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Motivation

M Why Are We Using Black Box Models in
‘ Al When We Don’t Need To? A Lesson
IT’ From an Explainable Al Competition

' < by Cynthia Rudin and Joanna Radin
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COMPASS, ProPublica

e COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) is a

risk assessment tool used in US the criminal justice system
o  Predicts the likelihood of recidivism for individual defendants
o Influences decisions on bail, sentencing, and parole
o 130+ factors
o Mightinclude socio-economic factors
o  expensive
e Propublica
o Founded in 2007 by Paul Steiger, the former managing editor of The Wall Street Journal
o investigative journalism in the public interest
o Has won several Pulitzer Prizes and numerous other journalism awards



COMPASS vs ProPublica

In 2016, a ProPublica investigation found
that the COMPAS algorithm was biased
against African-American defendants
Black defendants were more likely to be
falsely labeled as high risk, while white
defendants were more likely to be falsely
labeled as low risk
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COMPASS vs ProPublica

Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely

as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much

more likely than blacks to be labeled lower risk but go on to commit other crimes.
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COMPAS VS CORRELS CTU IN PRAGUE

e CORELS (Certifiably Optimal RulE ListS) Angelino et al., KDD 2017 & JMLR 2018
e Model (Rule List) for prediction of recidivism within 2 years
e Free, transparent

IF age between 18-20 and sex is male THEN predict arrest (within 2 years)
ELSEIF age between 21-23 and 2-3 prior offenses THEN predict arrest
ELSE IF more than three priors THEN predict arrest

ELSE predict no arrest.
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COMPAS vs CORRELS

e Simple CORRELS rule list is more
accurate than COMPASS for prediction 0.71 -
of recidivism in 2 years

e There's no benefit from complicated
models for re-arrest prediction in

e criminal justice.

Perhaps we are using complicated
models when we don't need them?
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Outline

Motivation

Interpretable Machine Learning
Explainable Machine Learning (XAl)
Interactions and nonlinearities
Reliability

Contradiction



Interpretable Models
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In a full data science process, one interprets the results and tunes the processing of the
data, the loss function, the evaluation metric, or anything else that is relevant. How can
one do this without understanding how the model works?

Avoid catastrophic consequences

Black-box models often predicts the right answer for the wrong reason

In cases where the underlying distribution of data changes (domain shift), problems
arise if users cannot troubleshoot the model in real-time
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Interpretable vs Explainable Models

e Interpretable Models:
o Models that are inherently easy to understand and grasp by humans.
o  Simpler models like linear regression, decision trees

e Explainable Models:

o Tools to explain decision of black box models
o LIME, SHAP, Feature Importances



Interpretation vs Explanation
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m Could make the situation worse by providing misleading or false characterizations or
adding unnecessary authority to the model

Test Image

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute

Explanations Using
Attention Maps
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General Principles

Principle 1 An interpretable machine learning model obeys a domain-specific set of constraints
to allow it to be more easily understood by humans. These constraints can differ dramatically
depending on the domain.

A typical interpretable supervised learning setup, with data {z;};, and models chosen from
function class F is:
1

IfIli]I:I — Y Loss(f, z;) + InterpretabilityPenalty(f), subjectto InterpretabilityConstraint(f),
€F n &



Interpretability constraints
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Sparsity of the model

Monotonicity with respect to the variable

Decomposability into sub-models

Ability to perform case based-reasoning

Disentanglement of certain types of information within the model reasoning process
Generative constraints (laws of physics)

Preferences among choice of variables
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General Principles

Principle 2 Despite common rhetoric, interpretable models do not necessarily create or enable
trust — they could also enable distrust. They simply allow users to decide whether to trust them. In
other words, they permit a decision of trust, rather than trust itself.

Principle 3 It is important not to assume that one needs to make a sacrifice in accuracy in order
to gain interpretability. In fact, interpretability often begets accuracy, and not the reverse. Inter-
pretability versus accuracy is, in general, a false dichotomy in machine learning.
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Rashomon set of good models

m Set of almost equally accurate models

R(F, f*,€) ={f € F such that Loss(f) < Loss(f*) + €},

m Rashomon effect occurs there are multiple descriptions of the same event with

possible no ground truth
m Seen in credit score estimation, medical imagining, health record analysis, recidivism

prediction
m It has been argued that when Rashomon set is large, it must contain a simple model

within
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Roshomon set
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else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest

.’ If age=19-20 and sex=male, then predict arrest
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Roshomon set

Prediction of re-arrest within 2 years
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Difficulties in creation of the model

m Solving the optimization problem may hard (i.e. finding the right decision tree)

m  When one does create an interpretable model, on invariably realizes that the data are
problematic and require troubleshooting, which slows down development

m [t might not be initially clear which definition of interpretability use



Algorithms for data types
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Models

Data type

decision trees / decision lists
/ decision sets

somewhat clean tabular data with interactions, including mul-
ticlass problems. Particularly useful for categorical data with
complex interactions (i.e., more than quadratic).

scoring systems

somewhat clean tabular data, typically used in medicine and
criminal justice. The models are small enough that they can
be memorized by humans.

generalized additive models
(GAMs)

continuous data with at most quadratic interactions, useful for
raw medical records.

case-based reasoning

any data type (different methods exist for different data types),
including multiclass problems.

disentangled neural networks

data with raw inputs (computer vision, time series, textual data),
suitable for multiclass problems.
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Logical Models

Decision tree
Decision list
Decision set

priors > 3

True
Yes
True False
ljuvenile crimes =0 ‘ No
True False
| priors =2 —3 ‘ Yes
True False

Yes No

(a)
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if (age < 26) and (priors = 2 — 3) then predict yes
else if (juvenile crimes = 0) and (priors < 3) then predict no
else predict yes

(b)

if (priors > 3) and (age < 21) then predict yes

if (juvenile crimes > 0) and (prior > 3) then predict yes
if (age < 23) and (prior = 2 — 3) then predict yes

else predict no

(c)
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Decision Tree

m Current SOTA optimal decision tree methods can handle medium-sized datasets
(thousands of samples, tens of binary variables) within 10 minutes when appropriate
sparsity constraints are used
Scale exponentially with dimension of data
Handle categorical variables and complicated interactions better than e.g. linear
models

m  When fully optimized, single trees can be as accurate as ensembles of trees or NN

GOSDT and related modern decision tree methods solve an optimization problem that is a
special case of (1):

1
; mi? — Y Loss(f,z)+ C - Number of leaves (f), (2)
€ setof trees 71 “—
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Scoring Systems

m Linear classification models models that require users to add, subtract and multiply
only a few small numbers

m Do not handle interactions
Good for counterfactual reasoning

Patient screens positive for obstructive sleep apnea if Score >1
1. age > 60 4 points |  ......
2. hypertension 4 points +......
3.  body mass index > 30 | 2 points Fisasns
4.  body mass index > 40 | 2 points +innnn
3s female -6 points & o
Add points from row 1-6 | Score =2

Table 2: A scoring system for sleep apnea screening (Ustun et al., 2016). Patients that screen
positive may need to come to the clinic to be tested.
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Scoring Systems

m Optimization problem

1 ;
minsr — Loss(f, z;) + C' - Number of nonzero terms (f), subject to
15 o .

f is a linear model, f(x) = Z A

j=1
with small integer coefficients, thatis, V j, A\; € {—10,-9,..,0,..,9,10}
and additional user constraints.
m Practical implementation: round real coefficients -> loss of information
m Frameworks to allow Computer-aided exploration, human in the loop

m Risk scores
m Scoring systems that have a conversion table to probabilities (1 point -> 15%, 2->33%)
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Generalized Additive Models (GAMs)

The standard form of a GAM is

Q(E[U]) =B+ filz1)+... + fp('r'p):

where z.; indicates the jth feature, ¢(-) is a link function and the f;’s are univariate component
functions that are possibly nonlinear; common choices are step functions and splines. If the link
function g(-) is the identity, the expression describes an additive model such as a regression model;

m Link function g

m Identity -> regression

m Logistic -> classification
m Component functions f

m Step functions
m Splines
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Generalized Additive Models (GAMSs)

m we can impose the prior belief that predictive relationships are inherently smooth in
nature, even though the dataset at hand may suggest a more noisy relationship

m If the researcher could control the sparsity, smoothness, and monotonicity of the
component functions, she might be able to design a model that not only predicts well
but also reveals interesting relationships between observed variables and outcomes

m Could be used to troubleshoot complex datasets (raw medical data), find
counterintuitive patterns

m GA2Ms

g(Ely]) = Bo + ij(wj) + 3 fii (@i, 35)

17#]
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Case-Based Reasoning

m Solving a new problem using known solutions to similar past problems.
m Emulation of how humans reason

m Two types
m  Nearest neighbour-based techniques
m  Prototype-based techniques

[ ] ° ® [
¢eo © o0 ©
.'h.‘v.,“ © .i:. 0 » ®

Figure 6: Case-based reasoning types. Left: Nearest neighbors (just some arrows are shown for
3-nearest neighbors). Right: Prototype-based reasoning, shown with two prototypes.
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Prototype-Based Techniques

Learn, from the training data, a set of prototypical cases for comparison
Given a previously unseen test instance, they make a decision by finding prototypical
cases that most closely resemble the particular test instance
Part based prototypes compare parts of observations to parts of other observations
Current methods do not take into account prior knowledge or expert opinions

m Sometimes the prototypes may not
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Prototype-Based Techniques

Whole vs part-based prototypes

test test same test image with training image
image prototype image box showing part that ~ prototype where
looks like prototype prototype
comes from

looks like

looks like

looks like

looks like
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Disentanglement of neural networks

m Refers to the way information travels through the network: all information about a
specific concept traverse through one part of the network

m Contains information about bed and room -> classify image as bedroom
Supervised vs unsupervised ()

latent space

latent space (key patterns)

N2
X2/
2880

band gap

band pass




Explainable Al (XAl) Techniques

e Global XAl Techniques:

O

Methods that aim to explain the overall behavior of a model
across all data points.
Provide insights into the general decision-making process of
the model.
Methods

m Feature Importance

m Partial Dependence Plots (PDP)

e Local XAl Techniques:

@)

Methods that focus on explaining specific individual
predictions made by the model.
Offer insights into the model's decision-making process for a
particular instance.
Methods
m  LIME (Local Interpretable Model-agnostic Explanations)
m  SHAP (SHapley Additive exPlanations)
m Counterfactual Explanations:
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Permutation Feature Importance TO INPRACOE

The permutation feature importance algorithm based on Fisher, Rudin, and Dominici (2018):
Input: Trained model f feature matrix X, target vector y, error measure L(y, f)

1. Estimate the original model error €,rig = L(y, f(X)) (e.g. mean squared error)

2. For each feature j € {1,...,p} do:
Generate feature matrix X perm DY permuting feature ] in the data X. This breaks the assoclation
between feature | and true outcome y.
Estimate error €perm = L(Y, f(Xpe,»m)) based on the predictions of the permuted data.
Calculate permutation feature importance as quotient F'I j = €perm 1 €orig OF difference
FI; = €perm — €orig

3. Sort features by descending FI.



Partial Dependence Plot
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A visualization technique that shows the marginal effect of one or two features on the
predicted outcome of a machine learning model.
Reveals the relationship between the target and a feature: linear, monotonic, or
complex.
Plot of partial dependence function, for regression

fs(zs) = Ex.[f(zs, Xc)| = I f(zs,Xc)dP(Xc)
isolate the effect of the feature(s) of interest by averaging the model output over the
distribution of other features.
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Partial Dependence Plot
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e Explain individual predictions of black box machine learning models using interpretable
local surrogate models.

explanation(z) = argming.q|L(f, g,m:) + Q(g)]

L..loss, G... family of possible explanations, i ... proximity measure for neigh. definition

e LIME Process:

Select an instance of interest.

Perturb the dataset and obtain the black box predictions for the new points.
Weight the new samples based on their proximity to the instance of interest.
Train a weighted, interpretable model on the perturbed dataset.

Explain the prediction by interpreting the local model.

o 0 0 O O



LIME

e Depends strongly of the proximity measure (kernel)

Predicted Value

7.5

0.0

12
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Kernel width
= 0.05
0.1
0.25
= 0.3
5
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Shapley Values for Explaining Predictions

e Fairly distribute the contribution of each feature to a model's prediction using Shapley

values from coalitional game theory.
e Coalition.combination of feature values working together to produce a specific

prediction

e Algorithm (example on appartement price)
o Determine all possible coalitions of feature values.
o Compute the predicted apartment price with and without the feature value of interest for each
coalition.
Calculate the marginal contribution as the difference between the predicted apartment prices.
Compute the (weighted) average of marginal contributions to obtain the Shapley value.

dj(val) = Y '5‘!(1)*,,15 U (wat (5 U {}) — val(8))

SC{1,....p}\{5}

where S Is a subset of the features used In the model, x Is the vector of feature values of the instance to
be explained and p the number of features. val.(.S) Is the prediction for feature values In set S that are
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SHAP (SHapley Additive exPlanations)

e Additive feature attribution method represents the Shapley value explanation as a linear

model (of coalitions).
o  Connecting Shapley value and surrogates (LIME)

M
9(z') = ¢o + Z OJ'.E_;
J=1

where g Is the explanation model, 2’ € {0,1}* Is the coalition vector, M Is the maximum coalition size
and ¢; € R Is the feature attribution for a feature |, the Shapley values. What | call “coalition vector” Is

M
9(17,) = @y + Z (P_j
j=1
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e Reduces complexity from O(TL2M) to O(TLD?)

e traversing the decision tree recursively. At each node j, the algorithm calculates the
contribution of the split feature and updates the Shapley values accordingly. The update
rule for the Shapley values is:

DATA
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w;: the weight associated with node j in the decision tree.
z;:the number of features split on by the subtree rooted at

node ;.



SHAP Plots
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e All features are random and has no relation to the target
e PFl can detect it, SHAP not
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SHAP vs LIME

Feature agreement (k = 7) Feature agreement (k = 14) Feature agreement (k = 20)
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Saliency Maps

e Saliency maps are visual representations that highlight important regions or features in
an input image that contribute to a model's prediction.

e Recipe
o Perform a forward pass of the image of interest.
o Compute the gradient of class score of interest with respect to the input pixels:

0S,
oI 1=l

isualize the gradients. You can either show the absolute values or highlight negative and positive
contributions separately.

E‘l_;rl.ui(_lll) —
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Saliency Maps

Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

Greyhound (Smoothgrad) Soup Bowl (Smoothgrad) Eel (Smoothgrad)

Greyhound (Grad-Cam) Eel (Grad-Cam)




