

Advanced Machine Learning Recommender Systems 1

Rodrigo Da Silva Alves February 26, 2025

Recommender Systems

- Recommenders recommend:
 - Items to users (most common).
 - Users to items.
 - Items to items.
 - Users to users.
- Items can be movies, products, news, music, books, recipes, etc.

Working in pairs: try to find one example of each of the four recommender scenarios above.

Recommender Systems

- WLOG, we will focus on recommending users relevant items.
 - Predictive modeling: predict the rating of item m by user u.
 - Retrieval modeling: learning a ranking system.
- Typically based on past interactions and/or attributes (from users and items).
- Interactions: normally modeled as an interaction matrix.
 - Explicit: a user rates a song with 4 stars on a scale from 0 to 5.
 - Implicit: a user watches 80% of a movie.
- Attributes: normally modeled as attribute matrices.
 - Users: gender, age, location, etc.
 - Items: text, video, meta-data, etc.

Modelling Interactions: Explicit feedback

	m ₁	m ₂	 mn
U1	?	2	 3
U ₂	5	1	 ?
из	?	3	 1
Um	4	4	 ?

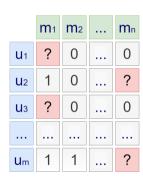
Modelling Interactions: Implicit feedback

U1	m ₁	12/11/2021 09:01:21	Watch	25%
U ₂	m ₁	17/03/2021 14:27:09	Clicked	
U ₂	m ₄	17/03/2021 14:22:09	Clicked	Purchase
Um	mn	14/06/2020 23:14:46	Watch	100%

	m ₁	m_2	 m_{n}
U ₁	1	0	 0
U ₂	1	0	 0
u з	0	1	 1
Um	0	1	 1

From explicit to implicit feedback

	m ₁	m ₂	 m n
U ₁	?	2	 3
U ₂	5	1	 ?
U 3	?	3	 1
Um	4	4	 ?



From implicit to explicit feedback

U ₁	m ₁	12/11/2021 09:01:21	Watch	25%
U ₂	m ₁	17/03/2021 14:27:09	Clicked	
U ₂	m ₄	17/03/2021 14:22:09	Clicked	Purchase
Um	m_{n}	14/06/2020 23:14:46	Watch	100%

	m ₁	m_2	 m_{n}
U ₁	0	0	 0
U ₂	0	0	 0
u з	0	1	 1
Um	0	0	 1

Modelling Attributes

	Color	Price	Category
m1	Black	24936	Chair
m ₂	Red and White	24944	Chair
mз	Red and White	1299	T-Shirt
m ₄	Black	1104	Chair

Personalized Machine Learning

- Personalization is not a simple regression or classification problem.
- A personalized model implies that if the user has different interactions (or attributes), the recommendation should be different.
- Suppose the vector a_u (a_m) are attribute vectors of user u (item m).
- We can use linear regression to predict how user u will like item m:

$$r_{um} = \omega^ op imes egin{bmatrix} a_u \ a_m \end{bmatrix}$$

- Is linear regression a personalized model for recommenders? No!
- Recommender Systems 1

 Advanced Machine Learning

Recommendation Algorithms

Collaborative Filtering

Day One: Joe and Julia independently read an article on police brutality

Day Two: Joe reads an article about deforestation, and then Julia is recommended the deforestation article

Content-Based Filtering

Day One: Julia watches a Drama

Day Two: Dramas are recommended

Recommender as a Matrix

- As we saw, we can model recommenders as matrices.
- The ratings can be stored in a **ranking matrix** R of dimension $m \times n$ with elements from $\mathbb{R} \cup \{?\}$.
- An example of a rating matrix for m=4 users and n=6 items can be read as:

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}.$$

This means, for example, that user u_1 ranked items i_1 and i_6 with 1 star, item i_4 with 2 stars, and had no interactions with items i_2 , i_3 , and i_5 .

- Our goal is to predict the unknown ratings $r_{u,i} = ?$ using the knowledge of the known ratings $r_{u,i} \neq ?$.
- Recommender Systems 1
 Advanced Machine Learning

Idea of Matrix Factorization

 By matrix factorization we usually mean expressing a given matrix R as a matrix product of two (or more) matrices with some non-trivial properties. For example:

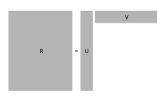
$$R = UV^{ op}$$

• These factorizations are a cornerstone of many algorithms and methods or are used to reach more numerically stable computations.

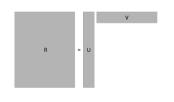
Do we need to know all the entries of a matrix R to factorize it, for example $R = UV^{\top}$?

Intuition Behind Matrix Factorization

- As for recommendation systems, the inspiration mainly comes from Singular Value Decomposition (SVD) as it can be used for constructing latent features or, in other words, dimensionality reduction using projections to a lower-dimensional space.
- The very basic idea of the **lower-dimensional** approximation of an input matrix R of dimension $m \times n$ is based on this fundamental fact from linear algebra: Multiplying matrices U of dimension $m \times d$ and V of dimension $d \times n$, we get a matrix of dimension $m \times n$. This is true for any **positive** integer d.
- And this is the idea: Given a rating matrix R, find **lower-dimensional** matrices U and V so that the known elements of R are well approximated by the matrix \mathbf{UV}^{\top} .



Matrix Factorization for Recommenders



Let us denote:

- The *i*-th row of U as u_i ; the number of rows of U equals the number of users m.
- The j-th column of V as v_j ; the number of columns of V equals the number of items n.
- Ω as the subset of $m \times n$ of user-item pairs (i,j) such that $r_{i,j}$ is known, i.e., $r_{i,j} \neq ?$.
- The approximation of $r_{i,j}$ is given by the number $u_i^T v_j$, i.e., by the dot product of the two d-dimensional vectors.

Optmization Problem

 The error of approximation is usually measured by the squared residual:

$$(r_{i,j}-u_i^Tv_j)^2.$$

 Hence, the matrices U and V are obtained by solving the optimization task:

$$\operatorname{argmin}_{\mathbf{U},\mathbf{V}} \sum_{(i,j) \in \Omega} (r_{i,j} - u_i^T v_j)^2 + \lambda (\sum_{x} ||u_x||^2 + \sum_{y} ||v_y||^2).$$

Sparsity and Prediction

- The matrices U and V are optimized only by considering the known entries of R, which are usually only a minority of entries.
- For example, in the Netflix Prize in 2006, there were n=17K movies and m=500K users, meaning that the matrix R had 8500M entries. But only 100M were given by Netflix!
- Still, the result of the matrix multiplication UV^{\top} is a matrix having the same dimensions as R with all entries known!
- The unknown rating $r_{i,j} = ?$ is estimated as $\hat{r}_{i,j} = u_i^T v_j$.

Example

Consider our toy example matrix from above:

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}.$$

- Assume that we chose the hyperparameter d=2, i.e., we look for approximation matrices U and V with dimensions 4×2 and 2×6 , respectively.
- Let us pretend that the matrices resulting from the optimization are

$$U = egin{pmatrix} 0.3 & 0.7 \\ 0.3 & 0.5 \\ 0.2 & 0.4 \\ 0.2 & 0.1 \end{pmatrix} \quad ext{and} \quad V^ op = egin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20 \\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix}.$$

Example

The resulting approximation is

$$\mathbf{U}\mathbf{V}^{\top} = \begin{pmatrix} 0.3 & 0.7 \\ 0.3 & 0.5 \\ 0.2 & 0.4 \\ 0.2 & 0.1 \end{pmatrix} \begin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20 \\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix} = \\ = \begin{pmatrix} 1 & 2.3 & 1.9 & 2.3 & 1.9 & 3.2 \\ 0.8 & 2.5 & 2.3 & 2.5 & 1.7 & 4 \\ 0.6 & 1.6 & 1.4 & 1.6 & 1.2 & 2.4 \\ 0.3 & 1.9 & 2 & 1.9 & 0.9 & 3.6 \end{pmatrix},$$

where the red numbers are the desired predictions

- E.g. the 3rd user predicted rating of the 4th item is $\hat{r}_{3,4} = 1.6$.
- Recommender Systems 1 **Advanced Machine Learning**

Supervised Learning Task

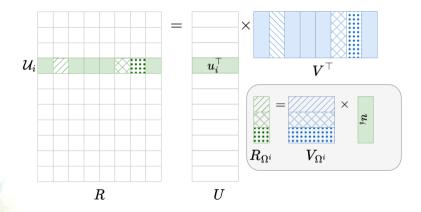
- The learning parameters: $U \in \mathbb{R}^{m \times d}$ and $V \in \mathbb{R}^{n \times d}$
- The hyperparameters:
 - the regularization constant $\lambda > 0$,
 - the matrix dimension d, which is a positive integer (significantly smaller than $\min\{m,n\}$).
- These hyperparameters can be tuned in the usual way via cross-validation.
- Therefore, we would like to learn U and V, given d and λ , by minimizing the following objective function:

$$\operatorname{argmin}_{\mathbf{U},\mathbf{V}} \sum_{(i,j) \in \Omega} (r_{i,j} - u_i^T v_j)^2 + \lambda \left(\sum_{x} ||u_x||^2 + \sum_{y} ||v_y||^2 \right).$$

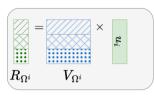
Alternating Least Squares (ALS)

- The idea of ALS is to fix alternately the matrix U and V.
 - The non-fixed matrix is then considered a learning variable and is subject to minimization.
- With one of the matrices fixed, the optimization problem becomes convex and very similar to the linear regression problem.
- Let's try to understand how the mechanism works.

Alternating least squares (ALS)



Alternating least squares (ALS)



Then we have the following optimization problem

$$\mathsf{min}_{u_i} || R_{\Omega^i} - u_i^{\top} V_{\Omega^i}^{\top} ||^2 + \lambda ||u_i||^2$$

Convex problem with closed-form

$$\hat{u}_i = (V_{\Omega^i} V_{\Omega^i} \top + \lambda I)^{-1} V_{\Omega^i}^{\top} R_{\Omega^i}$$

Alternating least squares (ALS)

Randomly initialize U and V

- WHILE does not converge
 - $\ orall i \in \mathcal{U}, \, \mathsf{min}_{u_i} || R_{\Omega^i} u_i^{ op} V_{\Omega^i}^{ op} ||^2 + \lambda ||u_i||^2$
 - $\ \forall j \in \mathcal{I}, \ \mathsf{min}_{v_j} || R_{\Omega^j} v_j^{\mathsf{T}} U_{\Omega^j}^{\mathsf{T}} ||^2 + \lambda ||v_j||^2$

Matrix Factorization for Implicit Feedback

- In real-world applications, we often observe more implicit feedback than explicit feedback.
- In fact, explicit feedback is sometimes considered implicit.
- Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean that the user likes A more than twice as much as B?

 The method we learned so far is more appropriate for explicit feedback. Why?

Modelling Implicit Feedback

- Let's understand a more appropriate method for implicit feedback.
- Assume the binary interaction matrix P:

$$P = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

- That is, if user-i interacts with item-j, then $P_{ij} = 1$, otherwise $P_{ij} = 0$.
- Now let C be a matrix of confidence regarding the interaction:

$$C = \begin{pmatrix} 0.85 & 0 & 0 & 0.34 & 0 & 0.98 \\ 0 & 0.37 & 0.10 & 0 & 0.63 & 0.01 \\ 0.45 & 0.42 & 0.43 & 0 & 0 & 0.23 \\ 0 & 0 & 0.26 & 0 & 0 & 0.88 \end{pmatrix}.$$

Collaborative Filtering for Implicit Feedback

• Then we propose the following optimization problem:

$$\mathsf{min}_{U,V} \sum_{i,j} C_{ij} (P_{ij} - u_i^ op v_j)^2 + \lambda ||u_i||^2 + \lambda ||v_j||^2$$

- Two main differences from the previous MF method:
 - We need to account for the varying confidence levels.
 - Optimization should account for all possible i,j pairs, rather than only those corresponding to observed data.
- We can use gradient descent to solve it.
- And ALS? By fixing V, can we find u_i ?

Closed Form

- Assume V being fixed and let's find u_i .
- Then we need to minimize the following loss:

$$\mathcal{L}_i = \mathsf{min}_{u_l} \sum_{j} C_{ij} (P_{ij} - u_l^ op v_j)^2 + \lambda ||u_l||^2$$

That is the same as:

$$\mathcal{L}_i = \mathsf{min}_{u_i} \sum_{j} (\sqrt{C_{ij}}(P_{ij} - u_i^ op v_j))^2 + \lambda ||u_i||^2$$

Exercise: Find the closed form.

Alternating Least Squares (ALS)



Closed Form

• Therefore is the same of solving:

$$\mathcal{L}_{i} = ||\sqrt{C^{i}}P_{i} - \sqrt{C^{i}}Vu_{i}||^{2} + \lambda + ||u_{i}||^{2}$$

Taking the derivative

$$abla u_i = -2(\sqrt{C^i}V)^{ op}(\sqrt{C^i}P_i - \sqrt{C^i}Vu_i) + 2\lambda u_i$$

- Remind if D is diagonal $D = \sqrt{D} \times \sqrt{D}$ is trivial and $D = D^{\top}$
- Therefore, with just some algebraic derivations

$$u_i = (V^\top C^i V + \lambda I)^{-1} V^\top C^i P_i$$

Obrigado:) - Faculty of Information Technology