

Advanced Machine Learning Modern Recommender Systems

Zdeněk Buk, Miroslav Čepek, **Rodrigo Da Silva Alves**, Vojtěch Rybář and Petr Šimánekc March 20, 2024

Dimensionality Reduction

- Technique to reduce features in a dataset while retaining most relevant information
- Different inputs (e.g., music, photo, text) have unique characteristics requiring specific machine learning approaches
- Traditional methods like PCA may fail, especially those with non-linear relationships
- Autoencoder: Unsupervised neural network used for compressed data representation
 - Effective for dimensionality reduction and handling complex inputs.

RECAP: Autoencoder

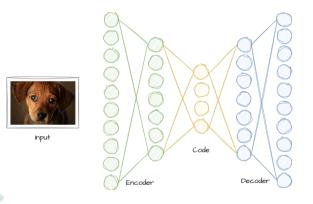
- An autoencoder is a type of feed-forward neural network
- It is designed to reconstruct its input x_i ad output x_i
- To prevent trivial solutions, the network includes a bottleneck (or code) layer
 - Significantly smaller dimension than the input

RECAP: Autoencoder

- An autoencoder is also composed by a encoder/decoder
- The encoder and the decoder have normally similar structure
- More formally: let $\mathcal{E}()$ be a encoder and $\mathcal{D}()$ be a decoder. Our optmization problem can be described as:

$$\min_{\mathcal{E},\mathcal{D}} \sum_{i} ||x_i - \mathcal{D}(\mathcal{E}(x_i))||$$

Autoencoder



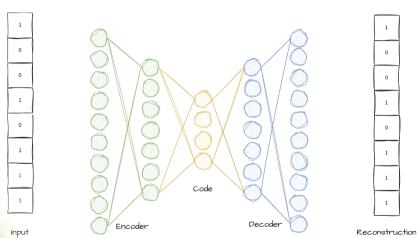
Reconstruction

How can we use autoencoders to predict implicit feedback?

Modern Recommender Systems

Advanced Machine Learning

Autoencoders for CF



Modern Recommender Systems
Advanced Machine Learning

Autoencoders for CF

- Autoencoders are frequently used for collaborative filtering.
- They are very accurate in predicting rankings.
- They can also be used to find clusters with the code.
- Empirical results show that the best architecture is often not very deep.
- What would be the shallowest autoencoder for Collaborative Filtering?

EASE

- EASE is the shallowest auto-encoder as possible
- It aims to solve the following problem

$$\min_B ||X - XB||^2 + \lambda ||B||^2$$
 s.t $\operatorname{diag}(B) = 0$

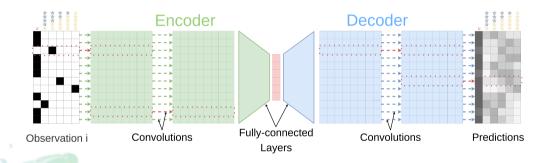
- Why do we need the constraint diag(B) = 0?
- EASE has closed form solution! See here
- Is this a good method?

EASE Results

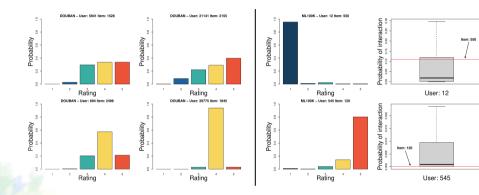
Table 1: Ranking accuracy (with standard errors of about 0.002, 0.001, and 0.001 on the ML-20M, Netflix, and MSD data, respectively), following the experimental set-up in [13].

(a) ML-20M	Recall@20	Recall@50	NDCG@100
popularity	0.162	0.235	0.191
EASER	0.391	0.521	0.420
$EASE^R \ge 0$	0.373	0.499	0.402
results reproduced from [13]:			
SLIM	0.370	0.495	0.401
WMF	0.360	0.498	0.386
CDAE	0.391	0.523	0.418
Mult-vae ^{pr}	0.395	0.537	0.426
MULT-DAE	0.387	0.524	0.419
(b) Netflix			
popularity	0.116	0.175	0.159
EASER	0.362	0.445	0.393
$EASE^R \ge 0$	0.345	0.424	0.373
esults reproduced from [13]: LLM 0.347 0.428 0.379			
SLIM	0.347	0.428	0.379
WMF	0.316	0.404	0.351
CDAE	0.343	0.428	0.376
Mult-vae ^{PR}	0.351	0.444	0.386
MULT-DAE	0.344	0.438	0.380
(c) MSD			
popularity	0.043	0.068	0.058
EASER	0.333	0.428	0.389
$EASE^R \ge 0$	0.324	0.418	0.379
results reprod	uced from [13	3]:	
SLIM	— dic	l not finish in	[13] —
WMF	0.211	0.312	0.257
CDAE	0.188	0.283	0.237
Mult-vae PR	0.266	0.364	0.316
MULT-DAE	0.266	0.363	0.313

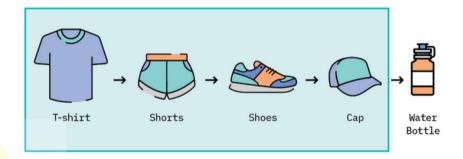
Mixing Implicit and Explicit

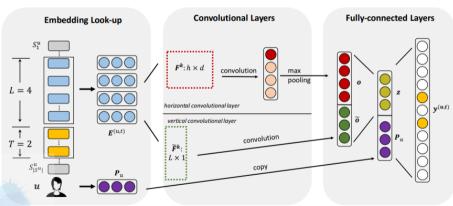


Mixing Implicit and Explicit



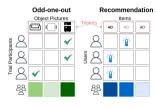
- Sequential recommendation is the task of predicting the next item that a user will interact
- There is extensive sequential recommendation algorithms
 - Markov chains
 - Recurrent neural networks (RNNs)
 - Long short-term memory (LSTM) networks
 - Embedding-base Neural Networks
- The models should learn patterns in a user's behavior over time





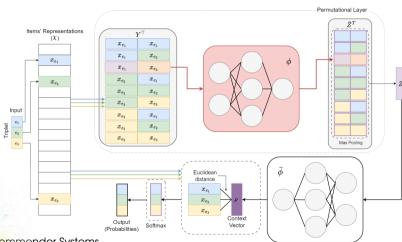
Triplets problem

Triplets problem to Recommenders



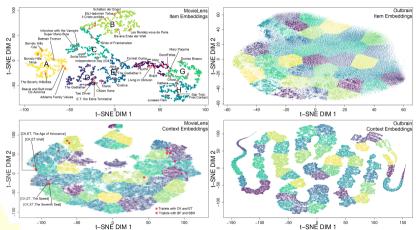
- The items we show to user can influence their decision
- Based on neuroscience
- Sometimes the position we show does not matter significantly
- Context embedding: summarizes the context of the recommendation
- Provide not just accurate recommendation but also interpretability

Care Model

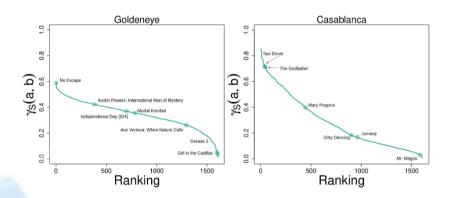


Modern Recommender Systems
Advanced Machine Learning

Care Model



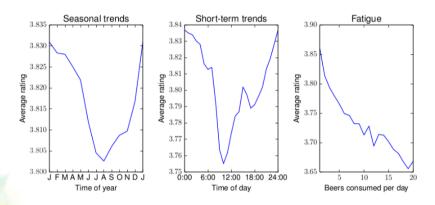
Care Model



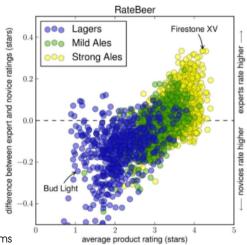
The Time Dimension in Recommendations

- Do you like the same things, morning and evenings?
- For example, the playlist recommendations on Spotify should change based on the time of day and day of the week.
 - Rarely do people have the same mood on Monday morning as they do on Friday evening.
- Taste and preferences change over time, so recommendations should adapt accordingly.
- The envoroment of RS is dynamic

Pivo Recommendation



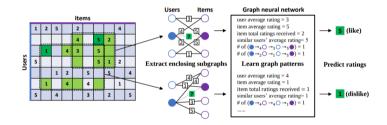
Pivo Recommendation



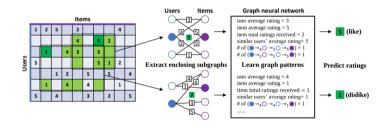
Addressing the Cold-Start Problem

- Recommender systems typically require millions of interactions
- However, new systems often have limited interaction data available
- Attribute-based recommendations can provide valuable information
 - Normally less significant than interactions themselves

Transfer Learning in RS



Transfer Learning in RS

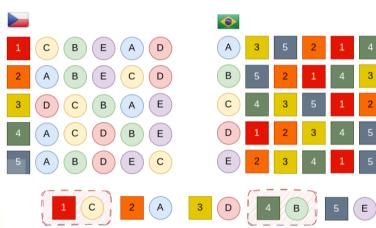


Tandem (Marriage) Problem

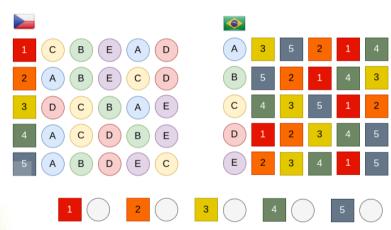
Greedy Czech Algorithm

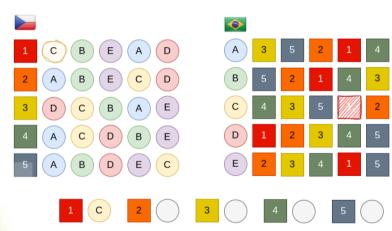


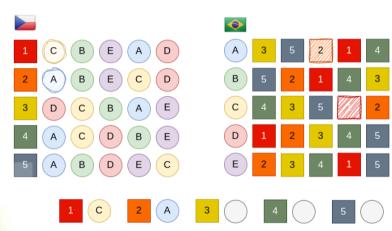
Rogue Combination

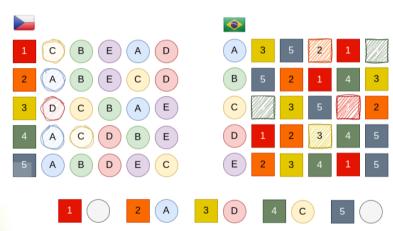


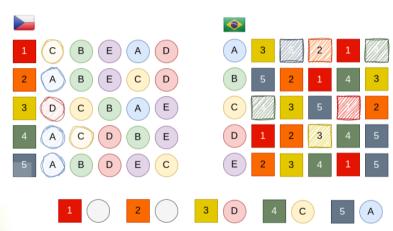
Rogue Combination

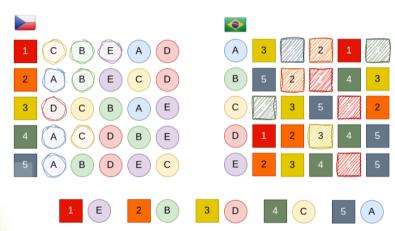




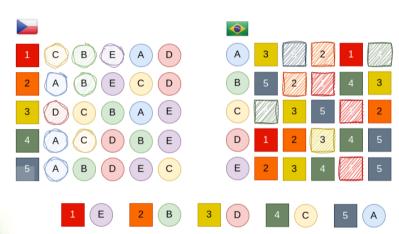




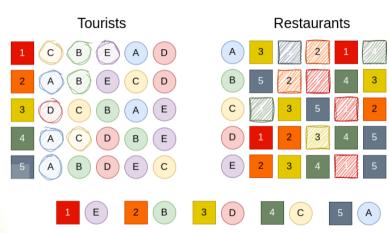




What about Recommender Systems?



What about Recommender Systems?



Modern matters in RS

Fairness

- Recommender systems have the potential to perpetuate or even amplify bias
- Unequal treatment of different groups of users
- Filter Bubbles
 - Common problem on RSs that rely heavily on personalization
 - Recommendations that align with a user's pre-existing preferences
 - Negative consequences for both individual users and society

Modern matters in RS

- Challenging to evaluate
 - Lack of ground truth
 - Changes over the time
 - Diversity of user preferences
- Scalability
 - When terabytes of memory is not enough
 - Can result in increased computational costs and reduced performance

Modern matters in RS

- Privacy concerns
 - Recommender systems often rely on user data to provide accurate recommendations
 - Legislation (GDPR)
 - Lack of interpretability
- Dynamic preference
 - User preferences and item characteristics can be highly dynamic
 - Item availability
 - Difficult to provide accurate and up-to-date recommendations

Obrigado:) - Faculty of Information Technology