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Causal Inference

e Inferring the effects of any treatment/policy/intervention/etc.

e Examples
o Effect of treatment on a disease
o Effect of climate change policy on emissions
o Effect of social media on mental health
o Many more (effect of X on Y)



Causality

e Concept that could be approached
from various standpoints
e Used in field like

o Econometrics

Social science

Epidemiology

Statistics

Machine Learning

(Multi-agent) Reinforcement Learning

O O O O O

FACULTY

OF INFORMATION | DATA
TECHNOLOGY SCIENCE
CTU IN PRAGUE LABORATORY
Do you want a
quick primer or
a full book?
l—pnme ull book
Causal Inference In Do you have a strong
Statistics: A Primer preference for a machine
(Pearl et al., 2016) learning and/or structure
learning focus?
no es—l
Do you have a Elements of Causal
preference Inference: Foundations
for fundamental vs. and Learning Algorithms
applied? (Peters et al., 2017)
undamental -applied
Do vou like no preference
?
= Do you prefer
applications in
epidemiology, econometrics—
Are you sure you | dunno SZ‘;'::]::T:Z?:;';" soclal sclence
don't want to read -
a short primer?
p | hate them‘l epldeTlology
Causal Inference: What If
Causal Inference for Statistics,
Soclal, and Biomedical (Hernén & Robins, 2020)
Are you already familiar with Sclences: An Introduction
SCMsei;(eir\:lﬁ‘nttht:n?scome (Imbens &(';;bln' 2015) Counterfactuals and
= Causal Inference:
Deslgn of Observational Methods and Principles
es to both no to elthel Studies (Rosenbaum, 2010) epidemiology for Soclal Research
l—y rl (Morgan & Winship,
Causality: Models, Elements of Causal 2014)
Reasoning, and Inference: Foundations soclal sclence
Inference (Pearl, 2009) and Leamning Algorithms |
(Peters et al., 2017) Mostly Harmless Econometrics

L

machine learning

Then, you must choose
based on the authors'

causal graphs

perspective.

(Angrist & Pischke, 2009)
OR

—» Causal Inference: The Mixtape

economelrics (Cunningham, 2018)
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Towards Causal Representation Learning

e Bengioetal,, 2021

e Causal inference can help address important challenges in machine learning such as
generalization, transfer learning, and data efficiency.

e Causal representation learning is a crucial problem for artificial intelligence and could unlock
new capabilities in learning from data.

e Incorporating causality into machine learning models requires careful consideration of
assumptions, limitations, and trade-offs.

e Combining causal inference techniques with machine learning models to improve
generalization and transfer learning.

e Developing algorithms for causal representation learning that can handle complex data types
such as images, audio, and video.

e Incorporating causality into reinforcement learning algorithms to improve the performance of
agents in complex environments.
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Simpson's Paradox

e Hypothetical disease with two possible treatments
e Table showing mortality rate

Condition
Mild Severe Total
15% 30% 16%
(210/1400) | (30/100) | (240/1500)
10% 20% 19%
(5/50) (100/500) | (105/550)

e Apparent paradox:
o If condition is not know, treatment A is better
o If condition is known, treatment B is better
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Which treatment is better depends on the causal structure of the data
Figure 1.1: Causal structure of scenario 1, Figure 1.2: Causal structure of scenario 2,
where condition C is a common cause of where treatment T is a cause of condition
treatment T and mortality Y. Given this C. Given this causal structure, treatment

causal structure, treatment B is preferable. A is preferable.



Correlation is not causation
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Association is Not Causation

e Correlation is meant statistical dependence

e Technically, it is measure of linear dependence,
better term should be association

e Total association is no all or none, could be

combination of
o  Spurious (correlation) X

o  Confounding (hidden common cause) ﬁ
o Causal association

Figure 1.4: Causal structure, where drink-
ing the night before is a common cause of
sleeping with shoes on and of waking up
with a headaches.
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Counterfactuals

e Alternatives scenarios that did not actually happened but could happen under different
circumstances

e Humans as Counterfactual Reasoning Machines
o  Constantly evaluating alternative scenarios
o Imagining outcomes of different actions

e Counterfactuals in Everyday Life
o Informed decision-making based on "what-if" analysis
o Learning from past experiences and mistakes

e Regret Minimization in Human Behavior

o  Comparing outcomes of taken and untaken actions
o  Guiding future decisions to minimize regret
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Potential Outcomes Framework

e person has a headache and decides
o Take a pill (treatement)
o  Not take a pill (control)

e Potential outcome: will headache persit
o Y/(1) severity of headache hour after taking the pill
o Y/(0) severity of headache hour after (not taking a pill)

e Individual treatment effect
o tau=Y(1)-Y(0)
7 = Yi(1) — Y;(0)

e We can observe only one of outcomes Y1) and Y(0)

e How to compute the treatment effect?
o  Fundamental problem of causal inference
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Average treatment effect

e To estimate the average causal effect of the pill, we can use a sample of individuals
who took the pill and another sample of individuals who did not.
e Average treatment effect

=7, Z} - ZY(O)

4

e How to average question marks?

i T Y Y(1) Y(O) Y(1)-Y(0)
1 0 0 ? 0 ?
2 1: 1 1 ? ?
3 1. 0 0 ? ?
4 0 0 ? 0 ?
5 0 1 ? 1 ?
6 1 1 1 ? ?
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Ignorability

e What makes it valid to calculate the ATE by taking the average of the Y(0) column,
ignoring the question marks, and subtracting that from the average of the Y(1) column,
ignoring the question marks?

e Ignoring the question is called ignorability

o ignoring how people ended up selecting the treatment they selected
o and just assuming they were randomly assigned their treatment;

(x)
\_\
7 ~\' “/ F
'\_T J g \Y>

Figure 2.2: Causal structure when the
treatment assignment mechanism is ig-
norable. Notably, this means there’s no
arrow from X to T, which means there is
no confounding,.
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Controlling for Confounding

e Confounding Factor
o Variables that affect both the treatment and the outcome
o Can lead to biased estimates of causal effects

e Importance of Controlling for Confounding
o Obtain unbiased and accurate estimates of causal effects
o Improve decision-making based on observational data

e Methods to Control for Confounding
o  Matching
o Stratification
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Control for confounding

e Matching
o Attempt to create comparable groups of individuals who took the pill and those who did not
o  Match based on confounding variables (e.g., age, gender, baseline health)
o nearest neighbor matching
o directly pairs treated and control individuals based on their similarity in confounding variables,

e Stratification
o divide the population into strata based on the confounding variables

m Intial headache severity
estimate the causal effect within each stratum
combine these estimates to calculate the overall average causal effect
weighting the estimates by the proportion of individuals in each stratum.
divides the population into groups based on the values of confounding variables and estimates the
causal effect within each group.

o O O O
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Jacques et al.: Social Influence as Intrinsic Motivation for Multi-Agent Deep
Reinforcement Learning

mechanism for achieving coordination and communication

rewarding agents for having causal influence over other agents’ actions

causal influence is assessed using counterfactual reasoning

At each timestep, an agent simulates alternate actions that it could have taken, and
computes their effect on the behavior of other agents.

Actions that lead to bigger changes in other agents’ behavior are considered influential
and are rewarded

influence leads to enhanced coordination and communication in challenging social
dilemma environments, dramatically increasing the learning curves of the deep RL
agent
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Sequential Social Dilemmas

e Can be thought of as analogous to spatially and temporally extended Prisoner's
Dilemma-like games.

e Thereward structure poses a dilemma because individual short-term optimal strategies
lead to poor long-term outcomes for the group
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A public goods dilemma in which

agents get a reward for consuming apples, but must
use a cleaning beam to clean a river in order for apples
to grow.

While an agent is cleaning the river, other agents can
exploit it by consuming the apples that appear.
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A tragedy-of-the-commons dilemma
apples regrow at a rate that depends on
the amount of nearby apples.

If individual agents employ an
exploitative strategy by greedily
consuming too many apples, the
collective reward of all agents is
reduced.
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Multi-agent Reinforecement Learning

Definition 2.2 (Dec-POMDP) Decentralised Partially Observable Multi-Agent Markov
Decision process is It is a T-tuple {S,{A:}, T, R,{S%},0,~} , where S are states, {A;} is
the joint action set, T = P(s'|s,a) is the set of conditional transition probabilities between
states, R is the reward function, {C;} is the joint observation set, O(s',a,0) = P(o|s,a)
gives the conditional observation distribution, and v € [0, 1] is the discount factor.
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Intrinsic motivation

e To stimulate agents to learn cooperative behavior introduce

e category of reward functions that allow learning of desired behaviors in a wide range of
environments and tasks, sometimes even in the absence of environmental rewards.

e Social influence intrinsic motivation gives an agent k additional reward when it has
causal influence on the actions of other agents.

e It adds a causal influence reward Sc_k*tS to the agent's immediate environmental
(extrinsic) reward e_t*k at time t:

ok k| ak
r, = ae, + pc,.
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Evaluation of social influence

To evaluate the causal influence of agent k on agent j at time ¢, agent 7 should be able
to condition its action a] on af, agent’s k action at time ¢. Therefore, a; can quantify the
probability of the next step action as

(at‘ak* St)

Then we can we can replace aF by aF, the counterfactual action, and compute a new next
step probability

(at |k, 57)-
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Evaluation of social influence

By averaging the policy distribution from a sampling of several counterfactual actions,
we would obtain the marginal policy of agent j:

at|5t ZP (lt|at~5t)l)( ay Sg)

i.e. agent’s j policy if it did not take into account actions of agent k.
The difference between agent’s 7 marginal policy and the conditional policy of agent 5
after observing agent’s k action is a degree of how agent £ is causually influencing agent j.
Therefore, the overall causal influence of agent £ on all other agents is given by:

1\'7
= 5 |Dus |p(ad 1t s) I3 p(al | @, sf) p (@ | 1)
§=0,j#k ak
N

= > [Dxelp(allaf.s) lIp(a ] 5)]] (4.1)

j=0,5#k
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Effect of social influence
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Figure 1: Total collective reward obtained in Experiment 1.
Agents trained with influence (red) significantly outperform
the baseline and ablated agents. In Harvest, the influence
reward is essential to achieve any meaningful learning.



Social influence

Figure 2: A moment
of high influence when
the purple influencer sig-
nals the presence of
an apple (green tiles)
outside the yellow in-
fluencee’s field-of-view
(vellow outlined box).

plementary Material).

Figure 2 shows a moment of
high influence between the in-
fluencer and the yellow influ-
encee. The influencer has cho-
sen to move towards an ap-
ple that is outside of the ego-
centric field-of-view of the yel-
low agent. Because the influ-
encer only moves when apples
are available, this signals to the
yellow agent that an apple must
be present above it which it
cannot see. This changes the
yellow agent’s distribution over
its planned action, p(aj |a¥.s}),
and allows the purple agent to
gain influence. A similar mo-
ment occurs when the influ-
encer signals to an agent that has
been cleaning the river that no
apples have appeared by staying
still (see Figure 14 in the Sup-
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Agents continue to move and explore
randomly while waiting for apples to spawn,
The influencer only traverses the map when it
is pursuing an apple, then stops. The rest of
the time it stays still.

The influencer agent learned to use its own
actions as a binary code which signals the
presence or absence of apples in the
environment
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Model of Other Agents

e Computing the causal influence reward requires knowing the probability of another
agent’s action given a counterfactual,
e Requires a centralized training approach in which agents could access other agents’

policy network

e To relax this unrealistic assumption we equip each agent with its own internal Model of
Other Agents (MOA).

e The MOA is trained to predict all other agents’ next actions given their previous actions,
and the agent’s egocentric view of the state: p(at+1|at,sk t).
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Model of other agents
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Figure 6: The Model of Other Agents (MOA) architecture
learns both an RL policy 7., and a supervised model that
predicts the actions of other agents, a;, ;. The supervised
model is used for internally computing the influence reward.
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Causal Diagram
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(a) Basic (b) MOA

Figure 8: Causal diagrams of agent k’s effect on j’s action.
Shaded nodes are conditioned on, and we intervene on a¥
(blue node) by replacing it with counterfactuals. Nodes with
a green background must be modeled using the MOA module.
Note that there is no backdoor path between af and s, in the
MOA case, since it would require traversing a collider that is

not in the conditioning set.
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Next week




