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Motivation

Geocentric - Ptolemaic system

e Circles-in-circles
Purely data-driven solution
Complicated, does not generalize
Surprisingly accurate!
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Motivation

Copernicus heliocentric system - similar to geocentric, but after
transformation of data.

Ellipsis (i—; + ZI’)’—; =1)

Purely data-driven solution

Much less complicated

Very accurate!

Does not explain why, does not generalize

iocentric Model

Figure: Heliocentric system
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Motivation

Newton's gravitation law
* F=m.G
e Very strong explanatory power
® Generalizes to any system with mass

® \ery accurate!

Figure: Newton's gravitational law
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Motivation

What can we do with the measured data?

1.
2.

Discover model describing the data (Ptolemaic)

Discover the transformation of the data for a simple and
well-generalizing model (Copernicus)

Discover true governing equations that can be used to explain
and understand the model, gives insight (Newton)

Solve the equations! (Numerical Mathematics methods)
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Background in Physics

e Conservation laws - what is conserved, e.g. momentum,
energy?

e Partial Differential Equations (PDEs) - language that describes
the physics

® Boundary and initial conditions - what happens out of our
computational domain, what was the beginning?

p%—p(u-?)u—v-a[u.p) =f inQx=(0,T)
Vou=0 in Q2 % (0,T)
u=g onl'p = (0,T)
o{u,pp=h onTy = (0,T)
u(0) =y in 2 = {0}

Figure: Navier-Stokes equations with boundary and initial conditions
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How physics can enhance Al models:

Incorporating physical constraints

Improving generalization

Reducing data requirements

Identifying hidden patterns and relationships
Accelerating simulations

Enabling data-driven discoveries

Enhanced interpretability
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Sparse Identification of Nonlinear Dynamics (SINDy)

e SINDy is an algorithm for discovering the governing equations
of a dynamical system from data.

® |t uses sparse regression to identify the fewest terms (thus
governing equations) in a function that can accurately
represent the data.

e Formally, given a state measurement matrix X and its
derivative X, SINDy solves the following equation:

X =0(X)=
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SINDy: Library of Candidate Functions

® O(X) is a library of candidate functions (e.g., polynomial
terms, trigonometric functions) of the state variables.

® = is a sparse vector of coefficients, which we aim to find.

® The sparse regression problem then becomes:
min || X — ©(X)E[[3 + A[[Elx

where X is a tuning parameter controlling the sparsity.
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SINDy: Algorithm

e The SINDy algorithm works in the following steps:

1. Construct the library of candidate functions ©(X).
2. Use sparse regression to find Z.
3. lIdentify the significant terms and discard the rest.

https://www.youtube.com/watch?v=oqDQWEvVHGLE
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https://www.youtube.com/watch?v=oqDQwEvHGfE
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Autoencoder + SINDy

Finding the coordinate system together with the governing
equations?
Champion, 2019
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Figure: Autoencoder + SINDy

Uses sequential thresholding to enforce sparsity.
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Symbolic Regression

e Symbolic regression is a type of regression analysis that
discovers the form of a mathematical equation to best fit a
given dataset.

e Unlike traditional regression methods that fit parameters to a
pre-defined model, symbolic regression seeks both the form of
the function and the numerical parameters that provide the
best fit.

® This process is commonly guided by genetic programming.
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Symbolic Regression: Genetic Programming

¢ Genetic programming (GP) is a method for the automatic
induction of computer programs.

® |n the context of symbolic regression, GP evolves populations
of symbolic expressions to find the one that best fits the data.

® The process consists of initialization, selection, crossover,
mutation, and evaluation.
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Figure: Symbolic regression
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Symbolic Regression: Fitness Function

® The fitness function in symbolic regression is often the Mean
Squared Error (MSE) between the predicted and actual output
values.

® A key advantage of symbolic regression is its ability to produce
interpretable models.

® We can interpret the models in the language of mathematics
(i.e. no salience maps, no SHAP)
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Symbolic Regression: Challenges

® Despite its advantages, symbolic regression faces some
challenges:
» Overfitting: Because symbolic regression can generate very
complex models, it risks overfitting the data.
» Computationally expensive: The search for the best-fitting
symbolic model can be time-consuming and computationally
expensive.

Current best tool: PySR - highly parallelizable, very fast
https://github.com/MilesCranmer/PySR
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https://github.com/MilesCranmer/PySR

SINDy vs Symbolic Regression

e Both SINDy and symbolic regression are powerful tools for
model discovery from data.

e SINDy is particularly effective for sparse dynamical systems,
while symbolic regression provides a more general but
computationally expensive approach.

® Both methods complement each other, providing different
perspectives on data-driven discovery.
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Physics Informed Machine Learning (PIML)

e |f we know the equations, we can solve them!
e Applications:

» Fluid dynamics

» Materials science

» Climate modeling

» Astrophysics

» LASER behavior

P> Active matter

Using NNs to solve a problem:
L(u(z,t),0) =g

L is some "operator", i.e. some "physics"
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Physics-Informed Neural Networks (PINNs)

® PINNs are a class of neural networks that incorporate the
governing physical equations (such as PDEs) into the
network’s loss function.

® By integrating physical constraints, PINNs can improve
generalization and reduce data requirements.

® They can be used for a wide range of PDE problems, including
time-dependent, non-linear, and high-dimensional ones.

PDE: L(u(x,1),0) = g

o =
MSE = MSE, 5c.iq) + MSEg

Figure: PINN
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PINNs: Loss Function

® The loss function in PINNs consists of two parts:
» Data term: This term measures the difference between the

network's predictions and the available data.
» Physics term: This term enforces the underlying physical

equations, such as the PDEs.
® The total loss function is a weighted sum of these two terms:

L = Lyata + aLphysics

where « is a weighting factor.
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PINNs: Data Term

® The data term measures the difference between the network's
predictions and the available data, typically using a mean
squared error (MSE) or another suitable metric.

® This term ensures that the network learns to approximate the
observed data points.
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PINNs: Physics Term

® The physics term enforces the underlying physical equations
(PDEs) on the neural network's predictions.

e This is achieved by computing the residual of the PDE with
respect to the neural network's output.

® The residual is then included in the loss function, encouraging
the network to satisfy the PDE.
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PINNs: Residual Calculation

® To compute the residual, we first differentiate the neural
network's output with respect to its inputs.

e Automatic differentiation can be used computation of
derivatives.

® The PDE residual is then calculated using these derivatives
and the network's output.

Merging Physics and Al
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PINNs: Training

® PINNs are typically trained using gradient-based optimization
methods, such as stochastic gradient descent (SGD) or its
variants.

Neural Network AutoDiff

Physics-informed Loss

Lppg = f(2,0,0,8,0,..,2)
S Lpata = filn = tlpata
Lic = lae, — glag,
Lac = (Oallan=3agla0) + (@laa = glon)

@, L =wyLppg +WiLaata*
v walic+ wiLpc

Figure: PINN
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PINNs: Challenges

e Despite their potential, PINNs face some challenges:

» Difficulty of optimization: The inclusion of the PDE residual in
the loss function can make the optimization problem more
complex and harder to solve.

» Choice of architecture: The architecture of the neural network
(number of layers, number of neurons per layer, activation
function, etc.) can significantly impact the performance of
PINNs.

» Computational cost: PINNs can be computationally expensive,

particularly for complex or high-dimensional problems (i.e.
D > 2).
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PINNs: Future Directions

® PINNs represent a promising direction in the integration of
physics and machine learning.

® Future work could focus on developing more efficient training
algorithms, designing better network architectures, and
extending PINNSs to other types of physical systems.
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Physics-Informed Neural Networks

® Physics-informed neural networks (PINNs) incorporate physical
knowledge into the learning process.

® QOther way to include physical knowledge is to use Noether's
theorem and enforce symmetries.

® This approach can improve generalization and reduce data
requirements.
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Noether's Theorem

® Noether's theorem states that for every continuous symmetry
of a physical system'’s action, there is a corresponding
conservation law.

® The theorem provides a deep connection between symmetries
and conserved quantities in physics.

® |t can be used to identify symmetries that should be enforced
in a neural network to ensure consistency with physical
principles.
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Identifying Symmetries

® To enforce symmetries in a neural network, we first need to
identify the relevant symmetries for the problem at hand.

® These symmetries can be found using Noether's theorem by
examining the physical system's action and finding continuous
transformations that leave the action invariant.

e Common examples of symmetries include translation (linear
momentum), rotation (angular momentum), and time
invariance (energy).
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Enforcing Symmetries in Neural Networks

® Once the relevant symmetries are identified, we can enforce
them in the neural network architecture or learning process.

® This can be done by constraining the weights and biases,
modifying the activation functions, or including
symmetry-enforcing terms in the loss function.

e Enforcing symmetries helps the network to learn physically
consistent solutions.
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Constraining Weights and Biases

® Symmetries can be enforced by imposing specific constraints
on the weights and biases of the neural network.

® For example, a translation symmetry can be enforced by
ensuring that the network’s weights are translation-invariant.

e This approach requires careful design of the network
architecture and an understanding of how the weights and
biases relate to the symmetries.
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Modifying Activation Functions

® Symmetries can also be enforced by modifying the activation
functions used in the neural network.

® For example, to enforce rotational symmetry, we could use
radial basis function (RBF) activation functions, which are
invariant to rotations.

® The choice of activation function can have a significant impact
on the network’s ability to learn and enforce symmetries.
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Symmetry-Enforcing Loss Functions

® Symmetries can also be enforced by including
symmetry-enforcing terms in the loss function.

® These terms measure the violation of the symmetry by the
network’s predictions and are added to the usual data-fitting
loss term.

® By minimizing this extended loss function, the network learns
to make predictions that are consistent with the symmetry.

Merging Physics and Al
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Benefits and Challenges

e Enforcing symmetries can improve the performance of neural
networks, making them more robust, interpretable, and
physically consistent.

® However, it also presents challenges, such as the difficulty of
identifying and enforcing complex symmetries, and the
potential increase in computational cost.

e Despite these challenges, the integration of physics and
machine learning through methods like symmetry enforcement
is a promising direction for future research.

What if the symmetries are not known?
We can learn them through meta-learning (Allen, 2021)
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PIML Approaches

e Data-driven discovery: Using ML algorithms to identify
patterns and relationships in data, leading to the discovery of
governing equations.

® Learning from PDEs: Training ML models to learn solutions of
PDEs, incorporating physical constraints and principles into
the learning process.

® Hybrid models: Combining physics-based and data-driven
models to leverage the strengths of both approaches.
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Overview of Neural ODEs

® Neural ODEs are a recent development in deep learning that
bridges the gap between neural networks and differential
equations.

® They replace the discrete layers of a conventional neural
network with a continuous transformation defined by an
ordinary differential equation (ODE).

® The ODE is parametrized by a neural network, which allows
for learning from data.
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Basic Formulation

® The basic formulation of a neural ODE is given by the initial
value problem:
dz(t) _ : _

o = = f(2(1),t,0), with 2(0) = 2o

® Here, z(t) is the state at time ¢, f is a function parametrized

by a neural network with parameters 0, and zg is the initial
state.
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Training Neural ODEs

® Neural ODEs are trained by adjusting the parameters 6 to
minimize a loss function.

® The gradients needed for training are computed using the
adjoint method, which is a variant of backpropagation for
ODEs.

e This allows for efficient computation of gradients, even for
long sequences or high-dimensional state spaces.
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The Adjoint Method

® The adjoint method solves an auxiliary ODE backwards in time
to compute the gradients.

® This makes the memory cost constant, regardless of the length
of the trajectory.

e |t is based on the concept of adjoint states in optimal control
theory.
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Advantages of Neural ODEs

* Memory Efficiency: Because gradients are computed with
the adjoint method, memory cost is constant regardless of
trajectory length.

e Adaptive Computation: The ODE solver can adjust its
computation steps based on the complexity of the function,
leading to potential efficiency gains.

e Parametric Efficiency: Neural ODEs use the same function
f for all transformations, reducing the number of parameters.

¢ Continuous-Time Models: They are naturally suited for
continuous-time data or irregularly sampled data.
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Applications of Neural ODEs

e Neural ODEs have been used in a variety of applications,
including time series prediction, generative models, and
reinforcement learning.

® They are particularly well-suited to problems involving
continuous-time or irregularly sampled data.

Merging Physics and Al
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Extensions and Variants

e Stochastic Neural ODEs: Introduce randomness into the
dynamics, useful for certain types of data and systems.

e Controlled Neural ODEs: Incorporate control inputs into the
ODE, useful for reinforcement learning and control problems.

e Second-Order Neural ODEs: Use second-order differential
equations instead of first-order ones.
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Challenges and Future Directions

e While Neural ODEs hold promise, there are still challenges to
be addressed, such as ensuring stability and dealing with stiff
ODEs.

e Future research directions include developing more efficient
solvers, exploring other types of differential equations, and
finding new applications.
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Thank you!
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