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Causal Inference

● Inferring the effects of any treatment/policy/intervention/etc.
● Examples

○ Effect of treatment on a disease
○ Effect of climate change policy on emissions
○ Effect of social media on mental health
○ Many more (effect of X on Y)



Causality

● Concept that could be approached 
from various standpoints

● Used in field like
○ Econometrics
○ Social science
○ Epidemiology
○ Statistics
○ Machine Learning
○ (Multi-agent) Reinforcement Learning



Simpson’s Paradox

● Hypothetical disease with two possible treatments
● Table showing mortality rate

● Apparent paradox: 
○ If condition is not know,  treatment A is better
○ If condition is known, treatment B is better



Simpson’s Paradox

Which treatment is better depends on the causal structure of the data



Correlation is not causation



Association is Not Causation

● Correlation is meant statistical dependence
● Technically, it is measure of linear dependence, 

better term should be association
● Total association is no all or none, could be 

combination of 
○ Spurious (correlation)
○ Confounding (hidden common cause)
○ Causal association



Counterfactuals

● Alternatives scenarios that did not actually happened but could happen under different  
circumstances

● Humans as Counterfactual Reasoning Machines
○ Constantly evaluating alternative scenarios
○ Imagining outcomes of different actions

● Counterfactuals in Everyday Life
○ Informed decision-making based on "what-if" analysis
○ Learning from past experiences and mistakes

● Regret Minimization in Human Behavior
○ Comparing outcomes of taken and untaken actions
○ Guiding future decisions to minimize regret



 Potential Outcomes Framework

●  person has a headache and decides
○ Take a pill (treatment)
○ Not take a pill (control)

● Potential outcome: will headache persit
○ Yi(1) severity of headache hour after taking the pill
○ Yi(0) severity of headache hour after (not taking a pill)

● Individual treatment effect
○ tau = Yi(1) - Yi(0)

● We can observe only one of outcomes Yi(1) and Yi(0)   
● How to compute the treatment effect? 

○ Fundamental problem of causal inference



Average treatment effect

● To estimate the average causal effect of the pill, we can use a sample of individuals 
who took the pill and another sample of individuals who did not.

● Average treatment effect

● How to average question marks?



Ignorability

● What makes it valid to calculate the ATE by taking the average of the Y(0) column, 
ignoring the question marks, and subtracting that from the average of the Y(1) column, 
ignoring the question marks?

● Ignoring the question is called ignorability
○ ignoring how people ended up selecting the treatment they selected
○ and just assuming they were randomly assigned their treatment; 



Controlling for Confounding

● Confounding Factor
○ Variables that affect both the treatment and the outcome
○ Can lead to biased estimates of causal effects

● Importance of Controlling for Confounding
○ Obtain unbiased and accurate estimates of causal effects
○ Improve decision-making based on observational data

● Methods to Control for Confounding
○ Matching
○ Stratification



Control for confounding 

● Matching
○ Attempt to create comparable groups of individuals who took the pill and those who did not
○ Match based on confounding variables (e.g., age, gender, baseline health)
○ nearest neighbor matching
○ directly pairs treated and control individuals based on their similarity in confounding variables, 

● Stratification
○ divide the population into strata based on the confounding variables

■ Intial headache severity 
○ estimate the causal effect within each stratum
○ combine these estimates to calculate the overall average causal effect
○ weighting the estimates by the proportion of individuals in each stratum.
○ divides the population into groups based on the values of confounding variables and estimates the 

causal effect within each group.



Independent variables are not correlated

● If A and B are causally independent, they will 
be unassociated in data.

● cor(A,B) = 0.012



Causal Influence creates correlation

● If A is a cause of B, or if B is a cause of A, then A and 
B will be correlated in data.

● cor(A,B) = 0.71

●



Causal Influence creates correlation

● This also applies if A causes M, and M in turn 
causes B (mediation).

●

● cor(A,B)= 0.58



Confounding creates correlation
● If A and B share a common ancestor C (causal fork), A and 

B will be correlated in data. 

● corr(A,B)=0.49



Random manipulation protects a variable from causal influence

● When we are able to randomly allocate the values of A - such as in a randomized 
controlled experiment where A is the manipulation variable - no other variable can 
influence A.

●



Controlling for a confounder blocks correlation arising from that 
confounder

● If A and B share a common ancestor C (causal 
fork), the confounding correlation between A and B 
that is created by C (rule 3) is removed if C is 
controlled for.

●



Controlling for a mediator blocks correlation

● If A is a cause of M and M is a cause of B, correlation 
between A and B that is created by the mediated 
causal effect (rule 2) will be removed if M is 
controlled for.

● Given we already know M, knowing A no longer gives 
extra information about B



Controlling for a collider leads to correlation
If A and B share a causal descendant (collider) D, and D is 
controlled for, A and B will become correlated in the data. This is 
often referred to as “conditioning on a collider”, or collider bias.



Deep End-to-end Causal Inference (DECI)

● Python package by Microsoft 
Research

● Causal discovery
● ATE and CATE



Causal Discovery in DECI

● Models relationships among variables x1,...,xN and a causal graph G using joint 
probability

Where p(G) represents a prior over graphs and pθ(xn|G) is the likelihood of observing xn 
given the graph G and parameters θ.

● The graph prior p(G) encourages the graph structure to be a DAG using a penalty 
function on the adjacency matrix A of G 



Causal Discovery in DECI

● Given a graph G, the likelihood for a single observation xn is factorized autoregresively 
assuming an additive noise model

● xpa(i,G) are parent variables of xi in G
● fi  is a function specifying the causal mechanism from xpa(i,G) to xi parametrized by θ
● pzi is the distribution of additive noise for variable xi
● additive noise model



Causal Discovery in DECI

● True posterior pθ(G|x1,...,xn) is intractable
● Deci approximates it with variational distribution qϕ (G) and maximizes the Evidence 

Lower Bound (ELBO) to learn θ and ϕ 

● H(qϕ ) is the entropy of qϕ (G), encouraging exploration of different graph structures



Estimating ATE in DECI

● After DECI has been trained, it can simulate interventions on the treatment variables
● DECI estimates these expectations by generating samples from the interventional 

distributions and calculating the mean outcome for both treated and untreated 
scenarios:

● Then 



Towards Causal Representation Learning
● Bengio et al., 2021
● Causal inference can help address important challenges in machine learning such as 

generalization, transfer learning, and data efficiency.
● Causal representation learning is a crucial problem for artificial intelligence and could unlock 

new capabilities in learning from data.
● Incorporating causality into machine learning models requires careful consideration of 

assumptions, limitations, and trade-offs.
● Combining causal inference techniques with machine learning models to improve 

generalization and transfer learning.
● Developing algorithms for causal representation learning that can handle complex data types 

such as images, audio, and video.
● Incorporating causality into reinforcement learning algorithms to improve the performance of 

agents in complex environments.



Social Influence in MARL

● Jacques et al.: Social Influence as Intrinsic Motivation for Multi-Agent Deep 
Reinforcement Learning

● mechanism for achieving coordination and communication
● rewarding agents for having causal influence over other agents’ actions
● causal influence is assessed using counterfactual reasoning
● At each timestep, an agent simulates alternate actions that it could have taken, and 

computes their effect on the behavior of other agents.
● Actions that lead to bigger changes in other agents’ behavior are considered influential 

and are rewarded
● influence leads to enhanced coordination and communication in challenging social 

dilemma environments, dramatically increasing the learning curves of the deep RL 
agent



Sequential Social Dilemmas

● Can be thought of as analogous to spatially and temporally extended Prisoner's 
Dilemma-like games. 

● The reward structure poses a dilemma because individual short-term optimal strategies 
lead to poor long-term outcomes for the group



Cleanup

● A public goods dilemma in which 
● agents get a reward for consuming apples, but must 

use a cleaning beam to clean a river in order for apples 
to grow. 

● While an agent is cleaning the river, other agents can 
exploit it by consuming the apples that appear.



Harvest

● A tragedy-of-the-commons dilemma
● apples regrow at a rate that depends on 

the amount of nearby apples. 
● If individual agents employ an 

exploitative strategy by greedily 
consuming too many apples, the 
collective reward of all agents is 
reduced.



Multi-agent Reinforecement Learning



Intrinsic motivation

● To stimulate agents to learn cooperative behavior introduce 
● category of reward functions that allow learning of desired behaviors in a wide range of 

environments and tasks, sometimes even in the absence of environmental rewards.
● Social influence intrinsic motivation gives an agent k additional reward when it has 

causal influence on the actions of other agents. 
● It adds a causal influence reward $c_k^t$ to the agent's immediate environmental 

(extrinsic) reward e_t^k at time t:



Evaluation of social influence



Evaluation of social influence



Effect of social influence



Social influence

● Agents continue to move and explore 
randomly while waiting for apples to spawn,

● The influencer only traverses the map when it 
is pursuing an apple, then stops. The rest of 
the time it stays still.

● The influencer agent learned to use its own 
actions as a binary code which signals the 
presence or absence of apples in the 
environment



Model of Other Agents

● Computing the causal influence reward requires knowing the probability of another 
agent’s action given a counterfactual, 

● Requires a centralized training approach in which agents could access other agents’ 
policy network

● To relax this unrealistic assumption we equip each agent with its own internal Model of 
Other Agents (MOA). 

● The MOA is trained to predict all other agents’ next actions given their previous actions, 
and the agent’s egocentric view of the state: p(at+1|at,sk t ).



Model of other agents



Causal Diagram



Causal Explanations for Sequential Decision-Making
In Multi-Agent Systems

F might include a discretized
summary of actions, such as 
average acceleration or distance to
the leading vehicle



Causal Explanations for Sequential Decision-Making
In Multi-Agent Systems

Reward components R are 
● longitudinal and lateral 

acceleration
● presence of collisions
● time to reach a destination
● goal completion



Causal Reasoning and Large Language Models



Causal Reasoning and Large Language Models

● LLMs enable knowledge-based causal discovery, and achieve competitive performance 
in determining pairwise causal relationships between variables, across datasets from 
multiple domains, including medicine and climate science.

● Extending knowledge-based causal discovery to full graph discovery poses additional 
chalenges, such as distinguishing between direct and indirect causes.

● LLMs capture and apply common sense and domain knowledge enables substantial 
improvements in counterfactual reasoning and actual causality tasks, making them 
valuable in real-world applications

●



Efficient Causal Graph Discovery Using Large Language Models



Efficient Causal Graph Discovery Using Large Language Models

Initialization Stage Expansion Stage


