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Introduction

• Motivation
• Importance of combining Physics and AI
• SINDy
• Symbolic regression
• Physics-Informed NN (PINN)
• Noether’s Theorem and symmetries
• Neural Fourier Operators
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Motivation

Geocentric - Ptolemaic system
• Circles-in-circles
• Purely data-driven solution
• Complicated, does not generalize
• Surprisingly accurate!

Figure: Ptolemaic geocentric system
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Motivation

Copernicus heliocentric system - similar to geocentric, but after
transformation of data.

• Ellipsis (x
2

a2
+ y2

b2
= 1)

• Purely data-driven solution
• Much less complicated
• Very accurate!
• Does not explain why, does not generalize

Figure: Heliocentric system
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Motivation

Newton’s gravitation law
• F=m.G
• Very strong explanatory power
• Generalizes to any system with mass
• Very accurate!

Figure: Newton’s gravitational law
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Motivation

What can we do with the measured data?
1. Discover model describing the data (Ptolemaic)
2. Discover the transformation of the data for a simple and

well-generalizing model (Copernicus)
3. Discover true governing equations that can be used to explain

and understand the model, gives insight (Newton)
4. Solve the equations! (Numerical Mathematics methods)
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Background in Physics

• Conservation laws - what is conserved, e.g. momentum,
energy?

• Partial Differential Equations (PDEs) - language that describes
the physics

• Boundary and initial conditions - what happens out of our
computational domain, what was the beginning?

Figure: Navier-Stokes equations with boundary and initial conditions
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How physics can enhance AI models:
• Incorporating physical constraints
• Improving generalization
• Reducing data requirements
• Identifying hidden patterns and relationships
• Accelerating simulations
• Enabling data-driven discoveries
• Enhanced interpretability
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Sparse Identification of Nonlinear Dynamics (SINDy)

• SINDy is an algorithm for discovering the governing equations
of a dynamical system from data.

• It uses sparse regression to identify the fewest terms (thus
governing equations) in a function that can accurately
represent the data.

• Formally, given a state measurement matrix X and its
derivative Ẋ, SINDy solves the following equation:

Ẋ = Θ(X)Ξ
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SINDy: Library of Candidate Functions

• Θ(X) is a library of candidate functions (e.g., polynomial
terms, trigonometric functions) of the state variables.

• Ξ is a sparse vector of coefficients, which we aim to find.
• The sparse regression problem then becomes:

min
Ξ

||Ẋ −Θ(X)Ξ||22 + λ||Ξ||1

where λ is a tuning parameter controlling the sparsity.
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SINDy: Algorithm

• The SINDy algorithm works in the following steps:
1. Construct the library of candidate functions Θ(X).
2. Use sparse regression to find Ξ.
3. Identify the significant terms and discard the rest.

https://www.youtube.com/watch?v=oqDQwEvHGfE
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SINDy

Figure: SINDyMerging Physics and AI 12 / 46
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Autoencoder + SINDy

Finding the coordinate system together with the governing
equations?
Champion, 2019

Figure: Autoencoder + SINDy

Uses sequential thresholding to enforce sparsity.
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Symbolic Regression: An Overview

• Symbolic regression is an approach in regression analysis that
searches for a mathematical equation that best fits a given
dataset.

• Unlike traditional regression, which uses a predefined model
(like a linear or polynomial model), symbolic regression
determines both the form and the parameters of the function.

• This method is particularly powerful because it can uncover
underlying patterns and relationships that are not apparent
without a predefined model form.

• Symbolic regression often utilizes genetic programming to
evolve candidate equations over multiple generations.

Key Difference
Traditional regression: y = β0 + β1x1 + · · ·+ βnxn
Symbolic regression: y = f(x1, x2, . . . , xn), where f is discovered
data-driven.
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Symbolic Regression via Genetic Programming

• In symbolic regression, GP is used to evolve populations of
symbolic expressions to optimally fit the data.

• The GP process involves:
1. Initialization: Generate an initial population of random

compositions of functions and terminals.
2. Selection: Select the fittest individuals for reproduction based

on their fitness scores.
3. Crossover: Combine parts of two expressions to produce new

offspring.
4. Mutation: Randomly alter parts of an expression to create

diversity.
5. Evaluation: Compute the fitness of each individual, often

using MSE or a similar metric.
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Symbolic Regression

Figure: pysr
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Challenges in Symbolic Regression

• Symbolic regression is a powerful tool but comes with its own
set of challenges:
▶ Overfitting: Highly expressive models can overfit the data,

capturing noise as if it were part of the underlying relationship.
▶ Computational Expense: Searching through an infinite space

of possible models is resource-intensive.
▶ Bloat: Genetic programming can produce overly complex

expressions that are hard to interpret.
▶ Convergence: Finding a truly optimal symbolic expression is

often challenging due to the ruggedness of the fitness
landscape.

• PySR is a Python package that is designed to speed up
symbolic regression with parallelized operations and by
employing strategies to mitigate overfitting and bloat.

Reference
https://github.com/MilesCranmer/PySR
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Comparing SINDy and Symbolic Regression

Feature SINDy Symbolic Regres-
sion

Advantages Fast and efficient
for sparse systems;
promotes sparsity
in models

Highly flexible; can
discover unexpected
relationships and
complex dynamics

Disadvantages Limited to systems
where sparsity is
expected; less flex-
ible in functional
form

Computationally in-
tensive; can overfit
and produce complex
models

Applications Dynamical sys-
tems, especially
in physics and
engineering

Broad range of appli-
cations, including em-
pirical formula discov-
ery, feature engineer-
ing, and more
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Overview of Physics-Informed Neural Networks (PINNs)

• Physics-Informed Neural Networks (PINNs) integrate known
physical laws into the learning process of neural networks,
enhancing the prediction of systems governed by Partial
Differential Equations (PDEs).

• This integration is achieved by embedding the physical
equations as part of the loss function, enabling the model to
use both data and physics-based constraints to learn.

• PINNs are particularly effective for problems where data is
scarce or expensive to obtain but where physical laws are well
understood. They are used in fluid dynamics, material science,
and more.
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Overview of Physics-Informed Neural Networks (PINNs)

Advantages of PINNs
• They offer improved generalization by leveraging physical laws.
• They can solve forward and inverse problems in complex

domains.
• They reduce the need for large datasets, unlike conventional

deep learning models.
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PINNs: Loss Function Structure

• The loss function in PINNs is composed of two primary
components:
▶ Data fidelity term (Ldata): Encourages the network output

to match the observed data points.
▶ Physics-informed term (Lphysics): Ensures the output

satisfies the governing physical equations, typically differential
equations.

• The composite loss function is:

L = Ldata + αLphysics,

where α is a tunable parameter that balances the two terms.
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PINNs: Loss Function Structure

Formally

If uNN (x; θ) is the neural network approximation for the true
solution u(x), then:

Ldata =
1

N

N∑
i=1

∥uNN (xi; θ)− ui∥2,

Lphysics =
1

M

M∑
j=1

∥F (uNN (xj ; θ), xj)∥2,

where F represents the PDE operator applied to the neural
network’s output.
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PINNs: Data Term

• The data term Ldata measures the discrepancy between the
neural network’s predictions uNN (x; θ) and the observed data
points u(x), often using squared error for consistency and
smooth optimization.

• This term guides the PINN to be accurate on the observed
data, anchoring the network’s predictions in the empirical
reality.

Mathematical Expression

Ldata =
1

N

N∑
i=1

∥uNN (xi; θ)− ui∥2,

where xi are the points where data is available, and ui are the
observed values.
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PINNs: Physics Term

• The physics term Lphysics enforces the neural network outputs
to adhere to the governing physical laws described by
differential equations.

• This is done by minimizing the residual of these equations
when applied to the network’s predictions.

Mathematical Expression

Lphysics =
1

M

M∑
j=1

∥F (uNN (xj ; θ), xj)∥2,

where F is the differential operator (representing the PDE) and xj
are collocation points used to evaluate the physics consistency.
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PINNs: Computation of PDE Residuals

• The key to enforcing physical laws in PINNs is through the
computation of the PDE residuals at selected collocation
points.

• Automatic differentiation is utilized to compute derivatives
accurately and efficiently, which are crucial for evaluating the
PDE residuals.

Procedure
The PDE residual for a general nonlinear PDE,
F (u,∇u,∇2u, . . . , x) = 0, is computed as:

R(x) = F (uNN (x; θ),∇uNN (x; θ),∇2uNN (x; θ), . . . , x),

where ∇uNN and higher derivatives are obtained via automatic
differentiation.
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Training Physics-Informed Neural Networks

Figure: Schematic of a Physics-Informed Neural Network
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Training Physics-Informed Neural Networks

• Training PINNs involves minimizing the composite loss
function L = Ldata + αLphysics using gradient-based
optimization methods.

• This process adjusts the neural network parameters θ
iteratively to improve the model’s performance on both data
fidelity and physics compliance.

Optimization
Commonly used methods include:

• Stochastic Gradient Descent (SGD) and its variants like Adam
and RMSprop.

• L-BFGS, a quasi-Newton method, is often preferred for its
efficiency in handling the complexities of the PINNs’ loss
landscape.
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Challenges in Physics-Informed Neural Networks

• While PINNs offer a powerful framework for integrating data
and physics, they face several challenges:
▶ Optimization Difficulty: The non-convexity of the loss

surface, combined with the dual nature of the loss function,
makes training challenging.

▶ Network Architecture: The choice of neural network
architecture significantly affects the ability of PINNs to learn
complex solutions and obey physical laws.

▶ Computational Cost: PINNs require significant
computational resources, especially for high-dimensional
problems where the curse of dimensionality can exacerbate
training times.

▶ Hyperparameter Tuning: Balancing the data and physics
terms in the loss function (α) is crucial and often requires
careful tuning.
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Physics-Informed Neural Networks (PINNs)

• Physics-Informed Neural Networks (PINNs) integrate known
physical laws into the learning process of neural networks,
enhancing the prediction of systems governed by Partial
Differential Equations (PDEs).

• This approach can significantly improve generalization and
reduce the volume of data required by guiding the network to
respect physical laws and constraints.

• Another method to embed physical knowledge is through the
use of Noether’s theorem, which enforces symmetries and
conservation laws in the learning model.
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Noether’s Theorem and Its Role

• Noether’s theorem reveals a profound connection between
symmetries and conservation laws in physics, stating that each
continuous symmetry corresponds to a conserved quantity.

• For PINNs, this theorem offers a framework to identify and
enforce symmetries within the neural network, ensuring the
model adheres to physical invariances.

• This approach is crucial for modeling systems where
conservation laws derived from symmetries play a significant
role, such as in fluid dynamics and quantum mechanics.

Theorem
If a Lagrangian L(q, q̇, t) has a symmetry under a transformation
q → q + δq, then:

d

dt

(
∂L
∂q̇

δq

)
= 0,

leading to the conservation of the conjugate momentum.
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Identifying Symmetries

• Identifying relevant symmetries is a precursor to enforcing
them in neural network models.

• Symmetries in physical systems can often be identified by
examining the invariance of the action or the Lagrangian under
transformations such as translations, rotations, and time shifts.

• Examples include translational symmetry (leading to
conservation of linear momentum), rotational symmetry
(angular momentum), and temporal symmetry (energy
conservation).

Procedure
To identify symmetries:

• Analyze the action S =
∫
L dt under transformations

x → x+ δx.
• Solve d

dt

(
∂L
∂ẋ δx

)
= 0 to find conserved quantities.
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Enforcing Symmetries in Neural Networks

• Enforcing identified symmetries in neural networks ensures that
the learned models are physically plausible and adhere to
fundamental laws.

• This can be achieved through architectural choices, specialized
activation functions, or by modifying the loss function to
include symmetry-enforcing penalties.

• Such enforcement leads to more robust and accurate predictive
models, especially in physics-driven machine learning.

Methods
• Constraining weights and biases to reflect symmetry properties.
• Using invariant or equivariant layers that respect the symmetry

transformations.
• Adding regularization terms to the loss function to penalize

symmetry violations.
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Constraining Weights and Biases to Enforce Symmetries

• Directly constraining the weights and biases of a neural
network is a practical approach to enforce specific symmetries.

• For translation symmetry, this can mean designing networks
where the weights are shared across spatial locations (similar
to convolutional neural networks).

• For rotational and other symmetries, this could involve more
complex constraints or the use of symmetry-adapted layers.

Example
For a rotationally invariant system, one could constrain the weights
W by:

W = R(θ)WR(θ)−1,

where R(θ) is a rotation matrix, ensuring that the network’s output
is invariant under rotations by θ.

Merging Physics and AI 33 / 46



Motivation Identification PINNs Noether’s Theorem FNO

Modifying Activation Functions to Enforce Symmetries

• One approach to enforce symmetries in neural networks is by
modifying the activation functions to be consistent with the
desired symmetries.

• For rotational symmetry, radial basis function (RBF)
activations are effective because they respond equally to inputs
regardless of the direction, maintaining rotational invariance.

• Similarly, for scale invariance, one might use scale-invariant
activations that respond to the ratio of input magnitudes
rather than their absolute values.

Example

A Radial Basis Function (RBF) used as an activation function can
be defined as:

ϕ(x) = exp
(
−β∥x− c∥2

)
,

where c is the center of the RBF and β controls the spread. This
function is rotationally invariant around the center c.
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Symmetry-Enforcing Loss Functions

• To further enforce symmetries, symmetry-enforcing terms can
be added to the neural network’s loss function.

• These terms penalize the network when its outputs violate the
specified symmetries, effectively guiding the network towards
symmetry-consistent solutions.

• This method is particularly useful for ensuring that learned
models respect physical invariances without directly modifying
network architecture.

Mathematical Formulation
The symmetry-enforcing loss function can be expressed as:

Ltotal = Ldata + αLphysics + λLsymmetry,

where Lsymmetry measures symmetry violations, and λ is a weight
that controls the importance of this term.
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Benefits and Challenges of Enforcing Symmetries in Neural Networks

• Benefits:
▶ Improved Robustness: Networks that respect physical

symmetries are less prone to spurious predictions and
overfitting.

▶ Enhanced Interpretability: Symmetry-consistent networks
often provide solutions that are easier to understand in the
context of underlying physical laws.

▶ Increased Physical Consistency: Enforcing symmetries
ensures that predictions adhere to fundamental physical
principles, enhancing reliability.
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Benefits and Challenges of Enforcing Symmetries in Neural Networks

• Challenges:
▶ Complexity in Identification: Determining the relevant

symmetries for a given problem can be non-trivial, especially in
complex systems.

▶ Computational Overhead: Imposing symmetry constraints
can increase the computational cost of training neural
networks.

▶ Balancing Accuracy and Symmetry: Finding the right
balance between data fidelity and symmetry enforcement
requires careful tuning.
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Unknown Symmetries

Exploring Unknown Symmetries
When symmetries are not explicitly known, they can be discovered
through meta-learning approaches (Allen Zhou, 2021), allowing
networks to adaptively learn and enforce these symmetries.
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Introduction to Fourier Neural Operator (FNO)

• The Fourier Neural Operator (FNO) is a deep learning
architecture designed to learn mappings between function
spaces, which are commonly needed in solving complex partial
differential equations (PDEs).

• FNO leverages the Fourier transform to parameterize integral
kernel operators in a neural network framework, allowing it to
efficiently approximate operators by learning in the frequency
domain.

• This approach enables FNO to handle high-dimensional PDEs
and offers significant computational advantages over
traditional and even other neural operator methods due to its
use of Fast Fourier Transforms (FFT).
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How Does the Fourier Neural Operator Work?

• FNO operates by transforming the inputs into the Fourier
domain, where convolution operations used to model
interactions are diagonalized and hence more computationally
efficient.

• The architecture consists of several layers, each designed to
apply a parameterized Fourier integral operator followed by a
pointwise nonlinearity.

• The key operation in FNO is the multiplication of the Fourier
coefficients of the input functions with learnable
complex-valued kernels, making the operation highly
parallelizable and efficient.
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How Does the Fourier Neural Operator Work?

Mathematical Formulation
Given an input function u, FNO transforms it as:

v(x) = F−1 (R(ξ) · F(u)(ξ)) ,

where F and F−1 are the Fourier and inverse Fourier transforms,
and R represents the learnable kernel in the frequency domain.

Merging Physics and AI 41 / 46



Motivation Identification PINNs Noether’s Theorem FNO

Training and Learning with Fourier Neural Operator

• Training the FNO involves optimizing the parameters of the
Fourier kernels R(ξ) to minimize the difference between the
network output and the ground truth for given training data.

• The loss function is typically a norm-based metric in the
function space, such as the L2 norm (MSE).

• Due to the Fourier domain operations, FNO efficiently
computes gradients using backpropagation, facilitated by the
FFT and its inverse.
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Applications of Fourier Neural Operator

• Fluid Dynamics: FNO has been effectively used to model flow
dynamics in various contexts, including turbulent flows and
weather prediction, by learning the Navier-Stokes equations.

• Materials Science: In the field of material science, FNO can
predict the behavior of complex materials under various
conditions by learning the mappings from microscale features
to macroscale properties.

• Climate Modeling: FNO aids in climate science by providing
efficient approximations of large-scale climate models,
improving the prediction of temperature, pressure, and other
atmospheric variables.

• FNO allows zero-shot super-resolution.
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Challenges and Future Directions for Fourier Neural Operator

• Challenges:
▶ Handling Non-Periodic Boundaries: FNO relies on the

Fourier transform, which naturally suits periodic or infinite
domains. Adapting FNO to non-periodic boundaries remains a
challenge.

▶ Multi-Scale Phenomena: While FNO handles a wide range
of scales, extremely multi-scale problems can require careful
tuning and adaptation.

▶ Generalization Across Different Equations: Learning
operators that generalize well across different types of PDEs is
a complex task that requires further research.
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Challenges and Future Directions for Fourier Neural Operator

• Future Directions:
▶ Improved Architectures: Developing more sophisticated

FNO architectures to handle a broader range of conditions and
PDEs.

▶ Combining with Other Models: Integrating FNO with other
machine learning models, such as reinforcement learning or
Bayesian methods, for enhanced predictive power.

▶ Expanding Applications: Applying FNO to new areas like
biomedical engineering, quantum physics, and more.
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Thank you!

Thank you!
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