
Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

2nd Lecture, Optimization
Advanced Machine Learning

Miroslav Čepek, Zdeněk Buk, Rodrigo da Silva Alves, Vojtěch
Rybá̌r, Petr Šimánek

FIT CTU

28. 2. 2024

,

2nd Lecture, Optimization 1 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

What do we need for successful training of neural networks?

• Pretty easy, right?

2nd Lecture, Optimization 2 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

What do we do to get the best accuracy/MSE?

Not so easy anymore:
• Better data, more data, augmentations,
• Choose the best architecture, CNNs, transformers, NEAT, and

infinite possibilities,
• Optimization! Which method and parameters? And why?
• Choosing the right hyper-parameters.

2nd Lecture, Optimization 3 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Goodhart’s law

A general law, overfitting is one instance, how to fight it?

• Early stopping, regularization, great data and loss function,
adding noise, small net or XXL net

2nd Lecture, Optimization 4 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Is training NNs that simple?

The boundary between convergence and divergence is fractal even
for extremely small networks.
https://sohl-dickstein.github.io/2024/02/12/fractal.html

2nd Lecture, Optimization 5 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

What do we want from the optimization algorithm:?

• converge sometimes/most of the time
• converge with most initial weights
• converge fast
• generalize well
• be robust to small perturbations to the system
• small memory requirements
• no need to tune hyperparameters

2nd Lecture, Optimization 6 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Stochastic Gradient Descent

Deep neural net f : Rdx → Rdy .

f(x) = gN ◦ gN−1 ◦ · · · ◦ g1(x).

Where

gj(x) = σ(Wjx + bj), Wj ∈ Rdx×dj−1 , bj ∈ Rdj .

σ is the activation function (component-wise).

Supervised learning with loss L (Empirical risk minimization)

2nd Lecture, Optimization 7 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Stochastic Gradient Descent

Most common algorithm: Initialization: W 0
1 , . . . , W 0

N Iterate for k
k = 0, 1, 2, . . .

W k+1
j = W k

j − ηk∇Wj L(W k
1 , . . . , W k

N ), j = 1, . . . , N.

With some step sizes η0, η1, . . .

2nd Lecture, Optimization 8 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Stochastic Gradient Descent

What do we want from the optimization algorithm:
• converge most of the time
• converge with ”most” initial weights
• converge fast
• generalize well
• be robust to small perturbations to the system
• small memory requirements compared to what?
• no need to tune hyper-parameters

2nd Lecture, Optimization 9 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Generalization of SGD

We don’t know for sure why the SGD-trained NN generalize. The
analysis is difficult for even simple networks.

• Implicit bias
• Implicit network simplification

2nd Lecture, Optimization 10 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Implicit Regularization of SGD

• Implicit gradient norm regularization, (Barrett and Dherin,
2020)

• Noise anisotropy leads to minima not affected by this noise,
not true for Gaussian (Kunin, 2020, HaoChen)

• Prefering flat minima (Li et al.)
• Escape from sharp minima by smoothing (Zhu)

2nd Lecture, Optimization 11 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

• Gradient descent finds a minimum that also minimizes not
only the loss function but also its gradient.

• GD optimizes a slightly different function than we expected.
• SGD minimizes also the ”variance” of mini-batch gradients.

Smith, 2021, On the Origin of Implicit Regularization in Stochastic
Gradient Descent, link.

2nd Lecture, Optimization 12 / 42

https://www.inference.vc/notes-on-the-origin-of-implicit-regularization-in-stochastic-gradient-descent/


Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Implicit Regularization of SGD

Why?

2nd Lecture, Optimization 13 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Implicit Simplification

In larger networks, SGD finds sub-networks that are much simpler,
sparser, or low-rank.

• SGD tries to find low-rank solution
• Large learning rates in the beginning improve generalization!
• If effectively finds the best subnetwork for the task.

Stochastic Collapse, Chen, 2023
2nd Lecture, Optimization 14 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Generalization of SGD

CIFAR-10, 50k samples, trained with SGD

Architecture n of parameters Training loss Test accuracy
MLP 1.2M 0 51%
Alexnet 1.4M 0 77%
Inception 1.65M 0 86%
Resnet 9M 0 88%

• Over-parameterized networks work better! - counter-intuitive
• No overfitting?
• This is not the case with many algorithms!
• Not understood well yet.

Zhang, 2017, Understanding Deep Learning Requires Rethinking
Generalization.

2nd Lecture, Optimization 15 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Double Descent

Conventional thinking:
• Larger models are better.
• More data is better.
• Early stopping is good.

Model-wise/epoch-wise/sample-wise double descent.

Nakkiran, 2019, Deep Double Descent: Where Bigger Models and
More Data Hurt.

2nd Lecture, Optimization 16 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Double Descent Overview

• Classic U-shaped bias-variance tradeoff is extended by double
descent.

• Occurs when model complexity surpasses a critical point.

Figure: Double Descent Curve

2nd Lecture, Optimization 17 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Key Points of Double Descent

1. Pre-critical regime: Performance worsens as complexity
increases.

2. Critical point: Overfitting peaks, then loss starts to decrease.
3. Post-critical regime: Adding more parameters improves

performance, despite overparameterization.

2nd Lecture, Optimization 18 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Practical Implications

• Overparameterization: Large models can still generalize
well, challenging traditional bias-variance tradeoff views.

• Regularization: Importance of techniques like dropout or
weight decay to navigate the peak at interpolation threshold.

• Data Augmentation: More data can shift the interpolation
threshold, helping mitigate the peak error.

• Model Selection: Careful choice between model complexity
and training data size to optimize generalization.

2nd Lecture, Optimization 19 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Some ”improvements” to SGD

• Momentum
• Adaptive Gradient

2nd Lecture, Optimization 20 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Momentum

1. Initialize the parameters Wj and set the initial velocity
V 0

j = 0 for each parameter j = 1, . . . , N .
2. For each iteration k = 0, 1, 2, . . .:

2.1 Compute the gradient of the loss function with respect to each
parameter Wj :

∇Wj
L(W k

1 , . . . , W k
N ), j = 1, . . . , N.

2.2 Update the velocity for each parameter Wj using the
momentum coefficient µ and the current gradient:

V k+1
j = µV k

j + ηk∇Wj
L(W k

1 , . . . , W k
N ), j = 1, . . . , N.

2.3 Update the parameter Wj by subtracting the updated velocity:

W k+1
j = W k

j − V k+1
j , j = 1, . . . , N.

Here, ηk is the learning rate at iteration k, µ is the momentum
term that helps to accelerate SGD in the relevant direction and
dampens oscillations, and N is the number of parameters.

2nd Lecture, Optimization 21 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Adaptive gradient - AdaGrad

1. Initialize the parameters Wj and a small constant ϵ. Initialize
the gradient accumulation term G0

j = 0 for each parameter
j = 1, . . . , N .

2. For each iteration k = 0, 1, 2, . . .:
2.1 Compute the gradients:

∇Wj L(W k
1 , . . . , W k

N ), j = 1, . . . , N.

2.2 Accumulate the squared gradients for each parameter Wj :

Gk+1
j = Gk

j + (∇Wj
L(W k

1 , . . . , W k
N ))2, j = 1, . . . , N.

2.3 Update each parameter Wj using the accumulated gradient,
adjusting the learning rate for each parameter inversely based
on the square root of Gk+1

j :

W k+1
j = W k

j − η√
Gk+1

j + ϵ
∇Wj

L(W k
1 , . . . , W k

N ), j = 1, . . . , N.

2nd Lecture, Optimization 22 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Momentum and Adaptive gradient

AdaGrad’s has the ability to perform smaller updates (i.e., lower
learning rates) for parameters associated with frequently occurring
features, and larger updates (i.e., higher learning rates).
Momentum speeds up convergence.

• Often added to SGD.
• The goal is ”not” to smooth convergence!
• SGD + Momentum oscillates too.
• Momentum allows large batches.
• Adaptive gradient scales the gradients.
• Adam = momentum + adaptive gradient with the second

moment (scales the gradient by gradient variance).

2nd Lecture, Optimization 23 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Adam vs AdamW

• Adam often generalizes less than SGD. Why?
• Using Adam can hinder L2 regularization.
• The reason: Even the regularization term is ”normalized”.
• Solution: AdamW.

2nd Lecture, Optimization 24 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Standard goto algorithms

• AdamW/Adam/SGD + Nesterov Momentum for machine
vision and transformers

• AdamW for NLP
• AdaGrad for recommenders

2nd Lecture, Optimization 25 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

2nd Order methods

• Minimization of 2nd order local approximation.
• Interesting also to inspect your model.
• BackPACK tool for computing Hessians and interesting other

quantities.

Dangel, 2020, BackPACK: Packing more into Backprop

2nd Lecture, Optimization 26 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

2nd order methods

What do we want from the optimization algorithm:
• converge most of the time
• converge with most initial weights
• converge fast
• generalize well - we don’t know!
• be robust to small perturbations to the system - we don’t

know!
• small memory requirements
• no need to tune hyperparameters

2nd Lecture, Optimization 27 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Introduction to AdaHessian

• AdaHessian is a second-order optimization algorithm that
adapts the learning rate based on the curvature of the loss
landscape, utilizing the Hessian matrix’s diagonal elements.

• Unlike first-order methods (e.g., Adam, SGD) that rely solely
on gradients, AdaHessian incorporates second-order
information, leading to potentially better convergence
properties and efficiency in training deep neural networks.

• Key Innovation: Efficient computation of the Hessian’s
diagonal to adjust the learning rates, making it feasible for
large-scale deep learning tasks.

2nd Lecture, Optimization 28 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Key Features of AdaHessian

• Adaptive Learning Rates: Uses the second-order
information from the Hessian matrix’s diagonal to adapt
learning rates for each parameter dynamically.

• Efficiency: Proposes an efficient way to approximate the
Hessian’s diagonal, making the computation scalable to large
models and datasets.

• Improved Convergence: By leveraging the curvature
information, AdaHessian can achieve faster and potentially
more stable convergence, especially in complex optimization
landscapes.

• Robustness: Demonstrates improved generalization and
robustness across a variety of tasks and architectures
compared to first-order optimizers.

2nd Lecture, Optimization 29 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Comparing AdaHessian with Other Optimizers

• Second vs. First Order: AdaHessian incorporates
second-order information, providing a deeper insight into the
loss landscape compared to first-order methods like Adam and
SGD.

• Adaptive Learning Rate Adjustment: Unlike Adam, which
adjusts learning rates based on first-order moments,
AdaHessian uses the curvature of the loss function for more
informed adjustments.

• Performance and Efficiency: While more computationally
intensive than first-order methods, AdaHessian’s efficient
Hessian approximation techniques make it competitive in
terms of computational overhead and performance.

• Use Cases: Particularly beneficial in settings where the
curvature of the loss landscape plays a critical role in
optimization dynamics, such as in ill-conditioned problems.

2nd Lecture, Optimization 30 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Credit Assignment without Backpropagation

• Can we train without a backdrop?
• Backprop is very expensive and hard to parallelize
• Backprop is not biologically plausible - there is no such

feedback in the brain
• Biologically-motivated:

▶ asynchronous updating of weights at different layers of a
network

▶ reduced memory costs from having to store intermediate layer
activation values

▶ reduced synaptic wiring in the feedback path
The resulting computational efficiencies can be particularly great
on neuromorphic hardware, where forward and backward network
weights are represented by physically separate wiring on a circuit.

2nd Lecture, Optimization 31 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Forward Gradient

• We can estimate the gradient in forward mode.
• The forward gradient is an unbiased estimation of the

standard gradient.
• Can be much faster than GD.

Baydin, 2022, Gradients without Backpropagation

2nd Lecture, Optimization 32 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Direct Feedback Alignment

Alignment Provides Learning in Deep Neural Networks the gradient
of the last layer is computed and is distributed to all previous
layers.
Can be used to solve real-life problems efficiently!

Nokland, 2016, Direct Feedback Alignment Provides Learning in
Deep Neural Networks

2nd Lecture, Optimization 33 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Learning to Optimize

• Use meta-learning to find some ”optimization algorithm”.
• Two loops - inner loop optimizes a function, outer loop

optimizes an optimizer (LSTM)

2nd Lecture, Optimization 34 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

VeLO

First actually useful learned optimizer!
• Trained to solve many different optimization problems
• Uses hypernetworks
• Each hypernetwork ingests multiple features:

▶ Exponential moving averages of the gradient and squared
gradient

▶ Mean and variance of weights and gradients
▶ Training stage (info about training process).

Metz, 2022, VeLO: Training Versatile Learned Optimizers by
Scaling Up.

2nd Lecture, Optimization 35 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

VeLO

2nd Lecture, Optimization 36 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

VeLO

• Works very well for ”smaller” networks (less than 500M)
• Allows much larger batches (10x)
• VeLO learns implicit learning rate scheduling
• Adapts to training horizon
• 2x memory overhead
• Fails after 200k iterations
• Sometimes fails out of distribution

2nd Lecture, Optimization 37 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

LION

• Symbolic program assembly takes 45 common operations from
numpy

• The program can access usual information - weight, gradient,
learning step + some open variables

• Uses an evolutionary algorithm to create new optimization
algos

• Uses many tricks - removal by wrong syntax, warm-start
(AdamW)

• Funneling process to allow only the most promising algos to
go from proxy tasks to large real problems

• 512 TPUs for days!

2nd Lecture, Optimization 38 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

LION

Lion algorithm:
• Uniform updates to all weights! Adds a lot of noise →

generalization
• Faster/less memory than AdamW, Adam, and adafactor. And

often better.

Chen, 2023, Symbolic Discovery of Optimization Algorithms

2nd Lecture, Optimization 39 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Basic Methods

• Grid Search
• Random Search (preferred over grid)
• Evolution Search (CMA-ES)

2nd Lecture, Optimization 40 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

Bayesian Optimization BO

Principle:
• Global optimization of black-box functions that are expensive

to evaluate
• Relies on building a probabilistic model (surrogate) of the

objective function, which is then used to make predictions
about where in the parameter space good hyper-parameter
values are likely to be found.

Surrogate Model: Gaussian Process (GP)
Acquisition Function: Balances exploration and exploitation -
Expected Improvement (EI), Probability of Improvement (PI), and
Upper Confidence Bound (UCB).

2nd Lecture, Optimization 41 / 42



Optimization 1st Order 2nd Order No Backprop L2O Hyper-parameter Tuning

HyperBand

• Principle: Hyperband is an optimization algorithm that
accelerates random search through adaptive resource
allocation and early-stopping.

• Resource Allocation: Hyperband evaluates a large number
of configurations with a small amount of resources and
incrementally allocates more resources to promising
configurations in successive rounds.

• Early Stopping: This feature allows Hyperband to terminate
poor-performing configurations early.

In practice:
For small problems use Random (use Optuna). For large, use
BOHB (hpbandster).

2nd Lecture, Optimization 42 / 42


	Optimization
	1st Order
	2nd Order
	No Backprop
	L2O
	Hyper-parameter Tuning

