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Biological vs. Artificial Neuron
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Attempt of Transfer Learning in Biology

BEHAVIORAL ASSAY PROCEDURES FOR TRANSFER OF LEARNED
BEHAVIOR BY BRAIN EXTRACTS}*

By Frank RosENBLATT AND RobpmMAN G. MILLER

SECTION OF NEUROBIOLOGY AND BEHAVIOR, DIVISION OF BIOLOGICAL SCIENCES,
CORNELL UNIVERSITY

Communicated by F. A. Long, August 31, 1966

In previous papers' * we have reviewed work by our own group and others
suggesting that learned behavior may be transferred from trained to untrained rats
by means of brain extracts. Subsequent experiments in other laboratories, how-
ever, many of which have recently been reviewed by Byrne et al.,* have revealed
an unexpected degree of difficulty in producing the transfer effect reliably. In
this and a succeeding paper we shall summarize a further series of ten experiments
aimed chiefly at the development of a sensitive and reliable behavioral assay tech-
nique. While a certain amount of chemical experimentation has been done in the
course of these studies, the improvement of chemical extraction procedures will
be dealt with as a separate topic in subsequent reports.

In our previous experiments, we have relied on statistical control techniques
to correct for the variability of activity levels of individual rats used as recipients
of brain extract. While the conclusions based on these techniques still appear
to be valid, it is clearly desirable to find a method which is less sensitive to in-
dividual and group biases which might be introduced by such factors as age, health,
diet, toxicity of the extracts, cage conditions, or other variables which might in-
fluence the activity level of the animals. The present series of experiments in-
cludes a number of designs in which activity measures were employed as the crite-
rion of transfer; after surveying our experience with these methods, however, it

https://sci-hub.se/10.1073/pnas.56.5.1423
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ANN vs. BNN

Similarities:
Basic Structure Inspiration: Both types of neurons have a similar conceptual structure, consisting of inputs, a
processing mechanism, and outputs.
- Inputs: In biological neurons, these are dendrites that receive signals. In artificial neurons, inputs are
represented by data fed into the model.
- Processing Center: The soma (cell body) of a biological neuron and the summation function in an
artificial neuron both serve to integrate incoming signals.
- Output: Axons in biological neurons transmit the signal to other neurons, while in artificial neurons, the
output value is passed on to the next layer or as the final output of the network.
Activation: Both biological and artificial neurons use a form of activation function to decide whether to pass
information further. In biological neurons, this is an all-or-none response (action potential), whereas artificial
neurons typically use mathematical functions like sigmoid, ReLU, or tanh to decide the output.

Adaptability: Both types of neurons have mechanisms to adapt based on feedback. Biological neurons adapt
through changes in synaptic strength, while artificial neurons adjust through weight updates during training
(e.g., backpropagation®).



ANN vs. BNN

Differences:

Operation Mechanism:

- Biological Neurons: They process and transmit information through electrochemical signals.
Neurotransmitters and action potentials play crucial roles in the communication between neurons.

- Artificial Neurons: They operate using mathematical functions where the input values are weighted,
summed, and then passed through a non-linear function to produce output.

Complexity:

- Biological Neurons: They are incredibly complex, with capabilities for growth, self-repair, and conducting

various biochemical processes within a single cell.
- Artificial Neurons: They are relatively simplistic, consisting of inputs, weights, biases, and a

straightforward mathematical activation function.



ANN vs. BNN

Differences:
Speed:

- Biological Neurons: They operate slower, with signal transmissions occurring in milliseconds.
- Artificial Neurons: They can process inputs and produce outputs almost instantaneously depending on
the computational power available.

Energy Efficiency:

- Biological Neurons: Highly energy-efficient, the human brain consumes about 20 Watts of power.
- Artificial Neurons: Less energy-efficient, modern computing systems, especially those running large-scale
neural networks, can require substantial amounts of electrical power.



ANN vs. BNN

Differences:

Learning and Plasticity:

- Biological Neurons: They exhibit a high degree of plasticity; synaptic connections can strengthen or
weaken over time, influenced by factors like neurogenesis and other dynamic biological processes.

- Artificial Neurons: While learning mechanisms like weight updates are inspired by synaptic plasticity,
artificial models do not inherently change structure or form new connections without predefined

algorithms.
Scalability:

- Biological Neurons: Naturally scalable, the human brain contains approximately 86 billion neurons

forming trillions of synaptic connections.
- Artificial Neurons: Scalability depends on computational resources and technological advances in
hardware. Increasing the number of artificial neurons and connections can lead to exponentially higher

computational requirements.



ANN vs. BNN

Differences:
Density:

- Biological Neurons: They sparsely connected. Out of approximately 86 billions of neurons each neuron has
1000 to 10000 connections. Rewiring of the connections is evident (doi: 10.1016/j.neubiorev.2018.03.001)
- Artificial Neurons: Mainly ANN layers are densely connected, rewiring is not a common thing.



Why Shall We Adapt Nature Patterns in ANN?

Because it is cool!

The Nature did stuff much longer than us;

ANNs are badly overparameterized;

BNNs are much more energy efficient than ANNSs;
ANNs need much more examples to learn than ANNS;
BNNs are mere adaptable to new tasks;

Unlike ANNs, BNNs can extrapolate (debatable);



Sparse Neural Networks
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Sparse Neural Networks

Sparsifying strategies:
Weight pruning




Sparse Neural Networks

Sparsifying strategies:

Neuron Pruning

Before pruning After pruning



Sparse Neural Networks

Sparsifying strategies:

Pruning by Distillation
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https://arxiv.org/abs/2303.00566

Sparse Neural Networks

Sparsifying strategies:

Feature map

- Structured Pruning

Convolution layer

Parameter
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8787574

Sparse Neural Networks

Sparsifying strategies:

- U regularization
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https://arxiv.org/abs/2201.06776

Sparse Neural Networks

Sparsifying strategies:

- Sparse Regularizers
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https://www.cs.toronto.edu/~rsalakhu/papers/srivastavai4a.pdf

Sparse Neural Networks

Sparsifying strategies:
Dropout(!)
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Sparsifying strategies:
- ReLU())

- Maxout Activation

A
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Sparse Neural Networks
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https://arxiv.org/pdf/1302.4389v4.pdf
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https://arxiv.org/pdf/2005.06870.pdf

Sparse Neural Networks

Sparsifying strategies:

- Dynamic Sparsity
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Sparse Neural Networks

Sparsifying strategies:
Dynamic Sparsity

https://arxiv.org/pdf/2005.06870.pdf

Model Remaining

Architecture Dense Baseline (%) Percentage (%) Sparse Accuracy (%) Difference
Lenet-300-100 98.16 £+ 0.06 2.48 4+ 0.21 97.69+0.14 -0.47
Lenet-5-Caffe 99.18 £+ 0.05 1.64 +0.13 99.1140.07 -0.07
LSTM-a 98.64 + 0.12 1.93 +£0.03 98.70+0.06 +0.06
LSTM-b 98.87 £+ 0.07 0.98 4+ 0.04 98.89+0.11 +0.02

Table 1: The pruning results on MNIST for various architectures



https://arxiv.org/pdf/2005.06870.pdf

Sparse Neural Networks
Sparsifying strategies:
- Dynamic Sparsity
. . Model Remaining .
Architecture Method Dense baseline Sparse Accuracy Difference
Percentage (%)
Sparse Momentum ~ 93.51 4 0.05 150 24:30 i 0'0471 _O'g
VisG-19 §82£034 G393 T005 018
. : : . +0.

DST(Ours) — 9375£021 3464 (53 93.02+£037 073

10 94.87 + 0.04 -0.56

Sparse Momentum  95.43 + 0.02 5 9438 + 0.05 -1.05

) 10 94.93 + 0.04 -0.28

WideResNet-16-8 DSR 95.21 £0.05 5 94.68 & 0.05 0.53

9.86 + 0.22 95.05 £+ 0.08 -0.13

DETOum)  BoJ8006 e a g 9473 0.1 0.45

Table 2: Comparison with other sparse training methods on CIFAR-10.



https://www.nature.com/articles/s41467-018-04316-3

Sparse Neural Networks

Sparsifying strategies:

Sparse Evolutionary Training
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https://arxiv.org/pdf/1708.01547 .pdf

Dynamically Expandable Neural Networks

Lifelong Learning with Dynamically Expandable Networks



https://arxiv.org/abs/1708.01547

https://www.sciencedirect.com/science/article/pii/'S0020025523009969

Dynamically Expandable Neural Networks

Dynamically evolving deep neural networks with continuous online learning
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Rewirable Neural Networks

Exploring Randomly Wired Neural Networks for Image Recognition
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https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e€924a68c45b-Paper.pdf

Convolutional Neural Networks
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https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full

Convolutional Neural Networks
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https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Convolutional Neural Networks

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
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https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

Convolutional Neural Networks

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position
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https://www.nature.com/articles/srep27755

Convolutional Neural Networks
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Input layer

Self-Organizing Maps
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Spiking Neural Networks
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Spiking Neural Networks

Possible computational advantages of SNNs:

- Fast decision making

- Robust to noise

- Robust to adversarial attacks

- More generalisable

- Low power (neuromorphic hardware)

SNN may help to answer some of biological questions:
- What is the role of spikes (efficiency)?

- Local learning rules?
- Interaction with synapse/neuron dynamics?



Cell body

Endoplasmic
reticulum

Mitochondrion \

/

A\

Spiking Neural Networks

Telodendria

% Dendritic branches

Synaptic terminals

+

++



JWA
O
| [+
I+

Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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How to Train SNNs?

Spike-Timing-Dependent Plasticity (STDP) (doi:
10.1016/j.neuron.2012.08.001)

Backpropagation Through Time for Spikes (BPTT-S) (doi:
10.3389/fnins.2023.1047008)

Conversion from ANNs to SNNs (https://arxiv.org/abs/2205.10121)
Reinforcement Learning (RL) (https://arxiv.org/abs/2005.05941)
Unsupervised and Local Learning
(https://arxiv.org/abs/2207.02727)

Surrogate Gradient Learning (https://arxiv.org/pdf/1901.09948.pdf)
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