

Advanced Machine Learning Modern Recommender Systems

Rodrigo Da Silva Alves

March 06, 2025

Dimensionality Reduction

- Technique to reduce features in a dataset while retaining most relevant information
- Different inputs (e.g., music, photo, text) have unique characteristics requiring specific machine learning approaches
- Traditional methods like PCA may fail, especially those with non-linear relationships
- Autoencoder: Unsupervised neural network used for compressed data representation
 - Effective for dimensionality reduction and handling complex inputs.

RECAP: Autoencoder

- An autoencoder is a type of feed-forward neural network
- It is designed to reconstruct its input x_i ad output x_i
- To prevent trivial solutions, the network includes a bottleneck (or code) layer
 - Significantly smaller dimension than the input

2

RECAP: Autoencoder

- An autoencoder is also composed by a encoder/decoder
- The encoder and the decoder have normally similar structure
- More formally: let *E*() be a encoder and *D*() be a decoder. Our optmization problem can be described as:

$$\min_{\mathcal{E}, \mathcal{D}} \sum_{i} ||x_i - \mathcal{D}(\mathcal{E}(x_i))||$$

Autoencoder

4

Autoencoders for CF

5

Autoencoders for CF

- Autoencoders are frequently used for collaborative filtering.
- They are very accurate in predicting rankings.
- They can also be used to find clusters with the code.
- Empirical results show that the best architecture is often not very deep.
- What would be the shallowest autoencoder for Collaborative Filtering?

- EASE is the shallowest auto-encoder as possible
- It aims to solve the following problem

$$\min_B ||X - XB||^2 + \lambda ||B||^2$$
 s.t diag $(B) = 0$

- Why do we need the constraint diag(B) = 0?
- EASE has closed form solution! See here
- Is this a good method?

7

EASE Results

Table 1: Ranking accuracy (with standard errors of about 0.002, 0.001, and 0.001 on the *ML-20M*, *Netflix*, and *MSD* data, respectively), following the experimental set-up in [13].

(a) ML-20M	Recall@20	Recall@50	NDCG@100
popularity	0.162	0.235	0.191
EASER	0.391	0.521	0.420
$EASE^R \ge 0$	0.373	0.499	0.402
results reproduced from [13]:			
SLIM	0.370	0.495	0.401
WMF	0.360	0.498	0.386
CDAE	0.391	0.523	0.418
MULT-VAE PR	0.395	0.537	0.426
MULT-DAE	0.387	0.524	0.419
(b) Netflix			
popularity	0.116	0.175	0.159
EASER	0.362	0.445	0.393
$EASE^R \ge 0$	0.345	0.424	0.373
results reproduced from [13]:			
SLIM	0.347	0.428	0.379
WMF	0.316	0.404	0.351
CDAE	0.343	0.428	0.376
MULT-VAE PR	0.351	0.444	0.386
MULT-DAE	0.344	0.438	0.380
(c) MSD			
popularity	0.043	0.068	0.058
EASER	0.333	0.428	0.389
$EASE^{R} \ge 0$	0.324	0.418	0.379
results reproduced from [13]:			
SLIM	 did not finish in [13] — 		
WMF	0.211	0.312	0.257
CDAE	0.188	0.283	0.237
MULT-VAE PR	0.266	0.364	0.316
MULT-DAE	0.266	0.363	0.313

Modern Recommender Systems Advanced Machine Learning

8

Mixing Implicit and Explicit

Mixing Implicit and Explicit

- Sequential recommendation is the task of predicting the next item that a user will interact
- There is extensive sequential recommendation algorithms
 - Markov chains
 - Recurrent neural networks (RNNs)
 - Long short-term memory (LSTM) networks
 - Embedding-base Neural Networks
- The models should learn patterns in a user's behavior over time

Triplets problem

Triplets problem to Recommenders

- The items we show to user can influence their decision
- Based on neuroscience
- Sometimes the position we show does not matter significantly
- Context embedding: summarizes the context of the recommendation
- Provide not just accurate recommendation but also interpretability

Care Model

Care Model

Advanced Machine Learning

17

Care Model

The Time Dimension in Recommendations

- Do you like the same things, morning and evenings?
- For example, the playlist recommendations on Spotify should change based on the time of day and day of the week.
 - Rarely do people have the same mood on Monday morning as they do on Friday evening.
- Taste and preferences change over time, so recommendations should adapt accordingly.
- The envoroment of RS is dynamic

Pivo Recommendation

Pivo Recommendation

Addressing the Cold-Start Problem

- Recommender systems typically require millions of interactions
- However, new systems often have limited interaction data available
- Attribute-based recommendations can provide valuable information
 - Normally less significant than interactions themselves

Transfer Learning in RS

Transfer Learning in RS

Tandem (Marriage) Problem

Greedy Czech Algorithm

Rogue Combination

Rogue Combination

What about Recommender Systems?

What about Recommender Systems?

Modern matters in RS

- Fairness
 - Recommender systems have the potential to perpetuate or even amplify bias
 - Unequal treatment of different groups of users
- Filter Bubbles
 - Common problem on RSs that rely heavily on personalization
 - Recommendations that align with a user's pre-existing preferences
 - Negative consequences for both individual users and society

Modern matters in RS

- Challenging to evaluate
 - Lack of ground truth
 - Changes over the time
 - Diversity of user preferences
- Scalability
 - When terabytes of memory is not enough
 - Can result in increased computational costs and reduced performance

Modern matters in RS

- Privacy concerns
 - Recommender systems often rely on user data to provide accurate recommendations
 - Legislation (GDPR)
 - Lack of interpretability
- Dynamic preference
 - User preferences and item characteristics can be highly dynamic
 - Item availability
 - Difficult to provide accurate and up-to-date recommendations

Obrigado :) - Faculty of Information Technology