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RECAP: Implicit feedback
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RECAP: Matrix Factoriazation

® From a rating matrix R:
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® Assume that we chose the hyperparameter d = 2, i.e., we look for
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approximation matrices U and V' with dimensions 4 X 2 and 2 X 6, such as
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Example

® The resulting approximation is
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where the red numbers are the desired predictions!
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® E.g. the 3rd user predicted rating of the 4th item is 73 4 = 1.6.
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Alternating least squares (ALS)

. ® Then we have the following optimization problem

minu, || Ros — i " Voi TI[* + Alfus

) T
Rg; Vo ) Convex problem with closed-form

i = (VoiVi T+ M) "'V Rgi

Alternating least squares (ALS)
Randomly initialize U and V'
® WHILE does not converge

> Vi €U, ming,||Rai —u; ' Vi T||? + Al|ug| |2
> Vj €I, min,||Rqi — v; " Uqs T|? + Al|v; |2
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MF for Implicit Feedback

® In real-world applications, we often observe more implicit
feedback than explicit feedback.

® In fact, explicit feedback is sometimes considered implicit.
e Suppose user ¢ watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it
mean that the user likes A more than twice as much as B?

® The method we learned last class is more appropriate for
explicit feedback. Why?
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Modelling Implicit Feedback

® Assume the binary interaction matrix P:

® That is, if user-¢ interact with item-j, than P;; = 1, otherwise P;; = 0.
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Now let C be a matrix of confidence regarding the interaction:
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Collaborative Filtering for Implicit Feedback

® Then we propose the following optimisation problem:

minu,v Y Cis (P — u] v3)” + NJuil[* + Al

2%

® Two main differences from previous MF method:

» We need to account for the varying confidence levels
» Optimization should account for all possible j, j pairs, rather
than only those corresponding to observed data.
® We can use gradient descent to solve it.

And ALS? By fixing V, can we find u;?
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Closed form

® Assume V being fix and let’s find u;.

® Then we need to minimize the following loss

L; = min,, ZC,](P” — u;r?}j)z + )\HUZHQ

J
That is the same of:
Lo =minu, Y (v/Ci(Py = ul v;))* + Alfus]

J

Exercise: Find the closed form.
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Alternating least squares (ALS)
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Alternating least squares (ALS)

o= ming, 3y OBy — uf )+ Nl
7

Ci‘ P“‘ g
U
- .

T
i

Lecture 4 - Modern Recommender Systems 11 / 37



Alternating least squares (ALS)
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Alternating least squares (ALS)
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Closed form

® Therefore is the same of solving:

L= ||VCZP~L - VC'LVU¢||2 + A+ ||u1|\2

® Taking the derivative

Vu; = —2(VCV) T (VCiP, — VCiVu,) + 22w,

Remind if D is diagonal D = v/D x /D is trivial and D = D"
Therefore, with just some algebraic derivations

w=V"CV+A)VICP
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RECAP: Autoencoder

® An autoencoder is a type of feed-forward neural network

® |t is designed to reconstruct its input x; ad output x;

® To prevent trivial solutions, the network includes a bottleneck
(or code) layer

> Significantly smaller dimension than the input
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RECAP: Autoencoder

® An autoencoder is also composed by a encoder/decoder
® The encoder and the decoder have normally similar structure

® More formally: let £() be a encoder and D() be a decoder.
Our optmization problem can be described as:

ming p Z sz - D(c‘f(wz))H
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Autoencoder

Reconstruction
Code

How can we use autoencoders to predict implicit feedback?
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Autoencoders for CF
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Autoencoders for CF

® Autoencoders are frequently used for collaborative filtering.
® They are very accurate in predicting rankings.
® They can also be used to find clusters with the code.

® Empirical results show that the best architecture is often not
very deep.

® \What would be the shallowest autoencoder for Collaborative
Filtering?

Lecture 4 - Modern Recommender Systems 17 / 37



Recap MF for Implicit Feedback Autoenconders Sequential Recommendation Modern approaches Social aspects
000

00000 000000000 000008000 0000 00000000000
EASE

® EASE is the shallowest auto-encoder as possible

® |t aims to solve the following problem

ming||X — X BJ|? + \||B|? s.t diag(B) =0

® Why do we need the constraint diag(B) = 07

® EASE has closed form solution! See here

[ )

Is this a good method?
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https://arxiv.org/pdf/1905.03375.pdf

EASE Results

Table 1: Ranking accuracy (with standard errors of about
0.002,0.001, and 0.001 on the ML-20M, Netflix, and MSD data,
respectively), following the experimental set-up in [13].

(2) ML20M  Recall@20 Recall@50 NDCG@100

popularity 0162 0235 0191
Ease® 0301 0521 0420
EASE'2 0 0373 0499 0402
results reproduced from [13]:

St 0370 0.495 0401
wate 0360 0.498 0386
coas 0301 0523 0418
Muirvag ™ 0395 0537 0.426
Muwt-DAE 7 0521 0419
b) Netflix

popularity 0116 0175 0159
EASER 0362 0.445 0393
EASE"2 0 0385 0424 0373
results reproduced from [13]:

Sum 0347 0428 0379
e 0316 0.04 0351
coar 0343 0428 0376
MuLrvag ™ 0351 0.4 0386
Murr-pAE 0344 0438 0380
© M5D

popularity 0013 0068 0058
EAsE® 0333 0.428 0389
EASER2 0 0320 0.418 0379
results reproduced from (13}

Su — did not finish in [13] —

wair oz 0312 0257
coar 0188 0283 0237
MuLTvag ™ 0266 0364 0316
MuLT-DAE 0266 0363 0313
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Mixing Implicit and Explicit

Encoder Decoder

Fully-connected
Layers

Convolutions Predictions

Observation i Convolutions
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Mixing Implicit and Explicit
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Sequential Recommendation

® Sequential recommendation is the task of predicting the next
item that a user will interact
® There is extensive sequential recommendation algorithms
» Markov chains
» Recurrent neural networks (RNNs)
» Long short-term memory (LSTM) networks
» Embedding-base Neural Networks
® The models should learn patterns in a user's behavior over
time
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Sequential Recommendation
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Sequential Recommendation
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Sequential Recommendation
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Triplets problem
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Triplets problem
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Triplets problem to Recommenders

Odd-one-out Recommendation

e . . .
18 vl 8 % ® The items we show to user can influence their
) v/ §8 decision
FRv A4 )
88 H =HE ® Based on neuroscience

® Sometimes the position we show does not
matter significantly

e Context embedding: summarizes the context of
the recommendation

® Provide not just accurate recommendation but
also interpretability
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Care Model
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Care Model
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Care Model
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The Time Dimension in Recommendations

Do you like the same things, morning and evenings?

For example, the playlist recommendations on Spotify should
change based on the time of day and day of the week.
» Rarely do people have the same mood on Monday morning as
they do on Friday evening.

Taste and preferences change over time, so recommendations
should adapt accordingly.

The envoroment of RS is dynamic
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Pivo Recommendation
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Pivo Recommendation
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Addressing the Cold-Start Problem

® Recommender systems typically require millions of interactions

® However, new systems often have limited interaction data
available

® Attribute-based recommendations can provide valuable

information
» Normally less significant than interactions themselves
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Transfer Learning in RS

Graph neural network
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Social matters in RS

® Fairness
» Recommender systems have the potential to perpetuate or
even amplify bias
» Unequal treatment of different groups of users

® Filter Bubbles

» Common problem on RSs that rely heavily on personalization

» Recommendations that align with a user's pre-existing
preferences

» Negative consequences for both individual users and society
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Social matters in RS

® Challenging to evaluate
» Lack of ground truth
» Changes over the time
> Diversity of user preferences
® Scalability
» When terabytes of memory is not enough
» Can result in increased computational costs and reduced
performance
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Social matters in RS

® Privacy concerns

» Recommender systems often rely on user data to provide
accurate recommendations

> Legislation (GDPR)

» Lack of interpretability

® Dynamic preference

» User preferences and item characteristics can be highly
dynamic

P |tem availability

» Difficult to provide accurate and up-to-date recommendations
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