Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		000000000	000	000	000000

Lecture 1 - Introduction, Optimization Advanced Machine Learning

Miroslav Čepek, Zdeněk Buk, Rodrigo da Silva Alves, Vojtěch Rybář, **Petr Šimánek**

FIT CTU

23. 2. 2023

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
Contacts					

Miroslav Čepek Zdeněk Buk Rodrigo da Silva Alves Vojtěch Rybář Petr Šimánek

miroslav.cepek@fit.cvut.cz zdenek.buk@fit.cvut.cz rodrigo.alves@fit.cvut.cz vojtech.rybar@fit.cvut.cz petr.simanek@fit.cvut.cz

https://courses.fit.cvut.cz/NI-AML

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
Agenda					

- What to expect
- Assessment rules, exam, organization
- Showcases
- Optimization in deep neural networks

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
●00000		0000000000	000	000	000000
Evaluation					

- Homeworks (up to 25 points, 5 points each, min 12 points)
- Semestral Projects (up to 50 points, min 25 points)
- Oral Exam (up to 25 points, min 12 points)
- Additional points: 10 points for a blog post

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
00000		0000000000	000	000	000000
Homeworks					

- Finish experiments and explore implementation on a given theme.
- Submission is a piece of code solving the problem and possibly a short report.
- You will have 2 weeks to finish each homework.
- Target is two hours per homework.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
00000		000000000	000	000	000000
Semestral P	roject				

- Topics available on course webpage: https://courses.fit. cvut.cz/NI-AML/semestral_projects.html
- Each topic can be solved in collaboration by a group of up to 3 people.
- Create a group and pick a topic by March 17. Let us know by email. Topics are assigned on a first-come-first-served principle.
- Outcomes:
 - Mid-term presentation
 - Final presentation
 - Report
 - Implemenetation
 - Optionally blogpost

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
Exam					

- Each of the lecturers will open \sim 6 slots.
- You will pick one lecturer and register with him.
- Expect 15-20 minute chat **mostly** about topics given by particular lecturer. It may also include questions about your project.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
0000€0		0000000000	000	000	000000
Grades					

- Final grades are based on grand total of your points from the semester and exam.
- Using standard conversion table:

Grade	Points	Evaluation in words
А	90 and more	excellent
В	80 to 89	very good
С	70 to 79	good
D	60 to 69	satisfactory
E	50 to 59	sufficient
F	less than 50	failed

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
00000●		000000000	000	000	000000
What I assu	me you know?				

- We assume:
 - knowledge of Python.
 - familiarity with ML libraries (Torch/Tensorflow).
 - understanding of machine learning/AI principles and basic techniques.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000	•00000	0000000000	000	000	000000
Physics Info	rmed ML				

- Can we solve difficult physical problems with deep learning?
- How do we predict chaos?
- How does knowledge of physics help us predict the weather?

000000	00000	0000000000	000	000	000000
Commenter	Detaile Crebb	D:00 -1			

Computer as Painter - Stable Diffusion

$\mathsf{Text} \to \mathsf{Picture}$

• explained

• other applications of denoising diffusion probabilistic models

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
You, have a	cookie				

Up-to-date research in recommender systems.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
Causality					

• Can we learn causal relations from observational data?

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
Drive like he	11				

• Learning to drive autonomous cars on FIT.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
Alignment					

• How can we avoid being completely annihilated by AI?

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		●000000000	000	000	000000
What is opt	imization in the c	ontext of Neu	ral Nets?		

What do we want from the optimization algorithm:

- converge most of the time
- converge with most initial weights
- converge fast
- generalize well
- be robust to small perturbations to the system
- small memory requirements
- no need to tune hyperparameters

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		⊙●○○○○○○○○	000	000	000000
Stochastic G	Gradient Descent				

Deep neural net $f : \mathbb{R}^{d_x} \to \mathbb{R}^{d_y}$.

$$f(x) = g_N \circ g_{N-1} \circ \cdots \circ g_1(x).$$

Where

$$g_j(x) = \sigma(W_j x + b_j), W_j \in \mathbb{R}^{d_x \times d_{j-1}}, b_j \in \mathbb{R}^{d_j}.$$

 σ is the activation function (component-wise).

Supervised learning with loss L (Empirical risk minimization)

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		00●0000000	000	000	000000
Stochastic (Gradient Descent				

Most common algorithm: Initialization: W_1^0,\ldots,W_N^0 Iterate for k $k=0,1,2,\ldots$

$$W_j^{k+1} = W_j^k - \eta_k \nabla_{W_j} L(W_1^k, \dots, W_N^k), j = 1, \dots, N.$$

With some step sizes η_0, η_1, \ldots

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		000●000000	000	000	000000
Stochastic (Gradient Descent				

What do we want from the optimization algorithm:

- converge most of the time
- converge with most initial weights
- converge fast
- generalize well
- be robust to small perturbations to the system
- small memory requirements compared to what?
- no need to tune hyper-parameters

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000●00000	000	000	000000
Momentum	and adaptive grad	ient			

- Often added to SGD.
- The goal is "not" to smooth convergence!
- SGD + Momentum oscillates too.
- Momentum allows larges batches.
- Adaptive gradient scales the gradients.
- Adam = momentum + adaptive gradient with the second moment (scales the gradient by gradient variance).

Standard goto algorithm:

- Adam/SGD + Nesterov Momentum for machine vision
- AdamW for NLP
- AdaGrad for recommenders

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		00000●0000	000	000	000000
AdamW					

- Adam often generalizes less than SGD. Why?
- Using Adam can hinder L2 regularization.
- The reason: Even the regularization term is "normalized".
- Solution: AdamW.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		000000●000	000	000	000000
Generalizatio	on of SGD				

CIFAR-10, 50k samples, trained with SGD

Architecture	n of parameters	Training loss	Test accuracy
MLP	1.2M	0	51%
Alexnet	1.4M	0	77%
Inception	1.65M	0	86%
Resnet	9M	0	88%

- Over-parameterized networks work better! counter-intuitive
- No overfitting?
- This is not the case with many algorithms!
- Not understood well yet.

Zhang, 2017, Understanding Deep Learning Requires Rethinking Generalization.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000●00	000	000	000000
Implicit Bias	s of SGD				

- Linear NNs are driven to low-rank solutions.
- SGD finds a sparser solution.
- It seems like SGD implicitly finds "low complexity" optima.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		00000000●0	000	000	000000
Implicit Re	gularization of SGE)			

- Gradient descent finds a minimum that also minimizes not only the loss function but also its gradient.
- SGD optimizes a different function!
- SGD minimizes also the "variance" of mini-batch gradients.

Smith, 2021, On the Origin of Implicit Regularization in Stochastic Gradient Descent

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		00000000●	000	000	000000
Double Desc	ent				

Conventional thinking:

- Larger models are better.
- More data is better.
- Early stopping is good.

Model-wise/epoch-wise/sample-wise double descent.

Nakkiran, 2019, Deep Double Descent: Where Bigger Models and More Data Hurt.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	●00	000	000000
2nd Order i	nethods				

- Minimization of 2nd order local approximation.
- Interesting also to inspect your model.
- BackPACK tool for computing Hessians and interesting other quantities.

Dangel, 2020, BackPACK: Packing more into Backprop

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	○●○	000	000000
2nd order r	nethods				

What do we want from the optimization algorithm:

- converge most of the time
- converge with most initial weights
- converge fast
- generalize well we don't know!
- be robust to small perturbations to the system we don't know!
- small memory requirements
- no need to tune hyperparameters

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	00●	000	000000
2nd order r	nethods				

AdaHessian:

- Computes and stores only the diagonal of the Hessian
- Uses second-order momentum and other methods similarly as Adam
- Uses spatial averaging

Yao, 2020, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	●00	000000
Credit Assid	ment without R	acknronagation	h		

- Can we train without a backdrop?
- Backprop is very expensive and hard to parallelize
- Backprop is not biologically plausible there is no such feedback in the brain
- Biologically-motivated:
 - asynchronous updating of weights at different layers of a network
 - reduced memory costs from having to store intermediate layer activation values
 - reduced synaptic wiring in the feedback path

The resulting computational efficiencies can be particularly great on neuromorphic hardware, where forward and backward network weights are represented by physically separate wiring on a circuit.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	O€O	000000
Forward Gra	dient				

- We can estimate the gradient in forward mode.
- The forward gradient is an unbiased estimation of the standard gradient.
- Can be much faster than GD.

Baydin, 2022, Gradients without Backpropagation

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	00●	000000
Direct Feedb	oack Alignment				

Alignment Provides Learning in Deep Neural Networks the gradient of the last layer is computed and is distributed to all previous layers.

Can be used to solve real-life problems efficiently!

Nokland, 2016, Direct Feedback Alignment Provides Learning in Deep Neural Networks

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	●00000
Learning to	o Optimize				

- Use meta-learning to find some "optimization algorithm".
- Two loops inner loop optimizes a function, outer loop optimizes an optimizer (LSTM)

First actually useful learned optimizer!

- Trained to solve many different optimization problems
- Uses hypernetworks
- Each hypernetwork ingests multiple features:
 - Exponential moving averages of the gradient and squared gradient
 - Mean and variance of weights and gradients
 - Training stage (info about training process).

Metz, 2022, VeLO: Training Versatile Learned Optimizers by Scaling Up.

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	00●000
VeLO					

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000●00
VeLO					

- Works very well for "smaller" networks (less than 500M)
- Allows much larger batches (10x)
- VeLO learns implicit learning rate scheduling
- Adapts to training horizon
- 2x memory overhead
- Fails after 200k iterations
- Sometimes fails out of distribution

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L2O
000000		000000000	000	000	0000●0
LION					

- Symbolic program assembly takes 45 common operations from numpy
- The program can access usual information weight, gradient, learning step + some open variables
- Uses an evolutionary algorithm to create new optimization algos
- Uses many tricks removal by wrong syntax, warm-start (AdamW)
- Funneling process to allow only the most promising algos to go from proxy tasks to large real problems
- 512 TPUs for days!

Organisation	Showcase Applications	1st Order	2nd Order	No Backprop	L20
000000		0000000000	000	000	000000
LION					

Lion algorithm:

- Uniform updates to all weights! Adds a lot of noise \rightarrow generalization
- Faster/less memory than AdamW, Adam, and adafactor. And often better.

Chen, 2023, Symbolic Discovery of Optimization Algorithms