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Causal Inference

e Inferring the effects of any treatment/policy/intervention/etc.

e Examples
o Effect of treatment on a disease
o Effect of climate change policy on emissions
o Effect of social media on mental health
o Many more (effect of X onY)



Causality

e Concept that could be approached
from various standpoints
e Used in field like

o Econometrics

Social science

Epidemiology

Statistics

Machine Learning

(Multi-agent) Reinforcement Learning

O O O O O
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Do you want a
quick primer or
a full book?
l—pnme ull book
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Are you already familiar with Sciences: An Introduction
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= Causal Inference:
Design of Observational Methods and Principles
es to both no to elthel Studies (Rosenbaum, 2010) epidemiology for Soclal Research
l—y r—l (Morgan & Winship,
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Inference (Pearl, 2009) and Leamning Algorithms |
(Peters et al., 2017) Mostly Harmless Econometrics

L

machine learning

Then, you must choose
based on the authors'

causal graphs

perspective.

(Angrist & Pischke, 2009)
OR

—» Causal Inference: The Mixtape

economelrics (Cunningham, 2018)
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Simpson’'s Paradox

e Hypothetical disease with two possible treatments
e Table showing mortality rate

Condition
Mild Severe Total
15% 30% 16%
(210/1400) | (30/100) | (240/1500)
10% 20% 19%
(5/50) (100/500) | (105/550)

e Apparent paradox:
o If condition is not know, treatment A is better
o If condition is known, treatment B is better
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Which treatment is better depends on the causal structure of the data
Figure 1.1: Causal structure of scenario 1, Figure 1.2: Causal structure of scenario 2,
where condition C is a common cause of where treatment T is a cause of condition
treatment T and mortality Y. Given this C. Given this causal structure, treatment

causal structure, treatment B is preferable. A is preferable.



Correlation is not causation
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e Correlation is meant statistical dependence

e Technically, it is measure of linear dependence,
better term should be association

e Total association is no all or none, could be

combination of
o  Spurious (correlation) X

o  Confounding (hidden common cause) ﬁ
o Causal association

Figure 1.4: Causal structure, where drink-
ing the night before is a common cause of
sleeping with shoes on and of waking up
with a headaches.
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Counterfactuals

e Alternatives scenarios that did not actually happened but could happen under different
circumstances

e Humans as Counterfactual Reasoning Machines
o Constantly evaluating alternative scenarios
o Imagining outcomes of different actions

e Counterfactuals in Everyday Life
o Informed decision-making based on "what-if" analysis
o Learning from past experiences and mistakes

e Regret Minimization in Human Behavior

o Comparing outcomes of taken and untaken actions
o  Guiding future decisions to minimize regret
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Potential Outcomes Framework

e person has a headache and decides
o  Take a pill (treatment)
o Not take a pill (control)

e Potential outcome: will headache persit
o Y(1) severity of headache hour after taking the pill
o Y(0) severity of headache hour after (not taking a pill)

e Individual treatment effect
o tau=Y(1)-Y(0)
7 = Yi(1) — Y;(0)

e We can observe only one of outcomes Y1) and Y/(0)

e How to compute the treatment effect?
o  Fundamental problem of causal inference
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Average treatment effect

e To estimate the average causal effect of the pill, we can use a sample of individuals
who took the pill and another sample of individuals who did not.
e Average treatment effect

=7, Z} - ZY(O)

4

e How to average question marks?

i T Y Y(1) Y(O) Y(1)-Y(0)
1 0 0 ? 0 ?
2 1: 1 1 ? ?
3 1. 0 0 ? ?
4 0 0 ? 0 ?
5 0 1 ? 1 ?
6 1 1 1 ? ?
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Ignorability

e What makes it valid to calculate the ATE by taking the average of the Y(0) column,
ignoring the question marks, and subtracting that from the average of the Y(1) column,
ignoring the question marks?

e Ignoring the question is called ignorability

o ignoring how people ended up selecting the treatment they selected
o and just assuming they were randomly assigned their treatment;

(x)
\_\
7 ~\' “/ F
'\_T J g \Y>

Figure 2.2: Causal structure when the
treatment assignment mechanism is ig-
norable. Notably, this means there’s no
arrow from X to T, which means there is
no confounding,.
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Controlling for Confounding

e Confounding Factor
o Variables that affect both the treatment and the outcome
o Can lead to biased estimates of causal effects

e Importance of Controlling for Confounding
o Obtain unbiased and accurate estimates of causal effects
o Improve decision-making based on observational data

e Methods to Control for Confounding
o Matching
o  Stratification
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Control for confounding

e Matching
o Attempt to create comparable groups of individuals who took the pill and those who did not
o  Match based on confounding variables (e.g., age, gender, baseline health)
o nearest neighbor matching
o directly pairs treated and control individuals based on their similarity in confounding variables,

e Stratification
o divide the population into strata based on the confounding variables

m Intial headache severity
estimate the causal effect within each stratum
combine these estimates to calculate the overall average causal effect
weighting the estimates by the proportion of individuals in each stratum.
divides the population into groups based on the values of confounding variables and estimates the
causal effect within each group.

o O O O
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Independent variables are not correlated

e If A and B are causally independent, they will
be unassociated in data.
e cor(AB)=0.012 =
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Causal Influence creates correlation

e |If AisacauseofB,orif Bisacause of A, then A and
B will be correlated in data.

—_—
!.‘ or then A ~B.

e cor(AB)=0.71 7
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Causal Influence creates correlation

e This also applies if A causes M, and M in turn
causes B (mediation).

o 00 o
©
< el

n=10000 # Number of data points ~ -
a <- rnorm(n, 0, 1) # A is a random variable
m<-a+ rnorm(n, 0, 1) # M is a function of A
b <-m+ rnorm(n, 0, 1) # B is a function of M o
plot(a, b)

e cor(AB)=0.58 | ' ' ' '
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e If Aand B share a common ancestor C (causal fork), A and
B will be correlated in data.

n=10000 # Number of data points N

c <- rnorm(n, 0, 1) # C is a random variable

a<-c+ rnorm(n, 0, 1) # A is a function of C ¥ -

b <-c¢c+ rnorm(n, 0, 1) # B is a function of C | | | : |
plot(a, b)

e corr(AB)=0.49 2



FACULTY

/%%é OF IN FORMATIONiDATA

TECHNOLOGY SCIENCE

Random manipulation protects a variable from cauSarififfugrice” "

e When we are able to randomly allocate the values of A - such as in a randomized
controlled experiment where A is the manipulation variable - no other variable can

e -
=0 ©
O ©)
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Controlling for a confounder blocks correlation arising from that
confounder

If A and B share a common ancestor C (causal

fork), the confounding correlation between A and B (C\i e

that is created by C (rule 3) is removed if C is \_
controlled for.

y$residuals

# Rule 5 Y

n=10000 # Number of data points

c <- rnorm(n, 0, 1) # C is a random variable -

a<-c+ rnorm(n, 0, 1) # A is a function of C P T | T I
b <- c+ rnorm(n, 0, 1) # B is a function of C -4 2 0 2 4
X <- lm(b~c) .

y <- lm(a~c) x$residuals
plot(x$residuals, ys$residuals)



Controlling for a mediator blocks correlation

e IfAis acause of M and M is a cause of B, correlation
between A and B that is created by the mediated
causal effect (rule 2) will be removed if M is

controlled for.
e Given we already know M, knowing A no longer gives
extra information about B

# Rule 6

n=10000 # Number of data points

a <- rnorm(n, 0, 1) # A is a random variable
m<-a+ rnorm(n, 0, 1) # M is a function of A
b <-m+ rnorm(n, 0, 1) # B is a function of M
X <- lm(a~m)

y <- lm(b~m)

plot(x$residuals, y$residuals)

y$residuals
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x$residuals
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Controlling for a collider leads to correlation
If A and B share a causal descendant (collider) D, and D is
controlled for, A and B will become correlated in the data. This is Va
often referred to as “conditioning on a collider”, or collider bias. ( D

# Rule 7

n=10000 # Number of data points

a <- rnorm(n, 0, 1) # A is a random variable
b <- rnorm(n, 0, 1) # B is a random variable T

yS$residuals
0
L

d<-a+b+ rmorm(n, 0, 1) # D is a function of A and B s
X <- lm(a~d)
b i 1m(b~d) p?_l I T T | T T

plot(x$residuals, ys$residuals) 5 2 4 @ 4 & 4

x$residuals
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e Python package by Microsoft
Research {04 12]05]09] 09

||e-e-6|

e Causal discovery |

' (1) Observe data correspond- ! (2) Learn the causal relation- (3) Learn the functional rela-
ring to D variables. ships among all variables. tionships among variables.

I
I
'
!

E[X;5|do( X, = x)]

,,,,,,,,,,,,,,,,,,, z do(X, = 4.94)
(4) Select intervention and (5) Estimate causal quantities (6) Make oplimal decisions
target variables. such as ATE and CATE. and take actions.

Figure 1: An overview of the deep end-to-end causal inference pipeline compared to traditional
causal discovery and . The dashed line boxes show the inputs and the solid line
boxes show the outputs. In causal discovery, a user provides observational data (1) as input. The
output is the causal relationship (2) which are DAGs or partial DAGs. In causal inference, the user
needs to provide both the data (1) and the causal graph (2) as input and provide a causal question by
specifying treatment and effect (4), a model is learned and outputs the causal quantities (5) which
helps decision making (6). In this work, we aim to answer causal questions end-to-end. DECI allows
the user to provide the observational data only and specify any causal questions and output both the
discovered causal relationship (2) and the causal quantities (5) that helps decision making (6).
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Causal Discovery in DECI

e Models relationships among variables x.,...,.x, and a causal graph G using joint
probability po(@s, .. @x, G) = p(G) [T, po(lG)

Where p(G) represents a prior over graphs and p,(x_|G) is the likelihood of observing x_
given the graph G and parameters 6.

e The graph prior p(G) encourages the graph structure to be a DAG using a penalty
function on the adjacency matrix A of G

Prior over Graphs. The graph prior p((G) should characterize the graph as a DAG. We implement
this by leveraging the continuous DAG penalty from Zheng et al. [73],

h(G) = tr (e®%) — D, (5)
which is non-negative and zero only if (G is a DAG. We then implement the prior as
p(G) x exp (—Aq] G||;. — ph(G)* — & h(G)) , (6)




Causal Discovery in DECI
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Given a graph G, the likelihood for a single observation x is factorized autoregresively
assuming an additive noise model

pg(.'17n|G) — H,[il p~(fl3¢ — fi(l'pa(i.G)s 6))

xpa(i,G) are parent variables of x.in G
f.is a function specifying the causal mechanism from xpa(i,G) to x. parametrized by 6
p,; is the distribution of additive noise for variable x.
additive noise model
T; = fi(Tpatic), 0) + 2i
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Causal Discovery in DECI

e True posterior p,(Gx,,....x ) is intractable

e Deci approximates it with variational distribution g, (G) and maximizes the Evidence
Lower Bound (ELBO) to learn 6 and ¢

ELBO(8, 6) = Eq ) |logp(G) + X, log po(4|G)| + H(gs)

° H(q¢) is the entropy of d, (G), encouraging exploration of different graph structures
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Estimating ATE in DECI

e After DECI has been trained, it can simulate interventions on the treatment variables

e DECI estimates these expectations by generating samples from the interventional
distributions and calculating the mean outcome for both treated and untreated
scenarios:

* Generate samples z§- from p(zy |do(Xt = a)) and calculate E[zy |do( X =
a)| as the mean of z{..

* Generate samples z%. from p(zy |do(X7 = b)) and calculate E[zy |do( X =
b)] as the mean of z5..

e Then
ATE = E[zy|do(Xt = a)] — E[zy|do(XT = b)]
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Towards Causal Representation Learning

e Bengioetal, 2021

e Causal inference can help address important challenges in machine learning such as
generalization, transfer learning, and data efficiency.

e Causal representation learning is a crucial problem for artificial intelligence and could unlock
new capabilities in learning from data.

e Incorporating causality into machine learning models requires careful consideration of
assumptions, limitations, and trade-offs.

e Combining causal inference techniques with machine learning models to improve
generalization and transfer learning.

e Developing algorithms for causal representation learning that can handle complex data types
such as images, audio, and video.

e Incorporating causality into reinforcement learning algorithms to improve the performance of
agents in complex environments.
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Jacques et al.: Social Influence as Intrinsic Motivation for Multi-Agent Deep
Reinforcement Learning

mechanism for achieving coordination and communication

rewarding agents for having causal influence over other agents’ actions

causal influence is assessed using counterfactual reasoning

At each timestep, an agent simulates alternate actions that it could have taken, and
computes their effect on the behavior of other agents.

Actions that lead to bigger changes in other agents’ behavior are considered influential
and are rewarded

influence leads to enhanced coordination and communication in challenging social
dilemma environments, dramatically increasing the learning curves of the deep RL
agent
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Sequential Social Dilemmas

e Can be thought of as analogous to spatially and temporally extended Prisoner's
Dilemma-like games.

e Thereward structure poses a dilemma because individual short-term optimal strategies
lead to poor long-term outcomes for the group
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A public goods dilemma in which

agents get a reward for consuming apples, but must
use a cleaning beam to clean a river in order for apples
to grow.

While an agent is cleaning the river, other agents can
exploit it by consuming the apples that appear.
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A tragedy-of-the-commons dilemma
apples regrow at a rate that depends on
the amount of nearby apples.

If individual agents employ an
exploitative strategy by greedily
consuming too many apples, the
collective reward of all agents is
reduced.
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Multi-agent Reinforecement Learning

Definition 2.2 (Dec-POMDP) Decentralised Partially Observable Multi-Agent Markov
Decision process is It is a T-tuple {S,{A:}, T, R,{S%},0,~} , where S are states, {A;} is
the joint action set, T = P(s'|s,a) is the set of conditional transition probabilities between
states, R is the reward function, {C;} is the joint observation set, O(s',a,0) = P(o|s,a)
gives the conditional observation distribution, and v € [0, 1] is the discount factor.
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Intrinsic motivation

e To stimulate agents to learn cooperative behavior introduce

e category of reward functions that allow learning of desired behaviors in a wide range of
environments and tasks, sometimes even in the absence of environmental rewards.

e Social influence intrinsic motivation gives an agent k additional reward when it has
causal influence on the actions of other agents.

e It adds a causal influence reward Sc_k*tS to the agent's immediate environmental
(extrinsic) reward e_t"k at time t:

ok k| ak
r, = ae, + pc,.
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Evaluation of social influence

To evaluate the causal influence of agent k on agent j at time ¢, agent 7 should be able
to condition its action a] on af, agent’s k action at time ¢. Therefore, a; can quantify the
probability of the next step action as

(at‘ak* St)

Then we can we can replace aF by aF, the counterfactual action, and compute a new next
step probability

(at |k, 57)-
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Evaluation of social influence

By averaging the policy distribution from a sampling of several counterfactual actions,
we would obtain the marginal policy of agent j:

at|5t ZP (lt|at~5t)l)( ay Sg)

i.e. agent’s j policy if it did not take into account actions of agent k.
The difference between agent’s 7 marginal policy and the conditional policy of agent 5
after observing agent’s k action is a degree of how agent £ is causually influencing agent j.
Therefore, the overall causal influence of agent £ on all other agents is given by:

1\'7
= 5 |Dus |p(ad 1t s) I3 p(al | @, sf) p (@ | 1)
§=0,j#k ak
N

= > [Dxelp(allaf.s) lIp(a ] 5)]] (4.1)

j=0,5#k
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Effect of social influence

250 i i | | | | 1 1 ! I
—— A3C baseline 12004
= 200 4 visible actions baseline - ©
g Influence §:1000/-
; 150 - = ;
v ¥ 800 A
2 100 - 2
[¥] v
1] Y
= = 600 -
8 50 - 3
0 B 400 -
I I I I 1 I 1 1 1 1
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
Agent steps 1e8 Agent steps 16
(a) Cleanup (b) Harvest

Figure 1: Total collective reward obtained in Experiment 1.
Agents trained with influence (red) significantly outperform
the baseline and ablated agents. In Harvest, the influence
reward is essential to achieve any meaningful learning.



Social influence

Figure 2: A moment
of high influence when
the purple influencer sig-
nals the presence of
an apple (green tiles)
outside the yellow in-
fluencee’s field-of-view
(vellow outlined box).

plementary Material).

Figure 2 shows a moment of
high influence between the in-
fluencer and the yellow influ-
encee. The influencer has cho-
sen to move towards an ap-
ple that is outside of the ego-
centric field-of-view of the yel-
low agent. Because the influ-
encer only moves when apples
are available, this signals to the
yellow agent that an apple must
be present above it which it
cannot see. This changes the
yellow agent’s distribution over
its planned action, p(aj |a¥.s}),
and allows the purple agent to
gain influence. A similar mo-
ment occurs when the influ-
encer signals to an agent that has
been cleaning the river that no
apples have appeared by staying
still (see Figure 14 in the Sup-
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Agents continue to move and explore
randomly while waiting for apples to spawn,
The influencer only traverses the map when it
is pursuing an apple, then stops. The rest of
the time it stays still.

The influencer agent learned to use its own
actions as a binary code which signals the
presence or absence of apples in the
environment
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Model of Other Agents

e Computing the causal influence reward requires knowing the probability of another
agent’s action given a counterfactual,
e Requires a centralized training approach in which agents could access other agents’

policy network

e To relax this unrealistic assumption we equip each agent with its own internal Model of
Other Agents (MOA).

e The MOA is trained to predict all other agents’ next actions given their previous actions,
and the agent’s egocentric view of the state: p(at+1|at,sk t ).



FACULTY

?‘-?%}‘ OF INFORMATION
Ve
s Bieen

DATA
SCIENCE
LABORATORY

Model of other agents

V.
=
@B —
4 Te
o
- 5
O
ke O—=O— E " 1’((1! l|ar-3k)
S L 'S wn ' f
bt =
a;

Figure 6: The Model of Other Agents (MOA) architecture
learns both an RL policy 7., and a supervised model that
predicts the actions of other agents, a;, ;. The supervised
model is used for internally computing the influence reward.
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Causal Diagram

" @-@C-@—@
D E @ | @
() @) S ®
@)ra) @

(a) Basic (b) MOA

Figure 8: Causal diagrams of agent k’s effect on j’s action.
Shaded nodes are conditioned on, and we intervene on a¥
(blue node) by replacing it with counterfactuals. Nodes with
a green background must be modeled using the MOA module.
Note that there is no backdoor path between af and s, in the
MOA case, since it would require traversing a collider that is

not in the conditioning set.
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Causal Explanations for Sequential Decision-Making
In Multi-Agent Systems

-+ Human-Agent Interface Environment

Counterfactual Causal Selection

( Query )——Filterﬁ( Observations )

[——Rollback———~
(Probabilistic Model Simulate{Cnt.factuai Worids)

Figure 1: The autonomous vehicle (¢) is heading to the blue
goal. It decided to change lanes after the other vehicle (1)

cut in front of it and began to slow down. A passenger asks: g Calculate———
Why did you change lanes? “To decrease the time to reach Cnt.éé;fCtUtals('Zausal ) Rank ( Features )
the goal” [teleological] Why was changing lanes faster? “Be- e :

cause the other vehicle is slower than us and is decelerating.”
[mechanistic] - Actual explanations by CEMA with explana-
tion types in brackets. Blue/orange lines illustrate forward
simulations using the probabilistic forward model.

F might include a discretized
summary of actions, such as
average acceleration or distance to
the leading vehicle
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Causal Explanations for Sequential Decision-Making
In Multi-Agent Systems

Table 1: Binary features 7 to describe the fundamental mo-
tions and high-level actions of vehicles (including ego). For

Reward components R are

continuous values, the mean value is calculated along the { IOngitUdinaI and lateral
length of the trajectory and thresholded with small value 4. acceleration
_ _ e presence of collisions
Feature Calculation Explanation . . .
: e time to reach a destination
Acceleration a' >4, Accelerate ]
a' < -b, Decelerate ® gOal Completlon
a' € [-d4.04] Maintain velocity
Relative o' —0vf > 5, Faster than ego
speed o' —vf < =5, Slower than ego
o' —v* € [-8,,0,] Same speed as ego
Stop o' € [0,85] Does it stop
Maneuver One-hot encode Longest maneuver

Macro Action  One-hot encode Longest macro action
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Causal Reasoning and Large Language Models

Real-world
Causal Task

Break causal task into (sub-)questions
Recurse, iterate, verify

Refutation ~ LT X h Identify
Validation pieces
. . Critique
: Covariance-based Causal Logic-based e
stimation C . C I R
ausality . ausality and
Que5t|on implications
Causal Logical Logical
Identification assumptions Premises proof and

(Graph) {SCM) a inference

Figure 1: When tackling real-world causal tasks, people strategically alternate between logical- and covariance-based
causal reasoning as they formulate (sub-)questions, iterate, and verify their premises and implications. Now, LLMs may
have the capability to automate or assist with every step of this process and seamlessly transition bteween covariance-
and logic-based causality.
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LLMs enable knowledge-based causal discovery, and achieve competitive performance
in determining pairwise causal relationships between variables, across datasets from
multiple domains, including medicine and climate science.

Extending knowledge-based causal discovery to full graph discovery poses additional
chalenges, such as distinguishing between direct and indirect causes.

LLMs capture and apply common sense and domain knowledge enables substantial
improvements in counterfactual reasoning and actual causality tasks, making them
valuable in real-world applications
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Efficient Causal Graph Discovery Using Large Langt e madels =

Repeat until all nodes visited

U |
@ ,(Ec/j;
2/
,/ y P .\-, -
If/D : /I ,".‘\D "‘| \,
( : ) _ @7 :
(€) @
T G
Queue: A, B Queue: B Queue:B,C,E

Insertion stage:

Add all predicted variables to
the queue, Add all predicted
edges to the graph unless they
create a cycle.

Initialization stage:

Ask which variables are not
caused by any other variables.
Add them to the BFS queue.

Expansion stage:

Remove the first variable from
the queue and ask which
variables it causes.

Algorithm 1 BFS with LLMs
Require: LM py. descriptions of variables X, initial vari-
able selector (), expansion generator £(), cycle checker
CheckCycle()
G+ {} > Create an empty graph to store the result.
[frontier, visited < I(pg. X) > With initialization
prompt.
while frontier is not empty do
toVisit < frontier 0]
frontier.remove(toVisit)
visited.add(toVisit)
for node in E(py.G) do > Expand with expansion
prompt.
if not CheckCycle(G, toVisit, node) then
& Check if adding toVisit — node will

create cycle.
G.add((toVisit. node))
end if
if node not in frontier U visited then
frontier.add(node)
end if
end for
end while
return GG
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You are a helpful assistant to a
neuropathic pain diagnosis expert.
The following factors are key
variables related to neuropathic pain
diagnosis which have various causal
effects on each other. Our goal 1is

to construct a causal graph between
these variables.

<A>: Description of variable A
<B>: Description of wvariable B

Now you are going to use the data to
construct a causal graph. You will
start with identifying the variable(s)
that are unaffected by any other
variables.

Think step by step. Then, provide your
final answer (variable names only)
within the tags <Answer>...</Answer>.

Initialization Stage

Given <Independent Variables> is(are)
not affected by any other wvariable and
the following causal relationships:

causes B, C, D
C causes D, E

Select the wvariables that are caused by
<Currently Visited Node>.

Think step by step. Then, provide your
final answer (variable names only)
within the tags <Answer>...</Answer>.

Expansion Stage



