Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches	Social aspects

Lecture 4 - Modern Recommender Systems Advanced Machine Learning

Miroslav Čepek, Zdeněk Buk, **Rodrigo da Silva Alves**, Vojtěch Rybář, Petr Šimánek

FIT CTU

16. 3. 2023

Recap	MF for Implicit Feedback	Autoenconders
00000	00000000	000000000

Sequential Recommendation

Modern approaches

Social aspects

RECAP: Explicit feedback

	m ₁	m 2	 mn
U1	?	2	 3
U2	5	1	 ?
U 3	?	3	 1
Um	4	4	 ?

Recap	MF for Implicit Feedback	Α
00000	000000000	C

Autoenconders

Sequential Recommendation

Modern approaches

Social aspects

RECAP: Implicit feedback

U1	m1	12/11/2021 09:01:21	Watch	25%
U2	m1	17/03/2021 14:27:09	Clicked	
U2	m 4	17/03/2021 14:22:09	Clicked	Purchase
Um	mn	14/06/2020 23:14:46	Watch	100%

	m1	m 2	 mn
U1	1	0	 0
U2	1	0	 0
Из	0	1	 1
Um	0	1	 1

 Recap
 MF for Implicit Feedback
 Autoenconders
 Sequential Recommendation
 Modern approaches
 Social aspects

 00000
 000000000
 0000
 0000
 0000
 0000
 000

RECAP: Matrix Factoriazation

• From a rating matrix R:

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}$$

• Assume that we chose the hyperparameter d = 2, i.e., we look for approximation matrices U and V with dimensions 4×2 and 2×6 , such as

$$U = \begin{pmatrix} 0.3 & 0.7 \\ 0.3 & 0.5 \\ 0.2 & 0.4 \\ 0.2 & 0.1 \end{pmatrix} \quad \text{and} \quad V^{\top} = \begin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20 \\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix}.$$

• The resulting approximation is

$$\mathbf{U}\mathbf{V}^{\top} = \begin{pmatrix} 0.3 & 0.7\\ 0.3 & 0.5\\ 0.2 & 0.4\\ 0.2 & 0.1 \end{pmatrix} \begin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20\\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix} = \\ = \begin{pmatrix} 1 & 2.3 & 1.9 & 2.3 & 1.9 & 3.2\\ 0.8 & 2.5 & 2.3 & 2.5 & 1.7 & 4\\ 0.6 & 1.6 & 1.4 & 1.6 & 1.2 & 2.4\\ 0.3 & 1.9 & 2 & 1.9 & 0.9 & 3.6 \end{pmatrix},$$

where the red numbers are the desired predictions!

• E.g. the 3rd user predicted rating of the 4th item is $\hat{r}_{3,4} = 1.6$.

• Then we have the following optimization problem

$$\mathsf{min}_{u_i}||R_{\Omega^i}-{u_i}^\top V_{\Omega^i}\top||^2+\lambda||u_i||^2$$

Convex problem with closed-form

$$\hat{u}_i = (V_{\Omega^i} V_{\Omega^i} \top + \lambda I)^{-1} V_{\Omega^i}^\top R_{\Omega^i}$$

Alternating least squares (ALS)

Randomly initialize U and V

• WHILE does not converge

$$\begin{array}{l} \blacktriangleright \quad \forall i \in \mathcal{U}, \ \min_{u_i} ||R_{\Omega^i} - u_i^{\top} V_{\Omega^i} \top ||^2 + \lambda ||u_i||^2 \\ \triangleright \quad \forall j \in \mathcal{I}, \ \min_{v_j} ||R_{\Omega^j} - v_j^{\top} U_{\Omega^j} \top ||^2 + \lambda ||v_j||^2 \end{array}$$

- In real-world applications, we often observe more implicit feedback than explicit feedback.
- In fact, explicit feedback is sometimes considered implicit.
- Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean that the user likes A more than twice as much as B?

• The method we learned last class is more appropriate for explicit feedback. Why?

Recap MF for Implicit Feedback Autoenconders Sequential Recommendation Modern approaches Social aspects Modelling Implicit Feedback Modelling Implicit Feedback Social aspects Social aspects Social aspects

- Let's understand a more appropriate method
- Assume the binary interaction matrix *P*:

$$P = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

- That is, if user-*i* interact with item-*j*, than $P_{ij} = 1$, otherwise $P_{ij} = 0$.
- Now let C be a matrix of confidence regarding the interaction:

$$C = \begin{pmatrix} 0.85 & 0 & 0 & 0.34 & 0 & 0.98 \\ 0 & 0.37 & 0.10 & 0 & 0.63 & 0.01 \\ 0.45 & 0.42 & 0.43 & 0 & 0 & 0.23 \\ 0 & 0 & 0.26 & 0 & 0 & 0.88 \end{pmatrix}$$

Collaborative Filtering for Implicit Feedback

Then we propose the following optimisation problem:

$$\min_{U,V} \sum_{i,j} C_{ij} (P_{ij} - u_i^{\top} v_j)^2 + \lambda ||u_i||^2 + \lambda ||v_j||^2$$

- Two main differences from previous MF method:
 - We need to account for the varying confidence levels
 - Optimization should account for all possible j, j pairs, rather than only those corresponding to observed data.
- We can use gradient descent to solve it.
- And ALS? By fixing V, can we find u_i ?

- Assume V being fix and let's find u_i .
- Then we need to minimize the following loss

$$\mathcal{L}_i = \min_{u_i} \sum_j C_{ij} (P_{ij} - u_i^{\top} v_j)^2 + \lambda ||u_i||^2$$

That is the same of:

$$\mathcal{L}_i = \min_{u_i} \sum_j (\sqrt{C_{ij}} (P_{ij} - u_i^\top v_j))^2 + \lambda ||u_i||^2$$

Exercise: Find the closed form.

Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches	Social aspects

• Therefore is the same of solving:

$$\mathcal{L}_i = ||\sqrt{C^i}P_i - \sqrt{C^i}Vu_i||^2 + \lambda + ||u_i||^2$$

• Taking the derivative

$$\nabla u_i = -2(\sqrt{C^i}V)^\top (\sqrt{C^i}P_i - \sqrt{C^i}Vu_i) + 2\lambda u_i$$

• Remind if D is diagonal $D=\sqrt{D}\times\sqrt{D}$ is trivial and $D=D^{\top}$

- Therefore, with just some algebraic derivations
$$u_i = (V^\top C^i V + \lambda I)^{-1} V^\top C^i P_i$$

Recap 00000	MF for Implicit Feedback	Autoenconders •00000000	Sequential Recommendation	Modern approaches	Social aspects
RECA	P: Autoencoder				

- An autoencoder is a type of feed-forward neural network
- It is designed to reconstruct its input x_i ad output x_i
- To prevent trivial solutions, the network includes a bottleneck (or code) layer
 - Significantly smaller dimension than the input

Recap 00000	MF for Implicit Feedback	Autoenconders 0●0000000	Sequential Recommendation	Modern approaches	Social aspects
RECA	AP: Autoencoder				

- An autoencoder is also composed by a encoder/decoder
- The encoder and the decoder have normally similar structure
- More formally: let $\mathcal{E}()$ be a encoder and $\mathcal{D}()$ be a decoder. Our optmization problem can be described as:

$$\min_{\mathcal{E}, \mathcal{D}} \sum_{i} ||x_i - \mathcal{D}(\mathcal{E}(x_i))||$$

Recap	MF for Implie	cit Feedback
00000	000000000)

Autoenconders 00000000

Sequential Recommendation

Modern approaches

Social aspects

Autoencoder

How can we use autoencoders to predict implicit feedback?

Recap	MF for Implicit	Feedback
00000	000000000	

Autoenconders

Sequential Recommendation

Modern approaches

Social aspects

Autoencoders for CF

Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches	Social aspects
Autoe	encoders for CF				

- Autoencoders are frequently used for collaborative filtering.
- They are very accurate in predicting rankings.
- They can also be used to find clusters with the code.
- Empirical results show that the best architecture is often not very deep.
- What would be the shallowest autoencoder for Collaborative Filtering?

- EASE is the shallowest auto-encoder as possible
- It aims to solve the following problem

$$\min_B ||X - XB||^2 + \lambda ||B||^2 \text{ s.t } \operatorname{diag}(B) = 0$$

- Why do we need the constraint diag(B) = 0?
- EASE has closed form solution! See here
- Is this a good method?

0000000000

Autoenconders

Sequential Recommendation

Modern approaches

Social aspects

EASE Results

Table 1: Ranking accuracy (with standard errors of about 0.002, 0.001, and 0.001 on the ML-20M, Netflix, and MSD data, respectively), following the experimental set-up in [13].

(a) ML-20M	Recall@20	Recall@50	NDCG@100			
nonularity	0.162	0.235	0 191			
popularity	0.102	0.233	0.191			
EASE O	0.371	0.321	0.420			
EASE" 2 0	0.373	0.499	0.402			
results reprod	ucea from [1:	s]:				
SLIM	0.370	0.495	0.401			
WMF	0.360	0.498	0.386			
CDAE	0.391	0.523	0.418			
MULT-VAE PR	0.395	0.537	0.426			
MULT-DAE	0.387	0.524	0.419			
(b) Netflix						
popularity	0.116	0.175	0.159			
EASER	0.362	0.445	0.393			
$EASE^R \ge 0$	0.345	0.424	0.373			
results reprod	uced from [13	3]:				
SLIM	0.347	0.428	0.379			
WMF	0.316	0.404	0.351			
CDAE	0.343	0.428	0.376			
MULT-VAE PR	0.351	0.444	0.386			
MULT-DAE	0.344	0.438	0.380			
(c) MSD						
popularity	0.043	0.068	0.058			
EASER	0.333	0.428	0.389			
$EASE^R \ge 0$	0.324	0.418	0.379			
results reproduced from [13]:						
SLIM	- dic	l not finish in	[13] -			
WMF	0.211	0.312	0.257			
CDAE	0.188	0.283	0.237			
MULT-VAE PR	0.266	0.364	0.316			
MULT-DAE	0.266	0.363	0.313			

Recap	MF for Implicit Feedback	Autoer
00000	00000000	00000

utoenconders 000000●0 Sequential Recommendation

endation Moder

Modern approaches

Social aspects

Mixing Implicit and Explicit

Recap	MF for Implicit Feedback	A
00000	000000000	0

Autoenconders

Sequential Recommendation

Modern approaches

Social aspects

Mixing Implicit and Explicit

Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation •000	Modern approaches	Social aspects
Seque	ntial Recommend	lation			

- Sequential recommendation is the task of predicting the next item that a user will interact
- There is extensive sequential recommendation algorithms
 - Markov chains
 - Recurrent neural networks (RNNs)
 - Long short-term memory (LSTM) networks
 - Embedding-base Neural Networks
- The models should learn patterns in a user's behavior over time

Recap 00000	MF for Implicit Feedback	Autoenconders	Sequential Recommendation	Modern approaches	Social aspects
Seque	ential Recommen	dation			

 $\xrightarrow[T-shirt]{} \rightarrow \overbrace{Shorts}{} \rightarrow \overbrace{Shoes}{} \rightarrow \overbrace{Cap}{} \rightarrow ?$

Recommendation

Modern approaches

Social aspects

Sequential Recommendation

Recap	MF for Implicit Feedback	Au
00000	000000000	00

Sequential Recommendation 0000

Modern approaches

Social aspects

Sequential Recommendation

Recap	MF for Implicit Feedback
00000	000000000

Autoenconders

Sequential Recommendation

Modern approaches

Social aspects

Triplets problem

Recap	MF for Implicit	Feedback
00000	000000000	

Autoenconders

Sequential Recommendation

endation Mode

Modern approaches 0●000000000

Social aspects

Triplets problem

 Recap
 MF for Implicit Feedback
 Autoenconders
 Sequential Recommendation
 Modern approaches
 Soc

 00000
 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Triplets problem to Recommenders

- The items we show to user can influence their decision
- Based on neuroscience
- Sometimes the position we show does not matter significantly
- Context embedding: summarizes the context of the recommendation
- Provide not just accurate recommendation but also interpretability

Recap 00000	MF for Implicit Feedback	Autoenconders	Sequential Recommendation	Modern approaches	Social aspects
Care	Model				

Care Madel						
Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches 0000€000000	Social aspects	

Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches 00000€00000	Social aspects
Care	Model				

The Time Dimension in Recommendations

- Do you like the same things, morning and evenings?
- For example, the playlist recommendations on Spotify should change based on the time of day and day of the week.
 - Rarely do people have the same mood on Monday morning as they do on Friday evening.
- Taste and preferences change over time, so recommendations should adapt accordingly.
- The envoroment of RS is dynamic

Recap 00000	MF for Implicit Feedback	Autoenconders	Sequential Recommendation	Modern approaches 0000000●000	Social aspects
Pivo	Recommendation				

Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches	Social aspe
Pivo	Recommendation				

Lecture 4 - Modern Recommender Systems

- Recommender systems typically require millions of interactions
- However, new systems often have limited interaction data available
- Attribute-based recommendations can provide valuable information
 - Normally less significant than interactions themselves

Recap	MF for Implicit Feedback
00000	000000000

Autoencond 00000000 Sequential Recommendation

endation Mode

Modern approaches

Social aspects

Transfer Learning in RS

Recap 00000	MF for Implicit Feedback	Autoenconders 000000000	Sequential Recommendation	Modern approaches	Social aspects ●00
Socia	l matters in RS				

Fairness

- Recommender systems have the potential to perpetuate or even amplify bias
- Unequal treatment of different groups of users
- Filter Bubbles
 - Common problem on RSs that rely heavily on personalization
 - Recommendations that align with a user's pre-existing preferences
 - Negative consequences for both individual users and society

Recap 00000	MF for Implicit Feedback	Autoenconders	Sequential Recommendation	Modern approaches	Social aspects O●O
<u> </u>					

Social matters in RS

- Challenging to evaluate
 - Lack of ground truth
 - Changes over the time
 - Diversity of user preferences
- Scalability
 - When terabytes of memory is not enough
 - Can result in increased computational costs and reduced performance

Recap 00000	MF for Implicit Feedback	Autoenconders	Sequential Recommendation	Modern approaches	Social aspects 00●
Socia	I matters in RS				

Privacy concerns

- Recommender systems often rely on user data to provide accurate recommendations
- Legislation (GDPR)
- Lack of interpretability
- Dynamic preference
 - User preferences and item characteristics can be highly dynamic
 - Item availability
 - Difficult to provide accurate and up-to-date recommendations