Lecture 3 - Recommender Systems Advanced Machine Learning

Miroslav Čepek, Zdeněk Buk, **Rodrigo da Silva Alves**, Vojtěch Rybář, Petr Šimánek

FIT CTU

9. 3. 2023

Recommender Systems

- Recommenders recommend:
 - Items to users (most common)
 - Users to Items
 - Items to Items
 - Users to Users
- Items are movies, products, news, music, books, recipes, ...

Working in pairs: try to find one example of each four recommender scenarios above.

Recommender Systems

- WLOG, we will focus on recommend users relevant items
 - \blacktriangleright Predictive modelling: predict the rate of item m by the user u
 - Retrieve modelling: learning a rank systems
- Typically based on past **interactions** and (or) **attributes** (from users and items)
- Interactions: normally modelled as interaction matrix
 - Explicit: a user rate a song with 4 stars in a scale from 0 to 5
 - Implicit: a user watched 80% of a movie
- Attributes: normally modelled as attribute matrices
 - Users: gender, age, location, ···
 - Items: text, video, meta-data, ···

Personalised Machine Learning

Matrix Factorization

Modelling Interactions: Explicit feedback

	m ₁	m 2	 mn
U1	?	2	 3
U2	5	1	 ?
Uз	?	3	 1
Um	4	4	 ?

Personalised Machine Learning

Matrix Factorization

Modelling Interactions: Implicit feedback

U1	m1	12/11/2021 09:01:21	Watch	25%
U2	m1	17/03/2021 14:27:09	Clicked	
U2	m 4	17/03/2021 14:22:09	Clicked	Purchase
Um	mn	14/06/2020 23:14:46	Watch	100%

	m1	m 2	 mn
U1	1	0	 0
U2	1	0	 0
Uз	0	1	 1
Um	0	1	 1

Personalised Machine Learning

Matrix Factorization

From explicit to implicit feedback

	m1	m 2	 mn			m ₁	m ₂	 mn
U1	?	2	 3		U1	?	0	 0
U 2	5	1	 ?		U2	1	0	 ?
Из	?	3	 1		Uз	?	0	 0
Um	4	4	 ?	I	Um	1	1	 ?

Personalised Machine Learning

Matrix Factorization

From implicit to explicit feedback

U1	m1	12/11/2021 09:01:21	Watch	25%
U2	m1	17/03/2021 14:27:09	Clicked	
U2	m 4	17/03/2021 14:22:09	Clicked	Purchase
Um	mn	14/06/2020 23:14:46	Watch	100%

	m ₁	m 2	 mn
U1	0	0	 0
U 2	0	0	 0
Из	0	1	 1
Um	0	0	 1

Modelling Attributes

	Color	Price	Category
mı	Black	24936	Chair
m ₂	Red and White	24944	Chair
mз	Red and White	1299	T-Shirt
m4	Black	1104	Chair

Q			
Eny Chair Design Armchair - Black shell - Fabric Black	Armchair Ele Chair - White Exterior - Fabric Red	Puma SK SLAVIA CUP PRO Pohárový fotbalový dres, Červená,Bílá,Zlatá,	Konferenční židle víva, černé nohy, černá
CZK 24.936,85	CZK 24.944,86	CZK 1.299,00	CZK 1.104,73
Privatefloor EU	MyFaktory EU	Sportisimo.cz	B2Bpartner.cz
• 1.022,90 m 1	€ 1.022,90 m 2	m ₃	m 4

Personalised Machine Learning

- Personalisation *is not* a simple regression or classification problem
- A personalised model implies that: if the user have different interactions (or attribute) the recommendation should be different
- Suppose the vector a_u (a_m) are attribute vectors of user u (item m)
- We can use linear regression to predict how users u will like item m

$$r_{ui} = \omega^\top \times \begin{bmatrix} a_u \\ a_m \end{bmatrix}$$

 Is linear regression a personalised model for recommenders? No!

Recommendation Algorithms

Collaborative Filtering

Day One: Joe and Julia independently read an article on police brutality

Day Two: Joe reads an article about deforestation, and then Julia is recommended the deforestation article

Content-Based Filtering

Day One: Julia watches a Drama

Day Two: Dramas are recommended

Basic	Concepts
0000	000 '

Recommender as a Matrix

- As we saw, we can model recommenders as matrices.
- The ratings can be stored in a ranking matrix R of dimension m × n with elements from ℝ ∪ {?}.
- An example of a rating matrix for m = 4 users and n = 6 items can read

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}$$

Meaning, e.g., that user u_1 ranked items i_1 and i_6 with 1 star, item i_4 with 2 stars and had no interactions with items i_2, i_3 and i_4 .

 Our goal is to predict the unknown ratings r_{u,i} =? using the knowledge of the known ratings r_{u,i} ≠?.

Basic	Concepts
0000	000 '

Idea of matrix factorization

• By **matrix factorization** we usually mean expressing a given matrix *R* as a matrix product of two (or more) matrices with some non-trivial properties. For example:

$$R = UV^{\top}$$

• These factorizations are a cornerstone of many algorithms and methods or are used to reach more numerically stable computations.

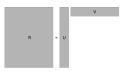
Do we need to know all the entries of a matrix R to factorize it, for example $R = UV^{\top}$?

В	asic	Concepts	
0	000	000 '	

Intuition of matrix factorization

- As for the recommendation systems, the inspiration comes mainly from the SVD as it can be used for constructing **latent features** or, in other words, **dimensionality reduction** using projections to lower dimensional space.
- The very basic idea of the lower dimensional approximation of an input matrix R of dimension $m \times n$ is based on this first-linear-algebra-lesson fact: Multiplying matrices U of dimension $m \times d$ and V of dimension $d \times n$ we get a matrix of dimension $m \times n$. This is true for any positive integer d.
- And this is the idea: Given a rating matrix R, find lower dimensional matrices U and V so that the known elements of R are well approximated by the matrix \mathbf{UV}^{\top} .

Matrix factorization for recommenders



- Let us denote:
 - The *i*-th row of U as u_i; the number of rows of U equals the number of users |U|.
 - ► The *j*-th column of V as v_j; the number of columns of V equals the number of items |*I*|.
 - Ω the subset of $\mathcal{U} \times \mathcal{I}$ of user-item pairs (i, j) such that $r_{i,j}$ is known, i.e., $r_{i,j} \neq ?$.
- The approximation of r_{i,j} is given by the number u_i^Tv_j, i.e., by the dot product of the two *d*-dimensional vectors.

Basic	Concepts
0000	000 '

Optmization Problem

• The error of approximation is usually measured by the squared residual:

$$(r_{i,j} - u_i^T v_j)^2.$$

• Hence, the matrices U and V are obtained by solving the optimization task:

$$\operatorname{argmin}_{\mathbf{U},\mathbf{V}} \sum_{(i,j)\in\Omega} (r_{i,j} - u_i^T v_j)^2 + \lambda (\sum_x ||u_x||^2 + \sum_y ||v_y||^2).$$

Sparsity and prediction

- The matrices U and V are optimized only by considerung the known entries of R that are usually only a minority of entries.
- E.g. in the Netflix prize in 2006 there were n = 17K movies and m = 500K users, meaning that the matrix R had 8500M entries. But only 100M was given by Netflix!
- Still, the result of the matrix multiplication UV[⊤] is a matrix having the same dimensions as R with all entries known!
- The unknown rating $r_{i,j} = ?$ is estimated as $\hat{r}_{i,j} = u_i^T v_j$..

Basic	Concepts
0000	000 '

Example

• Consider our toy example matrix from above:

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}$$

- Assume that we chose the hyperparameter d = 2, i.e., we look for approximation matrices U and V with dimensions 4×2 and 2×6 , respectively.
- Let us pretend that the matrices resulting from the optimization are

$$U = \begin{pmatrix} 0.3 & 0.7 \\ 0.3 & 0.5 \\ 0.2 & 0.4 \\ 0.2 & 0.1 \end{pmatrix} \text{ and } V^{\top} = \begin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20 \\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix}.$$

Example

• The resulting approximation is

$$\mathbf{U}\mathbf{V}^{\top} = \begin{pmatrix} 0.3 & 0.7\\ 0.3 & 0.5\\ 0.2 & 0.4\\ 0.2 & 0.1 \end{pmatrix} \begin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20\\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix} = \\ = \begin{pmatrix} 1 & 2.3 & 1.9 & 2.3 & 1.9 & 3.2\\ 0.8 & 2.5 & 2.3 & 2.5 & 1.7 & 4\\ 0.6 & 1.6 & 1.4 & 1.6 & 1.2 & 2.4\\ 0.3 & 1.9 & 2 & 1.9 & 0.9 & 3.6 \end{pmatrix},$$

where the red numbers are the desired predictions!

• E.g. the 3rd user predicted rating of the 4th item is $\hat{r}_{3,4} = 1.6$.

Basic	Concepts
0000	000 '

Personalised Machine Learning

Matrix Factorization

Supervised learning task

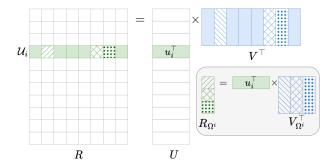
- The learning parameters: $U \in \mathbb{R}^{m \times d}$ and $V \in \mathbb{R}^{n \times d}$
- The hyperparameters:
 - the regularization constant $\lambda > 0$,
 - the matrix dimension d, which is a positive integer (significantly smaller than min{m, n}).
- These hyperparameters can be tuned in the usual way via crossvalidation
- Therefore we would like to learn U and V, given d and λ by

$$\operatorname{argmin}_{\mathbf{U},\mathbf{V}} \sum_{(i,j)\in\Omega} (r_{i,j} - u_i^T v_j)^2 + \lambda (\sum_x ||u_x||^2 + \sum_y ||v_y||^2).$$

Alternating least squares (ALS)

- The idea of ALS is to fix alternately the matrix U and V. The non-fixed matrix is then considered learning variable and a subject to minimization.
- With one of the matrices fixed, the optimization problem becomes convex and very similar to the linear regression problem.
- · Let's try ti understand how the mechanism works

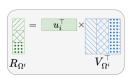
Alternating least squares (ALS)



Personalised Machine Learning

Matrix Factorization

Alternating least squares (ALS)



Then we have the following optimization problem

$$\mathsf{min}_{u_i}||R_{\Omega^i} - {u_i}^\top V_{\Omega^i} \top ||^2 + \lambda ||u_i||^2$$

• Convex problem with closed-form

$$\hat{u}_i = (V_{\Omega^i} V_{\Omega^i} \top + \lambda I)^{-1} V_{\Omega^i}^\top R_{\Omega^i}$$

Alternating least squares (ALS)

Randomly initialize U and V

• WHILE does not converge

$$\forall i \in \mathcal{U}, \min_{u_i} ||R_{\Omega^i} - u_i^\top V_{\Omega^i} \top ||^2 + \lambda ||u_i||^2 \forall j \in \mathcal{I}, \min_{v_j} ||R_{\Omega^j} - v_j^\top U_{\Omega^j} \top ||^2 + \lambda ||v_j||^2$$

MF for Implicit Feedback

- In real-world applications, we often observe more implicit feedback than explicit feedback.
- In fact, explicit feedback is sometimes considered implicit.
- Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean that the user likes A more than twice as much as B?

• The method we learned last class is more appropriate for explicit feedback. Why?

Basic	Concepts
0000	000 '

Modelling Implicit Feedback

- Let's understand a more appropriate method
- Assume the binary interaction matrix *P*:

$$P = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

- That is, if user-*i* interact with item-*j*, than $P_{ij} = 1$, otherwise $P_{ij} = 0$.
- Now let C be a matrix of confidence regarding the interaction:

$$C = \begin{pmatrix} 0.85 & 0 & 0 & 0.34 & 0 & 0.98 \\ 0 & 0.37 & 0.10 & 0 & 0.63 & 0.01 \\ 0.45 & 0.42 & 0.43 & 0 & 0 & 0.23 \\ 0 & 0 & 0.26 & 0 & 0 & 0.88 \end{pmatrix}$$

Collaborative Filtering for Implicit Feedback

• Then we propose the following optimisation problem:

$$\min_{U,V} \sum_{i,j} C_{ij} (P_{ij} - u_i^{\top} v_j)^2 + \lambda ||u_i||^2 + \lambda ||v_j||^2$$

- Two main differences from previous MF method:
 - We need to account for the varying confidence levels
 - Optimization should account for all possible j, j pairs, rather than only those corresponding to observed data.
- We can use gradient descent to solve it.
- And ALS? By fixing V, can we find u_i ?

Closed form

- Assume V being fix and let's find u_i .
- Then we need to minimize the following loss

$$\mathcal{L}_i = \min_{u_i} \sum_j C_{ij} (P_{ij} - u_i^\top v_j)^2 + \lambda ||u_i||^2$$

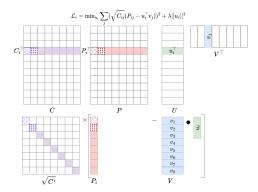
That is the same of:

$$\mathcal{L}_i = \min_{u_i} \sum_j (\sqrt{C_{ij}} (P_{ij} - u_i^{\top} v_j))^2 + \lambda ||u_i||^2$$

Exercise: Find the closed form.

Matrix Factorization

Alternating least squares (ALS)



Basic	Concepts
0000	000 '

Closed form

• Therefore is the same of solving:

$$\mathcal{L}_i = ||\sqrt{C^i}P_i - \sqrt{C^i}Vu_i||^2 + \lambda + ||u_i||^2$$

• Taking the derivative

$$\nabla u_i = -2(\sqrt{C^i}V)^\top (\sqrt{C^i}P_i - \sqrt{C^i}Vu_i) + 2\lambda u_i$$

• Remind if D is diagonal $D = \sqrt{D} \times \sqrt{D}$ is trivial and $D = D^{\top}$

- Therefore, with just some algebraic derivations
$$u_i = (V^\top C^i V + \lambda I)^{-1} V^\top C^i P_i$$