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Introduction

• Motivation
• Importance of combining Physics and AI
• SINDy
• Symbolic regression
• Physics-Informed Machine Learning (PIML)
• Noether’s Theorem and symmetries
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Motivation

Geocentric - Ptolemaic system
• Circles-in-circles
• Purely data-driven solution
• Complicated, does not generalize
• Surprisingly accurate!

Figure: Ptolemaic geocentric system
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Motivation

Copernicus heliocentric system - similar to geocentric, but after
transformation of data.

• Ellipsis (x
2

a2
+ y2

b2
= 1)

• Purely data-driven solution
• Much less complicated
• Very accurate!
• Does not explain why, does not generalize

Figure: Heliocentric system
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Motivation

Newton’s gravitation law
• F=m.G
• Very strong explanatory power
• Generalizes to any system with mass
• Very accurate!

Figure: Newton’s gravitational law
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Motivation

What can we do with the measured data?
1. Discover model describing the data (Ptolemaic)
2. Discover the transformation of the data for a simple and

well-generalizing model (Copernicus)
3. Discover true governing equations that can be used to explain

and understand the model, gives insight (Newton)
4. Solve the equations! (Numerical Mathematics methods)
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Background in Physics

• Conservation laws - what is conserved, e.g. momentum,
energy?

• Partial Differential Equations (PDEs) - language that describes
the physics

• Boundary and initial conditions - what happens out of our
computational domain, what was the beginning?

Figure: Navier-Stokes equations with boundary and initial conditions
Merging Physics and AI 7 / 45



How physics can enhance AI models:
• Incorporating physical constraints
• Improving generalization
• Reducing data requirements
• Identifying hidden patterns and relationships
• Accelerating simulations
• Enabling data-driven discoveries
• Enhanced interpretability
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Sparse Identification of Nonlinear Dynamics (SINDy)

• SINDy is an algorithm for discovering the governing equations
of a dynamical system from data.

• It uses sparse regression to identify the fewest terms (thus
governing equations) in a function that can accurately
represent the data.

• Formally, given a state measurement matrix X and its
derivative Ẋ, SINDy solves the following equation:

Ẋ = Θ(X)Ξ
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SINDy: Library of Candidate Functions

• Θ(X) is a library of candidate functions (e.g., polynomial
terms, trigonometric functions) of the state variables.

• Ξ is a sparse vector of coefficients, which we aim to find.
• The sparse regression problem then becomes:

min
Ξ

||Ẋ −Θ(X)Ξ||22 + λ||Ξ||1

where λ is a tuning parameter controlling the sparsity.
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SINDy: Algorithm

• The SINDy algorithm works in the following steps:
1. Construct the library of candidate functions Θ(X).
2. Use sparse regression to find Ξ.
3. Identify the significant terms and discard the rest.

https://www.youtube.com/watch?v=oqDQwEvHGfE
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SINDy

Figure: SINDyMerging Physics and AI 12 / 45



Autoencoder + SINDy

Finding the coordinate system together with the governing
equations?
Champion, 2019

Figure: Autoencoder + SINDy

Uses sequential thresholding to enforce sparsity.
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Symbolic Regression

• Symbolic regression is a type of regression analysis that
discovers the form of a mathematical equation to best fit a
given dataset.

• Unlike traditional regression methods that fit parameters to a
pre-defined model, symbolic regression seeks both the form of
the function and the numerical parameters that provide the
best fit.

• This process is commonly guided by genetic programming.
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Symbolic Regression: Genetic Programming

• Genetic programming (GP) is a method for the automatic
induction of computer programs.

• In the context of symbolic regression, GP evolves populations
of symbolic expressions to find the one that best fits the data.

• The process consists of initialization, selection, crossover,
mutation, and evaluation.

Figure: Symbolic regression

Merging Physics and AI 15 / 45



Symbolic Regression: Fitness Function

• The fitness function in symbolic regression is often the Mean
Squared Error (MSE) between the predicted and actual output
values.

• A key advantage of symbolic regression is its ability to produce
interpretable models.

• We can interpret the models in the language of mathematics
(i.e. no salience maps, no SHAP)
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Symbolic Regression: Challenges

• Despite its advantages, symbolic regression faces some
challenges:
▶ Overfitting: Because symbolic regression can generate very

complex models, it risks overfitting the data.
▶ Computationally expensive: The search for the best-fitting

symbolic model can be time-consuming and computationally
expensive.

Current best tool: PySR - highly parallelizable, very fast
https://github.com/MilesCranmer/PySR
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SINDy vs Symbolic Regression

• Both SINDy and symbolic regression are powerful tools for
model discovery from data.

• SINDy is particularly effective for sparse dynamical systems,
while symbolic regression provides a more general but
computationally expensive approach.

• Both methods complement each other, providing different
perspectives on data-driven discovery.
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Physics Informed Machine Learning (PIML)

• If we know the equations, we can solve them!
• Applications:

▶ Fluid dynamics
▶ Materials science
▶ Climate modeling
▶ Astrophysics
▶ LASER behavior
▶ Active matter

Using NNs to solve a problem:

L(u(x, t), θ) = g

L is some "operator", i.e. some "physics"
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Physics-Informed Neural Networks (PINNs)

• PINNs are a class of neural networks that incorporate the
governing physical equations (such as PDEs) into the
network’s loss function.

• By integrating physical constraints, PINNs can improve
generalization and reduce data requirements.

• They can be used for a wide range of PDE problems, including
time-dependent, non-linear, and high-dimensional ones.

Figure: PINN
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PINNs: Loss Function

• The loss function in PINNs consists of two parts:
▶ Data term: This term measures the difference between the

network’s predictions and the available data.
▶ Physics term: This term enforces the underlying physical

equations, such as the PDEs.

• The total loss function is a weighted sum of these two terms:

L = Ldata + αLphysics

where α is a weighting factor.
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PINNs: Data Term

• The data term measures the difference between the network’s
predictions and the available data, typically using a mean
squared error (MSE) or another suitable metric.

• This term ensures that the network learns to approximate the
observed data points.
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PINNs: Physics Term

• The physics term enforces the underlying physical equations
(PDEs) on the neural network’s predictions.

• This is achieved by computing the residual of the PDE with
respect to the neural network’s output.

• The residual is then included in the loss function, encouraging
the network to satisfy the PDE.
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PINNs: Residual Calculation

• To compute the residual, we first differentiate the neural
network’s output with respect to its inputs.

• Automatic differentiation can be used computation of
derivatives.

• The PDE residual is then calculated using these derivatives
and the network’s output.
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PINNs: Training

• PINNs are typically trained using gradient-based optimization
methods, such as stochastic gradient descent (SGD) or its
variants.

Figure: PINN
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PINNs: Challenges

• Despite their potential, PINNs face some challenges:
▶ Difficulty of optimization: The inclusion of the PDE residual in

the loss function can make the optimization problem more
complex and harder to solve.

▶ Choice of architecture: The architecture of the neural network
(number of layers, number of neurons per layer, activation
function, etc.) can significantly impact the performance of
PINNs.

▶ Computational cost: PINNs can be computationally expensive,
particularly for complex or high-dimensional problems (i.e.
D > 2).
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PINNs: Future Directions

• PINNs represent a promising direction in the integration of
physics and machine learning.

• Future work could focus on developing more efficient training
algorithms, designing better network architectures, and
extending PINNs to other types of physical systems.
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Physics-Informed Neural Networks

• Physics-informed neural networks (PINNs) incorporate physical
knowledge into the learning process.

• Other way to include physical knowledge is to use Noether’s
theorem and enforce symmetries.

• This approach can improve generalization and reduce data
requirements.
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Noether’s Theorem

• Noether’s theorem states that for every continuous symmetry
of a physical system’s action, there is a corresponding
conservation law.

• The theorem provides a deep connection between symmetries
and conserved quantities in physics.

• It can be used to identify symmetries that should be enforced
in a neural network to ensure consistency with physical
principles.
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Identifying Symmetries

• To enforce symmetries in a neural network, we first need to
identify the relevant symmetries for the problem at hand.

• These symmetries can be found using Noether’s theorem by
examining the physical system’s action and finding continuous
transformations that leave the action invariant.

• Common examples of symmetries include translation (linear
momentum), rotation (angular momentum), and time
invariance (energy).
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Enforcing Symmetries in Neural Networks

• Once the relevant symmetries are identified, we can enforce
them in the neural network architecture or learning process.

• This can be done by constraining the weights and biases,
modifying the activation functions, or including
symmetry-enforcing terms in the loss function.

• Enforcing symmetries helps the network to learn physically
consistent solutions.
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Constraining Weights and Biases

• Symmetries can be enforced by imposing specific constraints
on the weights and biases of the neural network.

• For example, a translation symmetry can be enforced by
ensuring that the network’s weights are translation-invariant.

• This approach requires careful design of the network
architecture and an understanding of how the weights and
biases relate to the symmetries.
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Modifying Activation Functions

• Symmetries can also be enforced by modifying the activation
functions used in the neural network.

• For example, to enforce rotational symmetry, we could use
radial basis function (RBF) activation functions, which are
invariant to rotations.

• The choice of activation function can have a significant impact
on the network’s ability to learn and enforce symmetries.
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Symmetry-Enforcing Loss Functions

• Symmetries can also be enforced by including
symmetry-enforcing terms in the loss function.

• These terms measure the violation of the symmetry by the
network’s predictions and are added to the usual data-fitting
loss term.

• By minimizing this extended loss function, the network learns
to make predictions that are consistent with the symmetry.
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Benefits and Challenges

• Enforcing symmetries can improve the performance of neural
networks, making them more robust, interpretable, and
physically consistent.

• However, it also presents challenges, such as the difficulty of
identifying and enforcing complex symmetries, and the
potential increase in computational cost.

• Despite these challenges, the integration of physics and
machine learning through methods like symmetry enforcement
is a promising direction for future research.

What if the symmetries are not known?
We can learn them through meta-learning (Allen, 2021)
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PIML Approaches

• Data-driven discovery: Using ML algorithms to identify
patterns and relationships in data, leading to the discovery of
governing equations.

• Learning from PDEs: Training ML models to learn solutions of
PDEs, incorporating physical constraints and principles into
the learning process.

• Hybrid models: Combining physics-based and data-driven
models to leverage the strengths of both approaches.
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Overview of Neural ODEs

• Neural ODEs are a recent development in deep learning that
bridges the gap between neural networks and differential
equations.

• They replace the discrete layers of a conventional neural
network with a continuous transformation defined by an
ordinary differential equation (ODE).

• The ODE is parametrized by a neural network, which allows
for learning from data.
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Basic Formulation

• The basic formulation of a neural ODE is given by the initial
value problem:

• dz(t)
dt = f(z(t), t, θ), with z(0) = z0

• Here, z(t) is the state at time t, f is a function parametrized
by a neural network with parameters θ, and z0 is the initial
state.
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Training Neural ODEs

• Neural ODEs are trained by adjusting the parameters θ to
minimize a loss function.

• The gradients needed for training are computed using the
adjoint method, which is a variant of backpropagation for
ODEs.

• This allows for efficient computation of gradients, even for
long sequences or high-dimensional state spaces.
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The Adjoint Method

• The adjoint method solves an auxiliary ODE backwards in time
to compute the gradients.

• This makes the memory cost constant, regardless of the length
of the trajectory.

• It is based on the concept of adjoint states in optimal control
theory.
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Advantages of Neural ODEs

• Memory Efficiency: Because gradients are computed with
the adjoint method, memory cost is constant regardless of
trajectory length.

• Adaptive Computation: The ODE solver can adjust its
computation steps based on the complexity of the function,
leading to potential efficiency gains.

• Parametric Efficiency: Neural ODEs use the same function
f for all transformations, reducing the number of parameters.

• Continuous-Time Models: They are naturally suited for
continuous-time data or irregularly sampled data.
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Applications of Neural ODEs

• Neural ODEs have been used in a variety of applications,
including time series prediction, generative models, and
reinforcement learning.

• They are particularly well-suited to problems involving
continuous-time or irregularly sampled data.
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Extensions and Variants

• Stochastic Neural ODEs: Introduce randomness into the
dynamics, useful for certain types of data and systems.

• Controlled Neural ODEs: Incorporate control inputs into the
ODE, useful for reinforcement learning and control problems.

• Second-Order Neural ODEs: Use second-order differential
equations instead of first-order ones.
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Challenges and Future Directions

• While Neural ODEs hold promise, there are still challenges to
be addressed, such as ensuring stability and dealing with stiff
ODEs.

• Future research directions include developing more efficient
solvers, exploring other types of differential equations, and
finding new applications.
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Thank you!

Thank you!
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