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Dimensionality Reduction

e Technique to reduce features in a dataset while retaining most
relevant information

o Different inputs (e.g., music, photo, text) have unique characteristics
requiring specific machine learning approaches

e Traditional methods like PCA may fail, especially those with
non-linear relationships

e Autoencoder: Unsupervised neural network used for compressed
data representation
- Effective for dimensionality reduction and handling complex inputs.
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RECAP: Autoencoder

e An autoencoder is a type of feed-forward neural network
e [t is designed to reconstruct ifs input x; ad output x;

o To prevent trivial solutions, the network includes a bottleneck (or
code) layer

— Significantly smaller dimension than the input
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RECAP: Autoencoder

e An autoencoder is also composed by a encoder/decoder
e The encoder and the decoder have normally similar structure

e More formally: let £() be a encoder and D() be a decoder. Our
optmization problem can be described as:

MiNg p Z l[xi — D(E(x))l|
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Autoencoder
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How can we use autoencoders to predict implicit feedback?
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Autoencoders for CF
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Autoencoders for CF

o Autoencoders are frequently used for collaborative filtering.
e They are very accurate in predicting rankings.
e They can also be used to find clusters with the code.

e Empirical results show that the best architecture is offen not very
deep.

¢ What would be the shallowest autoencoder for Collaborative
Filtering?
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EASE

EASE is the shallowest auto-encoder as possible
It aims to solve the following problem

ming||X — XB||? + \||B||? s.t diag(B) = 0

Why do we need the constraint diag(B) = 07
EASE has closed form solution! See here
Is this a good method?
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https://arxiv.org/pdf/1905.03375.pdf

EASE Results

Table 1: Ranking accuracy (with standard errors of about
0.002, 0.001, and 0.001 on the ML-20M, Netflix, and MSD data,
i following the i I set-up in [13].

(a) ML-20M  Recall@20 Recall@50 NDCG@100
6

popularity 0.191
EASER 0391 0521 0.420
EASER2 0 0373 0.499 0.402
results reproduced from [13):

Sum 0370 0.495 0.401
WME 0360 0.498 0.386
cpAE 0391 0523 0418
Murt-vag ™ 0.395 0537 0.426
MuLT-DAE 0387 0.524 0419
(b) Netflix

popularity 0.116 0175 0.159
EASER 0362 0.445 0393
EASER2 0 0345 0.424 0373
results reproduced from [13):

St 0347 0.428 0379
WME 0316 0.404 0.351
cpAE 0343 0.428 0376
Murr-vag ™ 0351 0.444 0386
MuLT-DAE 0344 0.438 0.380
(c) MSD

popularity 0.043 0.068 0.058
EASER 0333 0.428 0389
EASER2 0 0324 0418 0379
results reproduced from [13):

Suim — did not finish in [13] —

WME 0211 0312 0.257
CDAE 0188 0.283 0.237
Mur-vag "t 0266 0.364 0316
MuLT-DAE 0266 0363 0313
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Mixing Implicit and Explicit

Fully-connected
Layers

Observation i Convolutions Convolutions
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Mixing Implicit and Explicit
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Sequential Recommendation

e Sequential recommendation is the task of predicting the next item
that a user will interact
e There is extensive sequential recommendation algorithms

— Markov chains

— Recurrent neural networks (RNNSs)

— Long short-term memory (LSTM) networks
— Embedding-base Neural Networks

e The models should learn patterns in a user’s behavior over time
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Sequential Recommendation
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Sequential Recommendation

hoe-e

T-shirt Shorts Shoes Cap Water
Bottle

12  Modern Recommender Systems
Advanced Machine Learning



Sequential Recommendation
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Triplets problem
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Triplets problem to Recommenders

Recommendation
Items

{ €es. . riplet: AE . . .
- [e] e Theitems we show fo user can influence their

&4 | decision
A& | Based on neuroscience

e Sometimes the position we show does not matter
significantly

e Context embedding: summarizes the context of the
recommendation

e Provide not just accurate recommendation but also
inferpretability
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Care Model
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Care Model
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Care Model
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The Time Dimension in Recommendations

Do you like the same things, morning and evenings?

For example, the playlist recommendations on Spotify should
change based on the time of day and day of the week.

— Rarely do people have the same mood on Monday morning as they
do on Friday evening.
Taste and preferences change over time, so recommendations
should adapt accordingly.

The envoroment of RS is dynamic
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Pivo Recommendation
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Pivo Recommendation

diffierence between expert and novice ratings (stars)
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Addressing the Cold-Start Problem

o Recommender systems typically require millions of interactions

e However, new systems often have limited interaction data available

o Attribute-based recommendations can provide valuable
information

— Normally less significant than interactions themselves
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Transfer Learning in RS

Users Items Graph neural network

user average rating = 3
item average rating = 5 .

A B item total ratings received = 2 — [Bl (ike)
similar users” average rating= 5
#0f (@40 =30 =5 @,
#of (@20 +,0 5@

Learn graph patterns Predict ratings

Users
“n
«

user average rating = 4
item average rating = 1
item total ratings received = 1 .
similar users® average raing— 1 | —* |1 (dislike)
# of (@40 4,0 @
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Transfer Learning in RS
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Tandem (Marriage) Problem

™,
./

O
=

)
—
.‘/ ‘\~

)

[4 m | [ m \]

AN

)@
/
O

—
/

>
os]

OECEar

€
N\

Modern Recommender Systems
Advanced Machine Learning

AN
D
>/

™
A

[os]

= )

/

N T
YANS
( 0

.
] |

p>
Y

0

-
o -] 1:1:
CHEERE

H-BAA
CocHEFHR
O] [ 9] ]:]



25

Greedy Czech Algorithm
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Rogue Combination
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Rogue Combination
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm...
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What about Recommender Systems?
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What about Recommender Systems?
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Modern matters in RS

e Fairness
- Recommender systems have the potential to perpetuate or even
amplify bias
— Unequal treatment of different groups of users
o Filter Bubbles
— Common problem on RSs that rely heavily on personalization
- Recommendations that align with a user’s pre-existing preferences
- Negative consequences for both individual users and society
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Modern matters in RS

e Challenging to evaluate
— Lack of ground fruth
— Changes over the fime
— Diversity of user preferences
e Scalability
— When terabytes of memory is not enough
— Canresult in increased computational costs and reduced
performance
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Modern matters in RS

e Privacy concerns
- Recommender systems often rely on user data to provide accurate
recommendations
- Legislation (GDPR)
— Lack of interpretability
e Dynamic preference
— User preferences and item characteristics can be highly dynamic
- Item availability
— Difficult o provide accurate and up-to-date recommendations
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