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Agenda

Classical Approaches & Fourier transform

Recurrent Neural Networks

Convolutional Networks for Time Series

Transformers for Time Series
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e (lassification for whole signal or sections

® Anomaly detection

® Forecasting
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Signal Matching - Cross-Correlation

® How similar two signals are given the translation.

® How well signal matches given pattern.

—+00

(fx9)(r) = N f)g(t+7)dt

® Slide a pattern - in this context called window - across signal
and identify spots where the window and signal matches the
best.

® Translation invariance.
o |Where are the heart beats in EEG signal?
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Signal Matching - Dynamic Time Warping

® Similarity between signals varying in speed.

® Signals are expected to start at the same time and are
expected to have the same amplitude (values).

® | imited invariance to translation.

® Algorithm tries to match individual samples from both signals
- where in either signal, | have to add/remove/modify samples
to get the complete match?

® The idea is similar as in Levenshtein's Edit Distance or
Needleman-Wunsch Algorithm for matching sequences.

® s this signal a heart beat?
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Fourier Transform Reminder

® The math transformation
between time and frequency
domain.

® Approximates a segment of
a time signal with serie of
sine/cosine waves with
defined frequencies and
varying amplitudes.

&
3
Power (dB)

I~
T
=
g
1]
El
=z
o
[

e Estimated frequency
amplitudes and phase shifts T e T
can be used as latent
representation of the signal.

Matlab Documentation
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https://www.mathworks.com/help/signal/ug/practical-introduction-to-time-frequency-analysis.html

Signal Matching  Fourier Transform RNN for Time Series/Sequence ~ CNN in Time Series  Transformers for Time Series
(o]} oe 000000 000000000 000000000000

Fourier Transform Reminder (2)
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® PRO: Fast and Efficient algorithms to compute.

® CONS: Time locality vs frequency resolution tradeoff.

Shayan Motamedi-Fakhr et al.: Signal processing techniques applied to human sleep
EEG signals—A review
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https://www.sciencedirect.com/science/article/abs/pii/S174680941300178X
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RNN - Usual Suspects

¢ Long Short-Term Memory(LSTM)
¢ Gated Recurrent Units (GRU)
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Recurrent Neural Networks for Time Series Forecasting: Current status and future
directions
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https://www.sciencedirect.com/science/article/pii/S0169207020300996
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RNN Stacked Architecture

® Feed samples (events) into RNN and get back predictions as
Y;. The predictions can be either for every sample or at the

end.
Yl Y2 Y3 Yt Y]'
T hl h2 h3 ....... ht ....... hT
0 1
X1 X2 X3 Xt XT
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Sequence to Sequence Approach

® Variation on Sequence to Sequence model known from NLP
field.

® Used for forecasting as well for sample-wise classification.

Decoder

U1 2 U3 UH
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Encoder
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Sequence to Sequence model as Feature Extractor

e First train Sequence
to Sequence model to
correctly predict the
future signal.

® The second step is to
take frozen encoder,
get the sequence
embeddings and train
the prediction (fully
connected) network.

® The prediction
network has
additional inputs.

Deep and Confident Prediction for Time Series at Uber
Lecture 8 - Time Series Modelling 11 / 34


https://ieeexplore.ieee.org/document/8215650
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Multi-Quantile Recurrent Forecaster - Variation on Sequence to Sequence
Model

Decoder Decoder
(t-2) -1

L) (e}

G @ ®
SN SO

Encoder LSTM

Decoder(t) MLPs

A Multi-Horizon Quantile Recurrent Forecaster
Lecture 8 - Time Series Modelling
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https://arxiv.org/pdf/1711.11053.pdf
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Clockwork RNN

Output

Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module % are connected
to neurons in a slower module j only if a clock period T; < Tj.

A Clockwork RNN

Lecture 8 - Time Series Modelling
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http://proceedings.mlr.press/v32/koutnik14.pdf
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Convolution for Time Series

Convolution as feature extractor in time series.

Use 1-D convolution for univariate signal.

® Each convolution filter extract particular type of feature.

The head on top of extractor can perform any task -
classification, regression, anomaly detection or forecasting.

Lecture 8 - Time Series Modelling 14 / 34
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Simplest Approach using CNN

Filter layer & Activation layer Pooling layer Filter layer & Activation layer ~ Pooling layer
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Zheng, Yi, et al. "Time series classification using multi-channels deep convolutional
neural networks.” (2014)
Lecture 8 - Time Series Modelling
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https://link.springer.com/chapter/10.1007/978-3-319-08010-9_33
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Variable Filter (Hard Attention)

- Variable-length filters generator — — — — — — — — — — — — —
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FIGURE 3. General archif of the Dy ic Multi-Scale C i Neural (DMS-CNN). The core of DMS-CNN is
variable-length filters generator, which is used to generate a set of filters with different lengths conditioned on the input time series and
the randomly initialized filters. Specifically, we first use :onvnluhon to obtain the embedded represenutlons of the input time series,
which are indicated with the blue lattices. Then, the emb ions and ialized filters are used to generate a set
of filters with different lengths, and we use the red lattices to indicate the randomly i lized filters. Finally, the filters of the
conventional CNN are replaced by the variable-length filters to capture features with different time-scales in each time series.

Dynamic Multi-Scale Convolutional Neural Network for Time Series Classification

(2020)
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https://ieeexplore.ieee.org/abstract/document/9115645
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Convolution for Forecasting - Temporal Convolutional Networks

e Temporal Convolutional Networks (TCNs) are a special case
of 1D convolutional neural network tailored to work well with
time series.

® TCNs leverages two principles:

1. Network outputs the sequence of the same length as input.
2. Architecturally, no leakage possible from the future into the
past.

® Ad 1) — TCNs leverage a 1D fully-convolutional network
architecture with each hidden and output layer of the same
length as the input layer and zero padding.

® Ad 2) — TCN uses causal convolutions, convolutions where an
output at time t is convolved only with elements from time t
and earlier in the previous layer.

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for
Sequence Modeling
Lecture 8 - Time Series Modelling 17 / 34


https://arxiv.org/abs/1803.01271
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Temporal Convolutional Networks lllustration
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Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k = 3. The
receptive field is able to cover all values from the input sequence. (b) TCN residual block. An 1x1 convolution is added when residual
input and output have different dimensions. (c) An example of residual connection in a TCN. The blue lines are filters in the residual
function, and the green lines are identity mappings.

e TCN = 1D FCN + causal convolutions

® Almost reuse 30 years old Time Delay Neural Network
architecture. Only update is to use zero padding to ensure
equal sizes of all layers.

® Note that in order to leverage long history, you need 1) deep
network of many layers or 2) large convolution filters and big
dilation step.

Lecture 8 - Time Series Modelling
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CNN in Time Series
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SCINet - Reimagined Convolution on Time Series
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SCINet: Time Series Modeling and Forecasting with Sample Convolution and

Interaction
Lecture 8 - Time Series Modelling

Transformers for Time Series
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https://proceedings.neurips.cc/paper_files/paper/2022/hash/266983d0949aed78a16fa4782237dea7-Abstract-Conference.html
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SCI-Block

e Splits signal into odd/even samples — coarser temporal
resolution but preserve most information of the original
sequence.

® Use separate convolution kernels to extract independently
features form odd/even sub-sequences.
e Combine features of odd/even subsequences:
> F(fdd = Fﬂdd @ exp ¢(Feven)
> Fsven = Leven @eXp ¢(Fodd)
® The F7,, and F, ., are then projected into output feature
space as element-wise multiplication of the original half-signal
and projected other half to keep important information in the
picture.
> Fédd = Foqq + pF;;

even

® This way we increase knowledge horizon of the output half
signal, without loosing information.

Lecture 8 - Time Series Modelling 20 / 34
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SCINet

® Each level of SCIBlocks shortens the length of the sequence
by half (or increase the reach).

® |n this, similar to dilation in TCNs.

® At the end of every SCIBlock the sequence is realigned and
concatenated back into a single sequence.

® One can stack multiple SCINets to achieve better forecasting
accuracy (and capture more complex intra-dependancies) at
cost of more complex architecture, more weights and lengthier
training.
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Fourier Transform

RNN for Time Series/Sequence

000000

SCINet - result Improvement

Table 2: Short-term forecasting performance comparison on the four datasets. The best results are
shown in bold and second best results are highlighted with underlined blue font.

improvement of SCINet over the best model.

CNN in Time Series
00000000e

Transformers for Time Series

000000000000

IMP shows the

Model SCINet Autoformer [40] Informer [42] Transformer [37] *TCN [4] *TCNT LSTNet [19] TPA-LSTM [34]
etric ~ RSE__CORR _RSE _CORR _RSE _CORR _RSE _CORR _RSE CORR _RSE _ CORR _ RSE RR __ RSE
300775 09853 NA  NA  NA  NA  NA  NA | 01940 09835 01900 09848 01843 09843  0.803 09850
Solubnegy | 6 0201 0979 NA  NA  NA  NA  NA  NA | 0281 09602 0238 09612 02559 09690 0237
1202997 09550 NA  NA  NA  NA  NA  NA | 03512 09321 03353 09432 03254 09467 03234
24 04081 09112  NA  NA  NA  NA_ NA  NA | 04732 08812 04676 08851 04643 08870 04389
304216 08920 05368 08268 05175 08515 05122 08555 | 05459 08486 05361 08540 04777 08721 04487
Tratfic 6 04414 08809 05462 08191 05258 08465 05455 08388 | 0.6061 08205 05992 08197 04893 08690 04658
12 04495 08772 05623 08082 05533 08279 05485 08317 | 06367 08048 06061 08205 04950 08614 04641
24 04453 08825 06020 07757 05883 08033 05934 08048 | 0.6586 07921 0.6456 07982 04973 08588 0476
300740 09494 01458 09032 01524 08858 01182 09055 | 00892 09232 00852 09293 00864 09283 00823
Blecvicty | © 005 0937 01555 08957 0192 08660 01328 0892 | 00974 09121 00924 0935 0091 09135 0096
1200920 09305 01541 08907 01748 08585 01375 08849 | 01053 09017 00993 09173 01007 09077  0.0964
24 0097 09270 01754 08732 02110 08347 0.46] 08774 | 0.1091 09101 00989 09101 01007 09119  0.1006
300171 09787 00400 09458 01392 09473 00689 09759 | 00217 09693 00202 09712 00226 09735 00174
Exchange | 6 00240 00704 00481 09197 01548 09207 00806 09671 | 00263 09633 00257 09628 00280 09658 00241
Rate 12 00331 09553 00638 09054 01793 08817 00893 09476 | 00393 09531 00352 09501 00356 09511 00341 0.
24 00436 09396 00651 08952 01998 07715 01127 09213 | 0.0492 09223 00487 09314 00449 09354 00444 09381
- Informer and achieved by [40] requires ps datasets for training.
- N/A denotes no pre-prossessed dataset for training.

- % denotes re-implementation.

Lecture 8 - Time Series Modelling

T denotes the variant with normal convolutions.
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Transformers

® Transformer is very successful model in NLP - modeling
sequences of words.

® Transformers are also faster to infer and train (in terms of
simpler parallelisation).

® As usual, the attention mechanism is bottleneck in length of
the input serie (limiting the sequence length) — O(N?).

® You can use vanilla transformers with some success.

® Typical modifications turn around position encoding

» Index-Based Positional Encoding
» Learnable Positional Encoding
» Timestamp Encoding

Transformers in Time Series: A Survey
Lecture 8 - Time Series Modelling 23 /34


https://arxiv.org/pdf/2202.07125.pdf
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Efficient Transformers

® Many efficient Transformers were proposed in NLP as well as
in signal processing to to reduce the quadratic complexity of
length of the serie.
® Two main approaches
1. explicitly introduce a sparsity bias into the attention

mechanism — LogTrans, Pyraformer
2. explore the low-rank property of the self-attention matrix —

Informer, FEDformer

Lecture 8 - Time Series Modelling 24 / 34
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Pyraformer - Pyramid Attention

(a) Full Attention (b) CNN (c) RNN

Layer 3

Embeddings 0.0.0.0:0:0;: Hidden States
Enedngs ‘

Layer 1 : : :

tmeians OO OOOOOO ms
Input

Embeddings (f) LogTrans

000000

Layer 3
Embeddings

Layer2
Embeddings

Layer 1
Embeddings

Input
Embeddings

e Attention based on C-ary trees — attention starts at individual
samples. Instead going each-with-each sample, looks at
gradually prolonging windows.

® Model developes intra-scale and inter-scale attentions to

better capture short and long dependencies in the signal.

Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Series Modeling
and Forecasting
Lecture 8 - Time Series Modelling 25 / 34



https://openreview.net/pdf?id=0EXmFzUn5I
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TranAD - Advesarial Tranformer for Anomaly Detection

Legend

: Add
Encoder Decoder 1 oy @
5 \ \ (©) concatenate
Add and Add and Feed S— Reconstructed [Phase 1 )
Normalize Normalize Forward 9 Output 1 1
Add and Add and Feed — Reconstructed
Normalize Forward '9 Output 2

Normalize
Window Encoder Decoder 2

(T mutti-ead

Attention

Masked Multi
Head Attention

Two phase inference - with two encoders and decoders.

Phase 1 - propagate full sequence C' and window W and to
get reconstructions O; and Os and Focus Score.

The second pass outputs the final focused reconstruction 0.

Aiming to identify spots where the expected (reconstructed)
signal differs from observed.

TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time

Series Data
Lecture 8 - Time Series Modelling 26 / 34


https://www.vldb.org/pvldb/vol15/p1201-tuli.pdf
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TranAD - Advesarial Tranformer for Anomaly Detection

® The focus score generated in the first phase indicates the
discrepancy between the reconstructed output and input —
modify the attention weights for the second pass.
® The second pass helps to:
1. emphasise differences between reconstructed and original
signal,

2. prevents false positives by capturing short-term temporal
trends

3. help generalizability and robustness of the adversarial style
training

Lecture 8 - Time Series Modelling 27 / 34
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TranAD - Training

® Training is two phase:
1. In the first phase, both O; and Os simply learns to predict
(reconstruct) the signal.
2. The second phase represent the adversarial loss - trying to
distinguish between original W and candidate reconstruction
02.
® The first decoder aims to fool the second decoder by aiming
to create a degenerate focus score (a zero vector) by perfectly
reconstructing the input — O; = W.
® This pushes the decoder 2, in this phase, to generate the same
output as O2 which it aims to match the input in phase 1.

Ly =01 = W2
Ly =1[|02 = W2

gl 02 = Wik

Lecture 8 - Time Series Modelling
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Figure 2: Visualization of anomaly prediction.
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TARNet

Build a transformer to encode the time signal.
® Encoding is passed to head to calculate the desired output.
The training aims at two tasks - the task and reconstruction.
» Pass the original signal through transformer encoder and head
to obtain the prediction.
» Mask randomly remove samples (zeros them out) and uses the
same transformer encoder and independent head to
reconstruct the signal.

Idea is that learning dependancies and correlation in the signal
will help perform the main task better.

Ranak Roy Chowdhury et al. 2022. TARNet: Task-Aware Reconstruction for
Time-Series Transformer
Lecture 8 - Time Series Modelling 30/ 34


https://dl.acm.org/doi/abs/10.1145/3534678.3539329
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Fourier Transform
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TARNet

(a) Task of interest / End Task, Teyp

RNN for Time Series/Sequence
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Figure 1: TARNet Overview: (a) Task of interest/ End Task, Tgn p: Data is mean-standardized, then passed through an Embedding
and a Positional Encoding layer (not shown for simplicity), followed by the N-layer Transformer Encoders and Fully Connected
(FC) Layer; (b) Data-driven Masking Strategy, M: For every time-series data, we collect attention maps generated by Transformer
Encoders in Tgnp and then compute the set of important timestamps to be masked in task-aware reconstruction; and (c)
Task-aware Reconstruction, Trsg: Input data are masked at timestamps computed by M and reconstructed. Transformer
Encoder parameters are shared between Tgnp and Tr4g, but the FC layers are different (highlighted by different colors).

Lecture 8 - Time Series Modelling
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TARNet

® By changing the FC Layer at the end of End Task, model can
perform any task - classification, regression, prediction,
anomaly detection.

® The masking is not performed at random.

® Uses attention from the transformer to identify samples
deemed to be important for the end task.

e Create aggregated attention mask (by combining all attention
masks from the transformer) and then a random subset of
samples with highest attention.

Lecture 8 - Time Series Modelling 32 /34



Signal Matching  Fourier Transform RNN for Time Series/Sequence ~ CNN in Time Series  Transformers for Time Series
00 00 000000 000000000 000000000080
Dataset| ED MLSTM-FCNs DTWD TapNet DTWI NS WEASEL-MUSE TS-TCC TNC ShapeNet TS2Vec Rocket MiniRocket TST TARNet
ArticularyWordRecognition[0.970 0973 0987 0987 0.980 0.987 0.990 0953 0973 0987 0987 0993 0993 0947 0977
AtrialFibrillation|0.267  0.267 0220 0333 0267 0.133 0333 0267 0133 0400 0200 0067 0133 0533 1.000
BasicMotions|0.676  0.950 0975 1000 1.000 1.000  1.000 1.000 0975 1.000 0975 1000 1000 0925 1.000
CharacterTrajectories|0.964  0.985 0989 0.997 0.969 0.994 0.990 0985 0967 0980 0995 0991 099 0971 0994
Cricket |0.944 0.917 1.000 0.958 0.986 0.986 1.000 0917 0958 0.986 0972 1.000 0.986 0.847 1.000
DuckDuckGeese|0.275 0675 0600 0575 0550 0.675 0575 0380 0460 0725 0680 0500 0750 0300 0.750
EigenWorms 0.549 0.504 0.618 0.489 - 0.878 0.890 0.779 0.840 0.878 0.847  0.650 0.790 0.720 0.420
Epilepsy|0.666 0761 0964 0971 0.978 0.957 1.000 0957 0957 0987 0964 098  1.000 0775 1.000
ERing|0.133 0.133 0.133  0.133 0.133 0.133 0.133 0904 0852 0.133 0.874 0.989 0.974 0.930 0919
EthanolConcentration|0.293 0373 0323 0323 0304 0.236 0430 0285 0297 0312 0308 0450 0430 0337 0323
FaceDetection 0.519 0.545 0.529  0.556 - 0.528 0.545 0.544 0536 0.602 0.501 0.638 0.612 0.625 0.641
FingerMovements|0.550 0580 0530 0530 0520 0.540 0.490 0460 0470 0580 0480 0520 0550 0590 0.620
HandMovementDirection |0.278 0.365 0231 0.378 0.306 0.270 0.365 0.243 0324 0338 0.338 0.486 0.392 0.675 0392
Handwriting[0.200  0.286 0286 0357 0316 0.533 0.605 0498 0249 0451 0515 059 0520 0359 0281
Heartbeat|0.619  0.663 0717 0.751 0.658 0.737 0.727 0751 0746 0756 0683 0741 0771 0782 0780
InsectWingbeat|0.128  0.167 - 0208 - 0.160 - 0264 0469 0250 0466 0179 0229  0.687 0137
JapaneseVowels|0.924 0976 0949 0965 0.959 0.989 0973 0978 0984 0984 0978 098 0995 0992
Libras(0.833  0.856 0870 0.850 0.894 0.867 0.878 0817 0856 0867 0.906 0861 1.000
LSST|0456 0373 0551 0568 0.575 0.558 059 0595 059 0537 0.635 0576 0.976
Motorlmagery|0510 0510 0500 059 - 0540 0.500 0500 0610 0510 0460 0610 0.630
NATOPS|0.850  0.889 0883 0939 0.850 0.944 0.870 0911 0883 0928 0872
PEMS-SF|0.705 0699 0711 0751 0.734 0.688 - 0699 0751 0.682 0832
PenDigits|0.973 0978 0977 0980 0.939 0.983 0.948 0979 0977 0989 0.981
Phoneme[0.104  0.110 0151 0175 0151 0.246 0.190 252 0207 0298 0233 0273
RacketSports|0.868  0.803 0803 0.868 0.842 0.862 0934 0816 0776 0882 0855 0.901
SelfRegulationSCP1/0.771  0.874 0775 0652 0765 0.846 0.710 0823 0799 0782 0812 0.867
SelfRegulationSCP2(0.483 0472 0539 0550 0533 0.556 0.460 0533 0550 0578 0578 0555 0.
SpokenArabicDigits|0.967 0990 0963 0.983 0959 0.956 0.982 0970 0934 0975 0988 0997 0963
StandWalkJump|0.200 0067 0200 0400 0333 0.400 0.333 0333 0400 0533 0467 0467 0333
UWaveGestureLibrary 0.881  0.891 0903 0.894 0.868 0.884 0916 0753 0759 0906 0906 0931 0785
PAMAP2(0.718 0949 0683 0.865 0.769 0.885 0.928 0942 0938 0948 0941 0931 0962
OpportunityGestures|0.655 0768 0762 0574 0715 0.689 0.553 0791 0821 0730 0771 0813 0809
OpportunityLocomotion|0.845  0.900 0859 0.850 0.868 0.859 0.634 0881 0874 0874 0842 0875  0.886
Occupancy [15](0.496  0.873 0517 0.844 0526 0.817 0.556 0865 0828 0852 0876 0.832 0878
Total best accuracy| 0 0 1 2 1 2 5 1 0 2 1 6 4
Average accuracy|0.596 0651 0658 0.672 0.675 0.686 0.688 0692 0693 0717 0722 0732 0741
Ours 1-to-1 Wins| 32 26 27 23 31 23 25 28 29 25 24 20 21
Ours 1-to-1 Draws| 0 0 2 2 12 3 1 1 2 0 2 4 0 -
Ours 1-to-1 Losses| 2 8 5 9 2 9 6 5 4 7 10 12 9 14 -
Mean Rank|1215 879 965 744 1044 7.59 7.79 903 941 547 718 518 471 574  4.00
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