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Dimensionality Reduction

• Technique to reduce features in a dataset while retaining most
relevant information

• Different inputs (e.g., music, photo, text) have unique characteristics
requiring specific machine learning approaches

• Traditional methods like PCA may fail, especially those with
non-linear relationships

• Autoencoder: Unsupervised neural network used for compressed
data representation

– Effective for dimensionality reduction and handling complex inputs.
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RECAP: Autoencoder

• An autoencoder is a type of feed-forward neural network
• It is designed to reconstruct its input xi ad output xi

• To prevent trivial solutions, the network includes a bottleneck (or
code) layer

– Significantly smaller dimension than the input
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RECAP: Autoencoder

• An autoencoder is also composed by a encoder/decoder
• The encoder and the decoder have normally similar structure
• More formally: let E() be a encoder and D() be a decoder. Our

optmization problem can be described as:

minE,D
∑

i

||xi −D(E(xi))||
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Autoencoder

How can we use autoencoders to predict implicit feedback?
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Autoencoders for CF
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Autoencoders for CF

• Autoencoders are frequently used for collaborative filtering.
• They are very accurate in predicting rankings.
• They can also be used to find clusters with the code.
• Empirical results show that the best architecture is often not very

deep.
• What would be the shallowest autoencoder for Collaborative

Filtering?
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EASE

• EASE is the shallowest auto-encoder as possible
• It aims to solve the following problem

minB||X − XB||2 + λ||B||2 s.t diag(B) = 0

• Why do we need the constraint diag(B) = 0?
• EASE has closed form solution! See here
• Is this a good method?
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https://arxiv.org/pdf/1905.03375.pdf


EASE Results
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Mixing Implicit and Explicit
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Mixing Implicit and Explicit
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Sequential Recommendation

• Sequential recommendation is the task of predicting the next item
that a user will interact

• There is extensive sequential recommendation algorithms
– Markov chains
– Recurrent neural networks (RNNs)
– Long short-term memory (LSTM) networks
– Embedding-base Neural Networks

• The models should learn patterns in a user’s behavior over time
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Sequential Recommendation
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Sequential Recommendation
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Sequential Recommendation
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Triplets problem
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Triplets problem to Recommenders

• The items we show to user can influence their
decision

• Based on neuroscience
• Sometimes the position we show does not matter

significantly
• Context embedding: summarizes the context of the

recommendation
• Provide not just accurate recommendation but also

interpretability
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Care Model
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Care Model
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Care Model
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The Time Dimension in Recommendations

• Do you like the same things, morning and evenings?
• For example, the playlist recommendations on Spotify should

change based on the time of day and day of the week.
– Rarely do people have the same mood on Monday morning as they

do on Friday evening.

• Taste and preferences change over time, so recommendations
should adapt accordingly.

• The envoroment of RS is dynamic
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Pivo Recommendation
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Pivo Recommendation
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Addressing the Cold-Start Problem

• Recommender systems typically require millions of interactions
• However, new systems often have limited interaction data available
• Attribute-based recommendations can provide valuable

information
– Normally less significant than interactions themselves
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Transfer Learning in RS
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Transfer Learning in RS
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Tandem (Marriage) Problem
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Greedy Czech Algorithm
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Rogue Combination
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Rogue Combination
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm
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Gale & Shapley Algorithm

25 Modern Recommender Systems
Advanced Machine Learning



Gale & Shapley Algorithm
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Gale & Shapley Algorithm...
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What about Recommender Systems?
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What about Recommender Systems?
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Modern matters in RS

• Fairness
– Recommender systems have the potential to perpetuate or even

amplify bias
– Unequal treatment of different groups of users

• Filter Bubbles
– Common problem on RSs that rely heavily on personalization
– Recommendations that align with a user’s pre-existing preferences
– Negative consequences for both individual users and society
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Modern matters in RS

• Challenging to evaluate
– Lack of ground truth
– Changes over the time
– Diversity of user preferences

• Scalability
– When terabytes of memory is not enough
– Can result in increased computational costs and reduced

performance
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Modern matters in RS

• Privacy concerns
– Recommender systems often rely on user data to provide accurate

recommendations
– Legislation (GDPR)
– Lack of interpretability

• Dynamic preference
– User preferences and item characteristics can be highly dynamic
– Item availability
– Difficult to provide accurate and up-to-date recommendations
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