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Recommender Systems

• Recommenders recommend:
– Items to users (most common).
– Users to items.
– Items to items.
– Users to users.

• Items can be movies, products, news, music, books, recipes, etc.

Working in pairs: try to find one example of each of the four
recommender scenarios above.
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Recommender Systems

• WLOG, we will focus on recommending users relevant items.
– Predictive modeling: predict the rating of item m by user u.
– Retrieval modeling: learning a ranking system.

• Typically based on past interactions and/or attributes (from users
and items).

• Interactions: normally modeled as an interaction matrix.
– Explicit: a user rates a song with 4 stars on a scale from 0 to 5.
– Implicit: a user watches 80% of a movie.

• Attributes: normally modeled as attribute matrices.
– Users: gender, age, location, etc.
– Items: text, video, meta-data, etc.
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Modelling Interactions: Explicit feedback
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Modelling Interactions: Implicit feedback
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From explicit to implicit feedback
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From implicit to explicit feedback
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Modelling Attributes
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Personalized Machine Learning

• Personalization is not a simple regression or classification problem.
• A personalized model implies that if the user has different

interactions (or attributes), the recommendation should be different.
• Suppose the vector au (am) are attribute vectors of user u (item m).
• We can use linear regression to predict how user u will like item m:

rum = ω⊤ ×
[

au
am

]

• Is linear regression a personalized model for recommenders? No!
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Recommendation Algorithms
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Recommender as a Matrix
• As we saw, we can model recommenders as matrices.

• The ratings can be stored in a ranking matrix R of dimension m × n with elements
from R ∪ {?}.

• An example of a rating matrix for m = 4 users and n = 6 items can be read as:

R =


1 ? ? 2 ? 1
? 2 3 ? 2 1
1 5 5 ? ? 5
? ? 2 ? ? 3

 .

This means, for example, that user u1 ranked items i1 and i6 with 1 star, item i4 with 2
stars, and had no interactions with items i2, i3, and i5.

• Our goal is to predict the unknown ratings ru,i =? using the knowledge of the known
ratings ru,i ̸=?.
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Idea of Matrix Factorization

• By matrix factorization we usually mean expressing a given matrix R as a matrix
product of two (or more) matrices with some non-trivial properties. For example:

R = UV⊤

• These factorizations are a cornerstone of many algorithms and methods or are
used to reach more numerically stable computations.

Do we need to know all the entries of a matrix R to factorize it, for
example R = UV⊤?
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Intuition Behind Matrix Factorization
• As for recommendation systems, the inspiration mainly comes from Singular Value

Decomposition (SVD) as it can be used for constructing latent features or, in other
words, dimensionality reduction using projections to a lower-dimensional space.

• The very basic idea of the lower-dimensional approximation of an input matrix R of
dimension m × n is based on this fundamental fact from linear algebra: Multiplying
matrices U of dimension m ×d and V of dimension d ×n, we get a matrix of dimen-
sion m × n. This is true for any positive integer d.

• And this is the idea: Given a rating matrix R, find lower-dimensional matrices U and
V so that the known elements of R are well approximated by the matrix UV⊤.
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Matrix Factorization for Recommenders

• Let us denote:

– The i-th row of U as ui ; the number of rows of U equals
the number of users m.

– The j-th column of V as vj; the number of columns of V
equals the number of items n.

– Ω as the subset of m × n of user-item pairs (i, j) such
that ri,j is known, i.e., ri,j ̸=?.

• The approximation of ri,j is given by the number uT
i vj, i.e., by the

dot product of the two d-dimensional vectors.

12 Recommender Systems
Advanced Machine Learning



Optmization Problem

• The error of approximation is usually measured by the squared
residual:

(ri,j − uT
i vj)

2.

• Hence, the matrices U and V are obtained by solving the
optimization task:

argminU,V

∑
(i,j)∈Ω

(ri,j − uT
i vj)

2 + λ(
∑

x

||ux ||2 +
∑

y

||vy||2).
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Sparsity and Prediction

• The matrices U and V are optimized only by considering the known
entries of R, which are usually only a minority of entries.

• For example, in the Netflix Prize in 2006, there were n = 17K movies
and m = 500K users, meaning that the matrix R had 8500M entries.
But only 100M were given by Netflix!

• Still, the result of the matrix multiplication UV⊤ is a matrix having the
same dimensions as R with all entries known!

• The unknown rating ri,j =? is estimated as r̂i,j = uT
i vj.
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Example

• Consider our toy example matrix from above:

R =


1 ? ? 2 ? 1
? 2 3 ? 2 1
1 5 5 ? ? 5
? ? 2 ? ? 3

 .

• Assume that we chose the hyperparameter d = 2, i.e., we look for approximation
matrices U and V with dimensions 4 × 2 and 2 × 6, respectively.

• Let us pretend that the matrices resulting from the optimization are

U =


0.3 0.7
0.3 0.5
0.2 0.4
0.2 0.1

 and V⊤ =

(
1 10 11 10 4 20
1 −1 −2 −1 1 −4

)
.
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Example

• The resulting approximation is

UV⊤ =


0.3 0.7
0.3 0.5
0.2 0.4
0.2 0.1

(
1 10 11 10 4 20
1 −1 −2 −1 1 −4

)
=

=


1 2.3 1.9 2.3 1.9 3.2

0.8 2.5 2.3 2.5 1.7 4
0.6 1.6 1.4 1.6 1.2 2.4
0.3 1.9 2 1.9 0.9 3.6

 ,

where the red numbers are the desired predictions

• E.g. the 3rd user predicted rating of the 4th item is r̂3,4 = 1.6.
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Supervised Learning Task
• The learning parameters: U ∈ Rm×d and V ∈ Rn×d

• The hyperparameters:
– the regularization constant λ > 0,
– the matrix dimension d, which is a positive integer (significantly smaller

than min{m,n}).

• These hyperparameters can be tuned in the usual way via
cross-validation.

• Therefore, we would like to learn U and V , given d and λ, by
minimizing the following objective function:

argminU,V

∑
(i,j)∈Ω

(ri,j − uT
i vj)

2 + λ

(∑
x

||ux ||2 +
∑

y

||vy||2
)
.
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Alternating Least Squares (ALS)

• The idea of ALS is to fix alternately the matrix U and V .
– The non-fixed matrix is then considered a learning variable and is

subject to minimization.

• With one of the matrices fixed, the optimization problem becomes
convex and very similar to the linear regression problem.

• Let’s try to understand how the mechanism works.
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Alternating least squares (ALS)
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Alternating least squares (ALS)

• Then we have the following optimization problem

minui ||RΩi − ui
⊤VΩi⊤||2 + λ||ui ||2

• Convex problem with closed-form

ûi = (VΩi VΩi⊤+ λI)−1V⊤
Ωi RΩi

Alternating least squares (ALS)
Randomly initialize U and V

• WHILE does not converge

– ∀i ∈ U , minui ||RΩi − ui
⊤VΩi⊤||2 + λ||ui ||2

– ∀j ∈ I, minvj ||RΩj − vj
⊤UΩj⊤||2 + λ||vj||220 Recommender Systems
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Matrix Factorization for Implicit Feedback

• In real-world applications, we often observe more implicit feedback
than explicit feedback.

• In fact, explicit feedback is sometimes considered implicit.
• Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean
that the user likes A more than twice as much as B?

• The method we learned so far is more appropriate for explicit
feedback. Why?
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Modelling Implicit Feedback

• Let’s understand a more appropriate method for implicit feedback.

• Assume the binary interaction matrix P:

P =


1 0 0 1 0 1
0 1 1 0 1 1
1 1 1 0 0 1
0 0 1 0 0 1

 .

• That is, if user-i interacts with item-j, then Pij = 1, otherwise Pij = 0.

• Now let C be a matrix of confidence regarding the interaction:

C =


0.85 0 0 0.34 0 0.98

0 0.37 0.10 0 0.63 0.01
0.45 0.42 0.43 0 0 0.23

0 0 0.26 0 0 0.88

 .
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Collaborative Filtering for Implicit Feedback

• Then we propose the following optimization problem:

minU ,V

∑
i,j

Cij(Pij − u⊤
i vj)

2 + λ||ui ||2 + λ||vj||2

• Two main differences from the previous MF method:

– We need to account for the varying confidence levels.
– Optimization should account for all possible i, j pairs, rather than only

those corresponding to observed data.
• We can use gradient descent to solve it.

• And ALS? By fixing V , can we find ui?
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Closed Form

• Assume V being fixed and let’s find ui .

• Then we need to minimize the following loss:

Li = minui

∑
j

Cij(Pij − u⊤
i vj)

2 + λ||ui ||2

That is the same as:

Li = minui

∑
j

(
√

Cij(Pij − u⊤
i vj))

2 + λ||ui ||2

Exercise: Find the closed form.
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Alternating Least Squares (ALS)
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Closed Form

• Therefore is the same of solving:

Li = ||
√

CiPi −
√

CiVui ||2 + λ+ ||ui ||2

• Taking the derivative

∇ui = −2(
√

CiV )⊤(
√

CiPi −
√

CiVui) + 2λui

• Remind if D is diagonal D =
√

D ×
√

D is trivial and D = D⊤

• Therefore, with just some algebraic derivations

ui = (V⊤CiV + λI)−1V⊤CiPi
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