Ah. 

Currently, research is in progress on a theory usiql 
recursive functions of any finite types 0, 1, 2, . . . 01: 

variables. Type 0 is the natural numbers, and type! 
j+l is the one-place functions from type j to type 0.i 
This theory was opened up by my 1959 and 1962/ 
(survey in Kechris-Moschovakis 1977). Also, the “in.; 
ductive definitions”, of which many examples were’ 
used in the foregoing developments, have become ‘a’ 
subject of study in general (for example, Spector 1961,! 
Moschovakis 1974). 

My invitation to lecture at the FOCS meeting men.’ 
tioned interest in my work published as “Representa.; 
tion of events in nerve nets and finite automata” 1956 
(and 1951). About the genesis of that, I can say little) 
more than that I had the luck to find myself again, 
working in a context in which significant developments 
were implicit but not yet explicit-just as in 1931-32 
when I was given Church’s formalism to study, in: 
which the h-calculus was maybe implicit or maybe 
explicit, but all that it developed to be was certainly 
only implicit. 

In the summer of 1951, as a visitor at the RAND’ 
Corporation in Santa Monica (through an invitation 
obtained by my old friend of Princeton days, Merrill, 
Flood), I was given the McCulloch and Pitts paper 
1943, with their mathematical model for nerve nets, to 
see what I would make of it. I found their model to be 
very interesting-an original contribution-but their 
analysis of it to fall quite short of what was possible. 
So I did what cried out to be done with it (as it seemed 
to me), having newly in mind also the idea of a finite 
automaton, which came to me that summer at RAND 
through reading in printer’s proof (?) von Neumann’s 
Hixon Symposium lecture 1951. My work in this area 
was all done in a few months in 1951 at Santa Monica 
and back at Madison, and a bit of time in 1955 in 
editing the resulting Project RAND Research Memo- 
randum for Automata Studies. This work was an 
interpolation into the midst of a very pressing program 
of research in recursive function theory, broadly con- 
strued. I had then much work long in progress but not 
yet in final form. Therefore, I felt compelled to invest 
my further time where I already had a large invest- 
ment to protect. This was painful to me, because I 
could see many alluring problems opening up in the 
field of automata theory that I had just touched. 

Herewith I conclude my testimony. 
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