526 GUIDE TO PART C

The next three chapters take up in depth topics introduced in Enderton’s
chapter. Martin Davis's chapter pursues the uses of the theory of recursive
functions for showing that certain classes of problems cannot be effectively
decided — the word problem for groups being one of the best known. The
related problem of decidable versus undecidable theories of first-order
logic is discussed in Rabin's chapter.

Among undecidable problems, some are more undecidable than others.
The definition of “deg'r'ee'" of unsolvability is introduced in Section 8 of
Enderton’s paper and a survey of important results on these degrees is
given in Simpson’s chapter.

Moving to the broader definition of recursion theory we come to Shore’s
chapter on the generalization of recursion theory to admissible ordinals.
Shore presents a fine introduction to the basic notions and, as a case study,
shows what new considerations arise when the Splitting Theorem is

generalized to admissible ordinals. The chapter also contains a very useful.

annotated bibliography to the study of a-recursion theory.

The study of Kleene recursion in higher types (recursive functions of
functions of functions, say, rather than recursive functions of natural
numbers) has always been more or less inaccessible to all but the dedicated
specialist — due to the difficulty of the basic papers in the subject. This
situation should be remedied in the chapter by Kechris and Moschovakis,
where a conceptually simple approach via inductive definability is taken.

The study of inductive definitions in general is taken up in Aczel's
chapter. It should interest logicians of all persuasions since it combines the
concerns of the recursion-theorist with the vantage points of the model-
theorist and proof-theorist.

Martin’s chapter discusses one of the major applications of recursion
theory — to descriptive set theory. Here definability considerations over
the continuum give rise to a beautiful theory which finds its origins in the
French “constructivist” school of Borel, Baire and Lebesgue.

We had planned to have a chapter on the more “‘practical” aspects of
recursion theory, those where running times of programs and computa-
tional complexity appear, but this chapter did not materialize. Among
other chapters of the Handbook relevant to recursion theory we mention
Statman’s chapter on the equation calculus (in Part D), and Makkai's
chapter on admissible sets (in Part A). The recursion-theorist might also be
interested to see some proof-theoretic applications of recursion theory in
Feferman's chapter in Part D.
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Introduction

This chapter presents an expository treatment of the elements of
recursive function theory. It makes no claims of advancing to the frontiers
of research in this field. It does attempt to indicate what background would
be required of someone heading that way.

The proofs in this chapter are often merely sketched, with indication of
the main ideas involved. There are several books that give more thorough
treatment to these topics. The primary reference in this field is RoGERs
[1967]. A more condensed treatment can be found in Chapters 6 and 7 of
SHOENFIELD [1967]. Turing machines are discussed, among other places, in
books by Yasunara [1971] and by Davis [1958]. There is a fairly recent
book on degrees of unsolvability by SnoenrieLD [1971] and an older one by
Sacks [1963]. Finally, the classic book by KLeene [1952] contains much
recursion theory.

1. Informal computability

The simplest conception of recursive functions is as “effectively comput-
able” functions. We will consider initially functions from natural numbers
to natural numbers, postponing the matter of functions on other sets. Let N
be the set {0,1,2,...} of natural numbers, and let N* be the cartesian
product NXNx---xN with k factors. Then the objects we want to
consider will be functions f with domfCN° for some positive k and
ran f C M. Such an object will be called a k-place partial function. The
word “partial”” is a reminder that the domain is only a subset, possibly
proper, of N¥. (The partial function is said to be total if its domain is all
of N*))

It is clear from cardinality considerations that there are 2™ k-place
partial functions for each positive k. From this huge inventory we want to
select the N, functions that are recursive. We begin in this section with an
intuitive description of the notions we seek to capture. And then in the
next section we will turn to the methods for making the ideas precise.

Call a k-place partial function f effectively computable when there exists
an effective procedure (i.e., an algorithm) that calculates f correctly. Now
an effective procedure must meet the following criteria.

(i) There must be exact instructions (i.e., a program), finite in length, for
the procedure. These instructions cannot demand any cleverness or even
understanding on the part of the person or machine following them.

ch. C.1, §1] INFORMAL COMPUTABILITY 529

Executing the instructions must be a matter of merely following directions
carefully,

(ii) If the procedure is given a k-tuple x in dom f, then after a finite
number of discrete steps the calculation must terminate and produce f(x).

(iii) If the procedure is given a k-tuple x that does not belong to dom f,
then the procedure might go on forever, never halting. Or it might get
stuck at some point, but it must not pretend to produce a value for f at x.

One can picture an industrious and diligent clerk, well supplied with
scratch paper, tirelessly following his instructions. Alternatively, one can
picture an automated version, a digital computer executing a program.

Despite the fact that we have given only a suggestive description and not
a mathematical definition, it is possible to develop nearly all of the theory
of recursive functions on just this informal basis. (The recursive functions
are the effectively computable functions, but we reserve the term “recur-
sive'” for the mathematically defined concept.) For evidence of this
possibility, we refer the reader to the book Rocers [1967].

As examples of effectively computable functions we can cite addition
and multiplication of natural numbers. Effective procedures for these
functions (using decimal representation) are taught in the elementary
schools. Any function with a finite domain is effectively computable. The
instructions for computing such a function can contain a table listing all of
its values,

There are several sorts of restrictions of a practical nature that we do not
impose on effective procedures.

(i) Although each argument given the procedure as input must be a
(finite) natural number, there is no bound imposed in advance on the size
of the arguments. We do not rule out arguments that exceed the number of
electrons in the universe, for example.

(i) Although the procedure must produce f(x), when x € dom f, after a
finite number of steps, there is no bound imposed in advance on this
number.

{iii) Similarly, there is no bound imposed in advance on the amount of
scratch paper (memory space) the procedure might require. Even multipli-
cation of very large numbers can require large amounts of scratch paper.

These considerations are relevant to the comparison of effective com-
putability to *practical computability”. A person with a digital computing
machine may regard a function f as being computable only when f(x) is
computable on his machine in a reasonable length of time. Of course, the
matter of what is reasonable may change from day to day. And next year
he hopes to get a faster machine with more memory space and tape drives.
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At that time, his idea of what is computable in a practical sense will be
extended considerably.

The class of effectively computable functions is obtained in the ideal case
where all of the practical restrictions on running time and memory space
are removed. Thus the class is a theoretical upper bound on what can ever
in any century be considered computable.

It should be clear that if f and g are functions that agree at all but finitely
many arguments, then f is effectively computable iff g is also effectively
computable. Thus the question whether a function is effectively comput-
able hinges solely on the behavior of that function in neighborhoods of
infinity.

2. Turing machines

There are many equivalent ways of formulating the definition of
recursiveness. A version phrased in terms of imaginary computing
machines was given by the English mathematician Alan Turing in a
fundamental paper (Turing [1936]). (Related work was done simultane-
ously but independently by Emil Post in New York; see Post [1936].)
Turing had the disadvantage of formulating this definition prior to the
development of actual digital computers. In fact the flow of information
was from the abstract to the concrete: von Neumann was familiar with
Turing's work, and Turing himself later played an enthusiastic role in the
development of computers.

On an informal level, we can begin by picturing a Turing machine as a
black box together with a tape. The tape is marked off into squares, and
each square can contain either the blank symbol 0 or the non-blank symbol
1. The tape is potentially infinite in both directions, in that we never come
to the end of it, but at any time only finitely many squares can be
non-blank. Initially the tape contains the input numbers, and ultimately it
contains the output number. At intermediate times it serves as memory
space for the calculation,

If we open up the black box, we find that it is a very simple device. It is
capable of examining only one square of the tape at a time. The device
contains a finite list of instructions (or states) qg, gy, - .., g Each instruc-
tion can indicate two possible courses of action, one to be followed if the
tape square under scrutiny contains a 0, the other to be followed if it
contains a 1. In either event, a course of action can only consist of the
following three steps:

cH. C.1, §2] TURING MACHINES X1

(i) A symbol (possibly the same as the old symbol) is written on the
tape square being scanned, thereby erasing the previous symbol.

(ii) The tape is moved one square right or left.

(iii) The next instruction is specified.

Thus the list of instructions determines a transition function that, given
the number of the present instruction and the symbol being scanned,
produces the three-part course of action. We can formalize these ideas by
taking the Turing machine simply to be this transition function.

2.1. Dervimon. A Turing machine is a function M such that for some
natural number n,

domM C{0,1,...,n}x{0, 1},
ran M C{0, 1} x{L,R}={0,1,...,n}

For example we might have M (3,1) = (0, L, 2). The intended meaning of
this is that whenever the machine comes to instruction g, while scanning a
square in which 1 is written, it is to erase the 1 (leaving a 0 in the square),
move the tape so as to examine the square just to the left of the present
square, and proceed next to instruction g,. If M(3, 1) is undefined, then
whenever the machine comes to instruction g, while scanning a square in
which 1 is written, it halts. (This is the only way of stopping a calculation.)

This intended interpretation is not embodied in the formal definition of a
Turing machine. But it does motivate and guide the formulation of all
subsequent definitions. In particular, we can define what it means for a
machine M to move (in one step) from one configuration to another. We
do not need to present the formal definitions here, since they are only
translations of our informal ideas.

The input/output format consists of strings of 1's, separated by 0's, Let
x' be a string of 1's of length x + 1. Thus

075,040 'x,)

is the result of combining k strings of 1’s, each separated from the next
by a 0.

At last we can define recursiveness. A k -place partial function f is said to
be recursive if there exists a Turing machine M such that whenever we start
M at instruction g, scanning the leftmost symbol of

0 0000y

(with the rest of the tape blank), then:
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(i) If f(x;,...,%) is defined, then M eventually halts scanning the
leftmost symbol of

rf[.tl, R }7

and with the tape blank to the right of this string.

(ii) If f(xy,...,x.) is undefined, then M never halts.

If R is a k-ary relation on the natural numbers, then R is said to be
recursive if its characteristic function yg : N* — {0, 1} is recursive. (Caution:
If a k-place partial function is recursive, then it does not follow that its
graph is a recursive (k + 1)-ary relation.)

For example the identity function f(x)= x is recursive, being computed
by the empty machine. A less trivial case is addition x +y, which
is computed by the machine whose values are listed in Table 1. The
comments to the right are to help the reader, not the machine. (Turing
defined M to be a set of quintuples instead of a function from pairs to
triples. The table, being the graph of M, is essentially a set of quintuples.)

Table 1

01 1 R0  passoverx
00 1R1 Al gap

11 1R1 pass over ¥
10 OL 2 end of ¥

21 OL3 erase a 1

i1 OL 4 erase another 1
41 LL4 back up

40 ORS halt

It is an exercise in programming to produce Turing machines for
multiplication and exponentiation.

We should remark that many of the details of our definition of a Turing
machine are somewhat arbitrary. If there were more than one tape, the
class of computable functions would remain unchanged (although some
functions could be computed more rapidly). Similarly we could allow more
than the symbols 0 and 1. Or we could have the tape extend in only one
direction from a starting point, instead of both directions. None of this
affects the class of computable functions. What is essential in the definition
is the provision for arbitrarily large amounts “scratch-pad" storage space
and arbitrarily long calculations.
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We can give a specific example of a non-recursive function by using the
“busy beaver competition” of Rapo [1962]. An n-state entry in this
competition is a Turing machine M with n + 1 instructions qg,..., q,. the
last of which is used only for halting (both M(n,0) and M(n, 1) are
undefined), and such that when started on a blank tape, M eventually halts,
When M does halt, its score in the competition is the number of 1's on the
tape. Thus the machine tries to write as many 1's on the tape as it possibly
can, but it must halt. Let 2{n) be the maximum possible score for an
n-state entry.

2.2, THeoreEM (Rapo [1962]). The function X is not recursive. In fact for any
total recursive f on N, we have f{x)< 2 (x) for all sufficiently large x.

Proor. The function whose value at x is
max[f(2x +2), f(2x +3)]

is recursive, and hence is computed by some machine M having, say, k
instructions. For each x, consider a machine N, that writes "' on a blank
tape and then behaves like M. Then N, is a (x + k + 2)-state entry in the
busy beaver competition. So its score (the number displaved above plus 1)
is bounded by X(x+k +2), which for all x =k is bounded by
I@Rx+2). O ~

We will construct other non-recursive functions later, but the ¥ function
has a striking simplicity. The first few values of X are known: Z(1)=1,
3(2)=4, and X(3)=6 (Liv and Rapo [1965]). Next E(4)=13 (Brapny
[1966, 1975]). Beyond this point, only lower bounds are known. X (5) =17
X(6) =35, 3(7)=22961, and X(8)>8x 10* (Green [1964)).

1. Church’s thesis

In Section 1 we discussed an informal concept of computability. In
Section 2 we defined the mathematical concept of recursiveness. Do these
two match? That is, is the concept of recursiveness the correct formaliza-
tion of our intuitive concept of effective computability? The claim that it is
indeed correct is known as Church's thesis. This claim was advanced and
defended by Church [1935, 1936), and has been almost universally
accepted. :

There are two arguments supporting the view that the class of recursive
functions is broad enough to contain all effectively computable functions.
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The first has to do with specific procedures: the procedures that have been
felt to be effective have, when examined, been found to be executable by
Turing machines. The second argument has to do with the class of effective
procedures as a whole: the several attempts that were made to formalize
the concept of computability have all yielded concepts equivalent to
recursiveness. In particular, the natural ways of liberalizing the definition
of recursiveness (such as allowing several tapes) in the end yield notions
equivalent to recursiveness. (The proofs of these results are, for the most
part, not difficult once the techniques of the following section are known).

Historically, the first appearance of a definition of recursiveness was in
Kurt Godel's original paper (GopeL [1931]) on the incompleteness of
formal systems. He defined a relation to be entscheidungsdefinit if it was
binumerable in a certain formal system of number theory. (The concept of
binumeration may be found in Chapter D.1.) This is equivalent to our
definition of recursive relation. But Godel was not at this time attempting
to formalize the concept of effective decidability or computability, and
attention was not focussed on this definition. [n the same paper he defined
a class of functions called “‘recursive™ (rekursiv); this is now called the class
of primitive recursive functions. The name ‘“‘recursive’ was appropriate,
since the central feature of the definition was a provision for finding
fin+ 1) from f(n).

Gadel visited Princeton several times in the 1930°s, before moving there
permanently in 1940. In 1934, during one of these visits, he gave a talk for
which mimeographed notes were circulated., The notes were taken by
Kleene and Rosser, who about this time completed dissertations at
Princeton under Church. (The notes were eventually published as GOpEL
[1965].) In this talk he raised the issue of effective computability. He noted
that more general forms of recursion would have to be admitted before his
previous recursive functions could include all computable functions. He
then defined a class he called ““general recursive functions”, using ideas
that had been suggested to him in a letter from Herbrand. (This definition,
which involved formal rules for deriving equations from others, is also
equivalent to our definition of recursiveness.)

Church had been at Princeton since 1929 and together with his student
Kleene had developed the concept of A -definable functions. The question
of the relationship between A-definability and effective computability was
studied by Church. CuurcH [1936] not only contained the proposal now
bearing his name, but also provided the first example of an unsolvable
decision problem. This is the problem whether a formula in the A -calculus
has a normal form, which can be regarded as a decision problem in
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elementary number theory. The proof of the equivalence of the concept of
A-definable functions and the concept of general recursive functions was
due primarily to KLeene [1936b].

TurinG [1936] referred to Church’s paper, and presented yet another
definition of recursiveness (essentially the definition of Section 2). Turing
had independently had the idea of formalizing the concept of effective
computability, but was led to publish only when Church’s paper appeared.
In an appendix, Turing proved the equivalence of his definition to
A-definability.

Post [1936] described Church’s thesis as being not a definition or an
axiom but a natural law, a “fundamental discovery” concerning “the
mathematicizing power of Homo Sapiens”, in need of “*continual verifica-
tion™.

Until now we have dealt with functions as the basic objects of study; we
have made scant reference to k-ary relations on N, Actually recursion
theory can be developed in terms of either functions or relations, and with
interchangeable results, We can, informally, call a relation R decidable if
there is an effective procedure that, given any x, replies “yes” if x € R and
replies “no™ if x & R. (In discussing relations, we will write x € R and
R (x) synonymously.) Then R is decidable iff the characteristic function of
R is effectively computable. Thus a consequence of Church’s thesis
(equivalent in fact to the original form) is that the concept of a recursive
relation is the correct formalization of the informal concept of a decidable
relation.

4. Universal machines and normal form

The initial application of recursive functions was to prove incomplete-
ness theorems of logic. For that purpose, no deep results on the intefnal
structure of the class of recursive functions are required. And in fact a
more restricted class, such as the primitive recursive functions mentioned
in the preceding section, would suffice.

But as will be seen, there are other applications for recursive functions.
And if for no other reason, the recursive functions would be studied for
their own interest as the effectively computable functions. And the basic
fact that gets such a study off the ground is the possibility of encoding
machines into integers that can then be supplied as input to other (or the
same) machines.

There is a direct analogy here with actual digital computers. The earliest



535 ENDERTON | RECURSION THEORY [en. C.1, 54

such computers were programmed by setting switches and inserting wires
into plugboards. It was then realized (by von Neumann) that for a suitably
constructed computer, the program could be coded into machine words
(i.e., integers) and stored in the machine in the same manner as data — the
stored-program computer. The first practical benefit of this approach to
programs is the speed at which new programs can be lpaded into the
computer to replace old programs. But a more significant benefit (for our
purposes) is the possibility of executive programs, e.g. operating systems.
An executive program accepts another program as incoming data. The
executive program might then study the incoming object program and see
that its instructions are carried out.

The ideas behind stored-program computers can be carried over to
Turing machines. (Historically it was the other way around.) A Turing
machine M might be given two numbers as input, one of them a suitable
encoding of Turing machine N, and the other a number x. Machine M
might then serve as an executive program, and the output might be just the
result of applying N to x. M can then be called a universal Turing machine.

Carrying out these ideas and constructing a universal Turing machine
turns out to be a straightforward (if somewhat lengthy) procedure. We will
outline how it goes. First of all, each Turing machine is a finite object, and
s0 can be encoded as a natural number under some fixed encoding. We can,
for example, define the encoding

§ T PRESIEE 0 L ol o BLEPR n. B

in powers of primes as a way of condensing a finite string of numbers to a
single number. We then need a decoding function (x), with the property
that for i = n,

(%0 Xpa 000y K00 = X,

Turing machines can be found to effect the above encoding, and inversely
to do the decoding.

At any point in the history of a Turing machine calculation, the entire
configuration of the machine (the tape contents, the instruction number,
and the square being scanned) can be described by a finite amount of
information, and so can again be encoded into a number, called an
instantaneous description. Then a computation record for machine M is a
number encoding a finite sequence of instantaneous descriptions meeting
the following conditions.

(i) The first instantaneous description specifies instruction g, (the “‘ini-
tial state™).
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(ii) The last one has the machine at an instruction g; and scanning a
symbol s for which M(i, 5) is undefined (a “halting configuration™),

(iii) Each one is related to the next in that M, when in the configuration
given by one instantaneous description, moves in one step to the configura-
tion given by the next.

Thus a computation record is a natural number that encodes the entire
history of one calculation by M, from its initial state g, (presumably with
some input of interest on the tape) until it halts,

All this encoding would be pointless were it not for the fact: the results
of the encoding are recursive functions and relations. That is, in going
through the details of this encoding, one can verify at every step that
Turing machines exist to handle the concepts involved. In the end one has
the following two results,

{i) There is a recursive ternary relation T that holds of e, {x,,..., x.},
and y iff ¢ encodes a Turing machine and y is a computation record for
that machine, starting with 'xt1ﬂrxz1[}~ . -Dlxk] on the tape.

(ii) There is a recursive function L' such that whenever
T(e,{x,..., %}, y) holds, then U/(y) — the upshot of y — is the output
value of the calculation (provided the halting configuration is such that this
makes sense).

Even without the details, it should appear that T is intuitively decidable
and U is computable. And so one would expect them to be recursive; that
expectation is correct. Next we define, for each k, the k-place partial
function

{e}*(xy,.... %) = U[the least y such that T(e, (xy,..., x.), ¥)].

Here we write “the least ¥ although it is quite possible that no such y
exists; if there is no such y then the function is undefined at that point, We
abbreviate all this by the letter u:

{e}* (xyy .o x) = Uy T(e,(xy ..., %), ¥))-

(The notation {e}* is Kleene's; the notation ¢'*’ is used by Rogers. The
superscript k is omitted whenever possible.)

We can now conclude the following fundamental theorem. The theorem
in this form is due to KLeesE [1936a, 1943], but universal Turing machines
appeared in the original paper by Turing [1936].

4.1, Normal Form Theorem
(i) The (k + 1)-place partial function whose value at (e, xy,...,x.) is
{e}*(xy,..., x:) is recursive.
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(ii) For each e, the k-place partial function {e}k is recursive.
(iii) Every k-place recursive partial function equals {e}* for some e.

The number e will be called an index of {e}*. Thus a partial function is
recursive iff it has an index.

We want next to use this work to prove the unsolvability of the halting
problem. Suppose we give input x to machine M and start it running. After
the first million steps, we might become suspicious that it will never halt,
On the other hand, maybe if we have just a little more patience, it will halt
after a few more steps. Is there any way to test which of these two situations
we are in? No, there is not. There is no effective procedure that, given M
and x, will decide whether or not this calculation ever terminates. This is
the content of the theorem below. For a partial function f, we write
flx)=< = to mean that f(x) is defined.

4.2. THeoreM (unsolvability of the halting problem). Neither {(x, y):
{x}(y) <=} nor {x: {x}(x) <=} is recursive.

Proor. Our description of this proof (and others) relies on the reader’s
informal ideas of effective computability, but it can be translated into a
rigorous description involving Turing machines.

Let K ={x: {x}{x)<=}. It suffices to show that K, the diagonal of the
halting problem, is not recursive. We use a classical diagonal argument.
Consider the function

{xHx)+1 ifxEK,
glx) = {
0 if x 2 K.

The function g is total, but it cannot be recursive (because gle) # {e}(e)
for each e). But if K were recursive, then g would be. So K is not
recursive. [

In the foregoing sections, we have been totally indifferent to questions
regarding just how long it took a Turing machine to compute a function
value. But now suppose we examine @,(x), the number of steps the
machine with index e uses in computing {¢}(x). For any recursive function,
we have the choice of infinitely many different machines to compute it.
Some recursive functions are so stubborn that any available machine takes
almost forever:
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4.3. TueoreM (RaBIN [1960]). For any total recursive H on N, we can find a
total recursive F:N— {0, 1} such that for any index e of F,

@, (x)> H(x)
for all sufficiently large x.

The proof involves gradually detecting indices of fast machines, and
defining F so as to disagree somewhere with the result of such machines.

A stronger result is the speed-up theorem, which indicates that a
function need not have any fastest index, or even any almost fastest index
for any reasonable meaning of *“almost™.

4.4. SPeeD-UP THEOREM (BLum [1967]). For any total recursive function G
on NN, we can find a total recursive F : N— {0, 1} such for each index i of
F there exists another index j of F such that

Gix, @(x)) < ;(x)
for all sufficiently large x.

For example, take G(x, y)=2". Then for any machine computing F,
there exists another machine exponentially faster for almost all inputs. The
theorems of Rabin and Blum are actually more general than we have
indicated. In these theorems @, (x) can be any reasonable measure of the
complexity of computing {e}{x), subject only to some very modest
assumptions.

For any total recursive function L on N we can define the complexity
class C; of functions almost always computable in a number of steps
bounded by L:

C, = {F: for some index f of F, & (x)=L(x)
for all sufficiently large x}.

These complexity classes organize the recursive functions according to
computational difficulty. In particular, we can say that F is no harder to
compute than G if F belongs to every complexity class to which G
belongs. This happens iff for every index of G there exists an index of F
that is almost always just as fast,

5. Oracles and functionals

Three years after his original paper (Turing [1936]), Turing [1939]
introduced an extension of his concept of computability. Imagine a
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computing agent (an industrious clerk or a machine) provided, as usual,
with explicit instructions and plenty of scratch paper. But in addition we
now provide a new feature: an oracle for a particular function « from N
into N. (Here dom e is required to be all of N; let N™ be the set of all such
functions.) An oracle for & is a device that, given a number x, responds by
producing the value a(x). For a recursive a, we can make an oracle for a
from a Turing machine. But more generally we can imagine an oracle for
an arbitrary function a. Our computing agent supplied with this oracle now
can calculate not only the effectively computable partial functions, but can
further calculate (when given the right instructions) any partial function
that is *computable in a .

At first glance, the concept of computability in a seems quite odd. It
combines the most constructive approach to functions (that of computabil-
ity) with the least constructive approach (that of an oracle). But despite this
paradoxical appearance, the concept has proved to be valuable. And it led
eventually (in the 1950’s) to the concept of a recursive functional, i.e., a
recursive function accepting members of N™ as arguments.

In general we will consider (k, m )-place partial functions; the domain of
such a function is a subset of

N=NXNX  XNXNXN¥%-- . x N

{with k factors of N and m factors of N¥) and its range is a subset of N. Until
now, we have discussed only the case where the space A was countable
{i.e., m =0). Henceforth we will often treat the case k=m =1 for
notational simplicity, with the understanding that the remarks generalize.
We use z,9,... as variables over the space V.

We now extend our notion of Turing machines to allow for m oracles, A
machine can now write a number x on the tape and the oracle will, in one
step, replace it with a(x). A partial function f on & is defined to be
recursive if there is a Turing machine that computes f as before, where now
the function arguments of f are supplied in the form of oracles.

As in Section 4, it is possible to encode the entire history of a single
calculation into one number y, the computation record. Among other
things, y encodes all information supplied by the oracle. Of course in any
one terminating calculation, only a finite amount of the potentially infinite
wisdom of the oracles can be utilized. Under any reasonable encoding of
calculations, if y is a computation record then any value a(i) supplied to
the calculation by the oracle will have { < y. Define for « in N" the “course-
of-values” function & by

a(y)={(a(0), a(l),...,a(y =1)).
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Thus & is again in N" and & (y ) encodes the first y values of a. (In particular
&(0)={ }=1, no matter what a is.) For a computation record v, the
number &(y) enodes all values of & that were used in the calculation, since
for i <y the value a(i) can be decoded from &(y), in fact a(i) = (a(y)).
This phenomenon leads to the following two results.

(i) There is a recursive 4-ary relation T that holds of the natural numbers

e (X, ..., %) {d(y),...,d.(y)) and y iff ¢ encodes a Turing machine
and y is a computation record for that machine, started with
%,'0"x;'0+--0"x on the tape and supplied with oracles for a;,..., @

(ii) There is a recursive function U such that whenever T holds of the
above-mentioned four numbers, then Uf(y) is the output value of the
calculation.

Thus we can extend the normal form results of the preceding section by
defining the (k, m )-place partial function {e}*™ where

{e}"'(x, a) = Uluy T(e, {(x ), {@(y)), y)).
As usual, we omit the superscripts whenever possible. The Normal Form
Theorem 4.1 then holds, mutatis mutandis. It is interesting to note that
since U and T have only natural numbers as arguments, recursiveness on
N can be characterized in terms of recursiveness on M.

6. Recursive enumerability

We have defined a subset of 4 to be a recursive (k, m }-ary relation if its
characteristic function was recursive. By Church’s thesis, this is the correct
formalization of the informal notion of a decidable set.

Now we want to consider sets that are only half recursive. Call a set R
semi-decidable if there is an effective procedure that, given z, replies “yes"
iff € R. The procedure is no longer required to be a decision procedure;
now it can be thought of as an accepting procedure. If 2 € R, then the
procedure eventually says “yes”, thereby accepting z. But if £ & R, then in
general the procedure will never terminate. But one never knows in
advance whether the procedure will go on forever or will eventually halt
and accept z.

When & is a countable space, we can give another characterization of
the semi-decidable sets. Call R effectively enumerable if there is an effective
procedure that lists, in some order, the members of R. (Of course if R is
infinite then the list will never be completed. But for any particular
member of R, it appears on the listing after some finite length of time.) To
prove that effective enumerability is equivalent to semi-decidability, first
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assume that R is effectively enumerable. Then given any x, we can scan the
listing of R as it appears, and say “yes" if and when we see x. This shows
that R is semi-decidable. Conversely assume that R is semi-decidable. To
generate a listing of R, we must budget our time sensibly. Order N* first
according to maximum component and then lexicographically; this orders
M* in type w. Then go through all k-tuples in order: xy, xz,... . At stage n
of the listing procedure, spend n minutes on each of x,, x3,..., x,, testing
them for acceptance into R. If any of these tests results in a “yes"’, then put
that k-tuple on the output list. In this way, any member of R is eventually
discovered and placed on the list. (Obviously this argument relies on
having a countable space N*; an uncountable semi-decidable set cannot be
listed in this sense.)

Next we want to give a precise counterpart of the informal concept of a
semi-decidable set. One possibility would be to go back to Turing
machines, regarding them not as transducers (with both input and output)
but as acceptors. But there is a simpler alternative open to us. Any
semi-decidable set is the domain of the computable partial function taking
the value 0 on the set and undefined outside the set. Conversely, the
domain of any computable partial function is semi-decidable; one says
“yes” if and when the computation terminates. Hence we can formulate
semi-decidability as follows.

6.1. DermviTION. A subset of & is semi-recursive if it is the domain of some
recursive partial function on . If & is countable, then semi-recursive sets
are called recursively enumerable (abbreviated r.e.).

If R is semi-recursive by virtue of being the domain of f, then we can
think of the Turing machine that computes f as being the accepting device
for R, where acceptance amounts to halting. The phrase “recursively
enumerable’ is sometimes used as a synonym for ““semi-recursive’ regard-
less of the size of &, but we will confine the phrase to countable ¥,

If we have an accepting device for R and another for its complement
(with respect to '), then the two devices together decide membership in R.
Hence we have the following result.

6.2, THEOREM. A relation is recyrsive iff both it and its complement are
semi-recursive.

We can exploit our indexing of recursive partial functions to obtain an
indexing of the semi-recursive sets. Simply define W™ to be the domain of
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{e}*™. (We omit the superscripts whenever possible.) Then a relation R is
semi-recursive iff it is W, for some e. Furthermore the (k + 1, m )-ary
relation

Q={lez)zE W.}

is semi-recursive (being the domain of the function computed by a
universal Turing machine). The semi-recursive relation @ is “universal”
for (k,m)-ary semi-recursive relations in the sense that a relation R is
semi-recursive iff it is obtainable from Q by holding e fixed as a parameter.

6.3. Tueorem. The following conditions on a (k.m)-ary relation are
equivalent.

(i) R is semi-recursive.

(ii} For some recursive (k + 1, m}-ary relation Q,

R ={z: 3wQ(w,2)}
(iii) For some recursive (k + [, m)-ary relation P,
R ={z: 3w, - - Iw, P(w,, ..., w.x)}
Proor. We have (i) = (ii) because x € W, < Iy T(e, (x), y). Trivially
(ii) = (ili). To prove (iii) = (i) we use sequence encoding: R = domf

where f(z) = pwP((w). (W) ....(w).x). For recursive P, the partial func-
tion f is also recursive. [J

In Section 4 we showed that the set
K={x:{xHx) <=}
was not recursive. But K is a recursively enumerable subset of M, since
xEK <& IyTix.(x),y)

for a recursive relation T. So we may conclude that the complement K is
not r.e.

Although K is undecidable, there is a sense in which questions about
membership in any r.e. subset of N are reducible to questions about K,
Consider any r.e. subset W, of M and define for each x the function

f(2) = {e}(x).

Then f(t) is independent of ¢, and in fact f is the empty function if x & W..
But f is total if x € W,.. Now f is a recursive partial function, but more to
the point is that we can recursively find an index w(e x) for f. On an
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informal level, this is clear: the equation displayed above tells how to
calculate f, and we can arrive at this equation effectively when given e and
x. Formally, we use the parameter theorem below.

If g is a two-place recursive partial function, then g(8, y) is, as a function
of y, recursive. A more significant fact is that we can recursively find an
index for this function from an index for g. This fact, stated more generally,
is the following theorem.

6.4, PARAMETER THEOREM. For each k and m there is a one-fo-one total
recursive function p such that

{E}{Il,..a1xn, F];n-s}’h als--':al!}:
={P{£1{Ilr“-!xn”}{}lh ceen Yy @y ..,ﬂ'.,.]
always holds.

Here x,,...,Xx, are parameters being held fixed. The idea is to have
p (e, v) encode instructions for writing v to the left of the other input on the
tape, and then following instruction encoded by e. (The parameter theorem
is also known as the “S-m-n theorem", for historical reasons.)

We can now apply the parameter theorem to the function

gle, x, 1)={e}(x)

to get a one-to-one total recursive 7 such that g(e, x, t) = {m(e, x)}(r) and
hence

xE W, = [wie, x)} is total,
x & W, = {m(e,x)} is empty,
rEW. @ mlex)eE K

This reduces questions about W, to questions about K. There are otherr.e.
sets besides K for which such reductions exist. The most obvious example
is {{x,yr: x € W, }.

For subsets A and B of N, define A to be many-one reducible to B
(A =.B) if for some total recursive f,

xEA & f(x)EB.

Call A one—one reducible to B (A =, B) if in addition f can be required to
be one-to-one. Then any r.e. subset of N is one-one reducible to K. It is
clear (at least on the informal level) that if either A =, B or A =, B and B
is recursive, then A is also recursive. The same is true with “recursive”
replaced by “recursively enumerable™.
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The parameter theorem is a standard tool in formalizing reductions of
one decision problem to another. Such a reduction may prove that a
decision problem is unsolvable, as in the following result.

6.5. THEoreM (Rice [1953]). Ler € be a set of one-place recursive partial
functions. Then the set {e: {e} € €} of indices of members of € is recursive iff
cither € is empty or € contains all one-place recursive partial functions.

Proor, The ** & * half is trivial. So assume that the set of indices
I={e:{e}e ¥}

is recursive. Since both the hypothesis and the conclusion of the theorem
are symmetric with respect to € and its complement, we may suppose that
the empty function @ is not in €. We will show that € is empty by showing
that we could otherwise reduce membership questions about K to the
recursive set I

So assume that, contrary to our hopes, some function ¢ is in %. The idea
is to end up with x € K < g(x) € I by arranging to have {g(x)} be ¢ or §
as x eitheris or is not in K. Informally, g (x) encodes instructions for: given
y, compute first {x}(x) and then &(y). Formally, g(x)= p(e, (x}) where

{e}(x,y)= U(uz[T(x,(x),(z)) & T(q,{y)(z))]

and ¢ is an index for . This gives us K =, I, contradicting the fact that T i%
recursive and K is not, [0

As immediate consequences of Rice’s theorem, we have the following
negative statements. The set of indices of total recursive functions is not
recursive. For any fixed recursive partial function f on N, the set of indices
of f is not recursive (and hence is infinite). The set {e: W, is finite} is not
recursive. And so forth.

A more subtle consequence of the parameter theorem is the recursion
theorem, due to KLEENE [1938].

6.6. Recursion THEOREM. (i) For any total recursive f : N— N we can find a
number e for which {e} = {f(e)}.

(i) For any recursive partial function g we can find a number e such that
fel(z) = gle,x) for all z.

The proof is very like the proof that gives us self-referential sentences in
number theory (e.g. Theorem 2.2.1 in Chapter D.1).
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Proor. Parts (i) and (ii) are equivalent, To prove (i), we obtain from the
parameter theorem a total recursive y such that {y(x, y)} = {{x}(y)} for any
x and y. Let r be an index for the function whose value at x is f(y(x x))
and let ¢ = v(r,r)., This number ¢ works:

{et={y(rn )t ={r}(r)} = {fly(r )i = {fle)}.

To prove part (ii), we first get from the parameter theorem a total
recursive f such that {f(r)}(z) = g(t, ). Then by part (i) there is a number ¢
such that {e}(z) = {f(e)}(z)=gle,x). O

We can use the recursion theorem to give a short proof of Rice's
theorem. Suppose that {a} € € and {b} € ¥, and define f(x)tobe b or a as
x is or is not in I. There can be no e such that {e} = {f(e)}, and hence f
cannot be recursive, So I is not recursive.

7. Logic and recursion theory

Why is recursive function theory part of mathematical logic? If logicians
had not invented recursive functions, computer scientists would have
developed the subject later. But it was not a mere historical accident that
recursive funtions were invented by logicians. There are certain aspects of
logic that inevitably involve the notions of constructiveness and effective-
ness.

A basic concept of logic is that of a proof. Now a proof, viewed
abstractly, is a series of statements that “establishes” without doubt the
truth of its conclusion, given the truth of its assumptions. But to establish
convincingly the truth of the conclusion, the proof must be verifiable by
others. There must be some procedure by which an outsider can verify the
correctness of the proof, without having to supply brilliant insight. That is,
it must be possible to verify the correctness of proofs by an effective
procedure. The set of proofs must be recursive. It would not do, for
example, to consider just any series of true sentences of arithmetic to be a
proof of its last line. We cannot, given a sentence of arithmetic, tell
effectively whether or not it is true, because the set of true sentences of
arithmetic is not recursive nor even r.e. (Section 10).

MNow consider the set of all theorems, i.e., the provable sentences. A
sentence o is provable iff

3d |d is a proof of o).
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The part in square brackets must be recursive. And so the set of theorems
must be recursively enumerable. Thus as long as we can effectively
recognize correct proofs, the set of theorems will be recursively
enumerable! The Gidel incompleteness theorem discussed in Chapter D1
stems from the fact that provability is r.e. whereas truth is not.

To be more specific, consider a first-order language L, such as the
language for set theory, having finitely many non-logical symbols. (Actu-
ally there could be N, non-logical symbols as long as they are arranged
tidily.) We first assign numbers (called Gidel numbers ) to the expressions
of the language in a straightforward way. This permits us to apply notions
of recursion theory to the expressions. (Alternatively we could have Turing
machines work directly on the symbols of the language.) In fact we will not
bother to distinguish between an expression and its Gddel number. One
can verify that the set of formulas is recursive, as is the set of sentences,
Now add a set A of axioms, such as the Zermelo-Fraenkel (ZF) axioms of
set theory, We naturally expect A to be recursive, so that in verifying the
correctness of a proof we will be able effectively to tell the axioms from the
non-axioms. (For example, the set of ZF axioms is recursive.) For a
recursive set A, the binary relation

{(er,d): d is a proof of o from A}

is recursive, where “‘proof’” is defined as in Section 4 of Chapter A.1. (In
fact we could use either formal system from that chapter.) This is not a
deep result; we intuitively expect proofhood to be decidable, so when the
concepts involved are made precise it should not be surprising to find that it
is indeed decidable. Call a theory recursively axiomatizable if it is given by
a recursive set A of axioms in a language L as above.

7.1. THEOREM. A recursively axiomatizable theory has a recursively enu-
merable set of theorems,

Proor. 7 is a theorem iff
3d [d is a proof of r from A
where A is the recursive set of axioms. The part in brackets is

recursive. [

Take again the example of ZF set theory. By Theorem 7.1, the set of
theorems of ZF isr.e. It follows that the sentences of arithmetic provable in
ZF (this can be made precise) form a r.e. set. So they cannot coincide with
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the true sentences of arithmetic. Either too much is provable (and ZF is
lying to us) or too little is provable.

Now let us go one step further and suppose that we have a recursively
axiomatizable theory that is complete (i.e., for any sentence o, either o or
(— o) is a theorem). Then we can strengthen Theorem 7.1; the theory is
actually decidable.

7.2. THEOREM. A complete recursively axiomatizable theory has a recursive
set of theorems.

Proor. The conclusion certainly holds if the theory is inconsistent, so
assume the theory is consistent. Suppose we are given a sentence o and we
want to decide whether it is a theorem. We generate a listing of all the
theorems; by Theorem 7.1 this is possible. Eventually either o or (—o)
appears in the listing. When this happens, we can stop and give the correct
answer. [J

Theorem 7.2 is the basis for a number of decidability results; see Chapter
C.3. Of course it suffers from the limitation of being applicable only to
theories that are complete.

Properly viewed, proofs and calculations are objects of the same sort. A
calculation (written down with all the steps) is a proof that the value of a
function of a given argument is a certain number. And a proof is a
calculation of one value of the function whose domain is the set of
theorems. It is a calculation in the sense of being a finite and verifiable
record that correct procedures have been followed.

For example, it turns out that a set R of numbers is recursive iff it is
binumerable in first-order Peano arithmetic (cf. Section 3). Here the role of
Turing machine computations is played by the formal deductions, modus
ponens and all, establishing that a given number is indeed in the set.

Turing machines themselves have proved to be convenient tools in a
variety of undecidability problems in logic. Take for example the result of
Kanr, Moore and WanG [1962] that for any formula ¢ we can effectively
find an W3V formula that is satisfiable iff ¢ is satisfiable. This is not proved
by syntactical manipulations on ¢, but instead by finding for each Turing
machine M an Y3V formula that is satisfiable iff M never halts. This,
together with results of the previous section, yields the existence of the
desired reduction.

Or suppose we want to prove that the set of sentences having models of
every non-zero cardinality is undecidable. We can do this by showing how,
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given a Turing machine M, to find effectively a sentence that has models of
every non-zero cardinality iff M never halts.

8. Degrees of unsolvability

All of the non-recursive sets have unsolvable decision problems. But
some are more unsolvable than others. In this section we will see how some
amount of order can be imposed on the unsolvable problems.

Consider a partial function f on &, and let & be a subset of N™. It may be
possible to compute f if we are given oracles for each function in 3. Define
f to be recursive in @ if there exists some recursive partial function g and
some Bi,..., 5. in @ such that

fE)=g(Bi.... B)

for all z. Other definitions can then be “relativized to 3. For example a
subset of A is recursive in 3 if its characteristic function is recursive in 3,
and it is semi-recursive in 3@ if it is the domain of some partial function
recursive in @, Usually 3 will be a singleton {B}, so that we speak of
recursiveness in B and so forth.

The extreme case of # = N" deserves special mention. When we give
ourselves oracles for all functions in N, matters of recursiveness are
washed out. On a countable space ., every function is recursive in N¥, But
for uncountable & this does not happen. If f is recursive in N then in
calculating f{a) there is still one restriction: We can use only a finite
amount of information about a. That is, there must be some y (depending
on a) such that f(e) = f(y) for any y agreeing with @ at the first y values.
This is exactly the condition for f to be continuous, when we put the
discrete topology on N and the product topology on N The space & is
then given the product topology.

8.1. THEOREM. (a) A function on N is recursive in N iff it is continuous.
(b) A subset of N is semi-recursive in N™ iff it is open.

All the uncountable spaces & are homeomorphic to N, For example a
homeomorphism from N"x N onto N* can map (e 8) to the function
taking 2x = a«(x) and 2x + 1+~ B(x). And N" is homeomorphic to the
irrationals; the mapping here uses continued fractions. Thus it is possible to
give a uniform treatment of topological set theory of the irrationals on the
one hand and recursion theory of A" on the other. Both sides gain from this
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connection. For further discussion on this vein, see Chapter C8 on
descriptive set theory,

But we have strayed from our main topic. We will be concerned with a
special case of relative recursiveness. Let « and 8 be members of N* Then,
by our previous definition, « is recursive in 8 iff there is a recursive partial
function g for which

al(x)=g(x,B).

{Although both & and 8 are total, we cannot demand that g be total.) If &
is recursive in B, then we write @ = and say that « is Turing reducible to
B. We can also (and in fact equivalently) work with subsets of M: say that A
is recursive in B (written A =;B) if the characteristic function of A is
recursive in the characteristic function of B,

8.2. Tueorem. The binary relation =y (either on N or on P(N)) is reflexive
and iransitive.

On an informal level, transitivity of =; corresponds to connecting
machines in series.

As a consequence of the above theorem, the symmetric relation of
Turing equivalence

a=rF ff o=,Band B =ra

is an equivalence relation on N, Let [a ] be the equivalence class of a. The
equivalence classes are called degrees of unsolvability. The degrees are
partially ordered by the relation

[e]=[B] f a=q8

(Clearly this is well defined on equivalence classes.) We get the same
degree structure on 2 (M) as on N, since for any a we can find a set B with
a Turing equivalent to the characteristic function of B,

Thus the degrees of unsolvability are partially ordered according to just
how unsolvable they are. There is obviously a least degree 0, consisting of
the recursive functions. Because for any fixed function B the set
{a: a =8} is countable, it follows that each degree is a countable set of
functions. Consequently there are 2™ degrees. Another consequence is that
any chain of degrees — any linearly ordered subset — has cardinality at
most M;. This strongly suggests that incomparable degrees exist. This
suspicion can be proved to be correct (without having to deny the
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continuum hypothesis). We can simultaneously construct @ and B so as to
sabotage each machine that might reduce one function to the other.

In fact much more is true. There is an antichain — a set of degrees no
two of which are comparable — of cardinality 2%. This result is just a piece
of the extensive information known about the degrees. See Chapter C.4 for
much more on this topic.

Call a degree recursively enumerable (r.e.) if it is the degree of some r.e.
set. Recall that the set

K ={x: {x}Hx)< =}

is a r.e. subset of N that is not recursive. Hence the degree of K, denoted 0,
is a r.e. degree greater than 0. In Section 9 we will consider the question
whether there are other r.e. degrees (Post's problem).

The passage from @ to K can be relativized to give us a function A » A’
on P(MN). Define the jump of A (denoted A') to be the set

{x: {x}* (x) <=}
where {x}* is the partial function recursive in A with index x, i.e.,

{x}*(y)={x}(y, xa)

where ya is the characteristic function of A. Then A'isr.e.in A, but isnot
recursive in A ; the proof is the same as for K. In fact by relativizing the
proof of the corresponding result for K we have the following.

8.3, Tueorem. (i) A’ is re. in A but is not recursive in A.
(i) Aset Bisre.in Aif B=.,A".

Thus among the sets that are r.e. in A, its jump A’ ranks highest with
respect to one—one reducibility. It follows from the foregoing theorem that
the jump operation is well defined on degrees.

8.4. TuEorEM. A =B if A'=,B".

This lets us define for each degree a its jump a'. By Theorem 8.3 we have
a<a'. And so we can continue: a<a'<a"<---. In particular there is no
largest degree. And above any degree we can find a chain of order type w.
In fact we can find one of the order type of the first uncountable ordinal; at
limit ordinal steps we gather together all the previous sets in some
systematic way.
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9, Creative and lesser sets

As observed in Section 7, any recursively axiomatizable theory hasar.e.
set of theorems. Thus r.e. sets are of particular significance for logic. For
example one could hope that by classifying r.e. sets one would obtain an
interesting classification of axiomatizable theories. The binary classification
of r.e. sets into the recursive and non-recursive sets partitions theories into
decidable and undecidable theories. But one could hope for a refinement
of this binary split.

The first classification to examine comes from the degrees of unsolvabil-
ity. And next one could examine the refinement obtained from other
reducibilities. Clearly

As, B3> As_B> A=.B
so when we define

A= B if As B&B=A,

A=_B if As B&B=_A

the equivalence relation = is refined by = and further refined by =,.
Section 6 shows that there is a largest r.e. degree (the degree of K) with
respect to each of these reducibilities.

But what about the other r.e. degrees? Each such degree contains
axiomatizable theories:

9.1. Tueorem (FErerMan [1957]). Every re. degree of unsolvability con-
tains a recursively axiomatizable theory.

Proor. For any set A of numbers we can form a theory in the language of
equality by taking as axioms the set

{—e,:nEA}

where £, is the sentence “there are exactly n things in the universe™. Then
the set of theorems is Turing equivalent to A. If A is r.e. then we certainly
have a r.e. set of axioms. But any theory whose axioms can be recursively
enumerated {oy, o, 05...} has a recursive set of axioms
[ogopnao,o o ad,... ;. O

HanF [1965] has shown that this theorem can be strengthened by
requiring that the theory be finitely axiomatizable. But the effect of the
theorem is offset by the empirical observation that all “natural” r.e.
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theories are either of degree 0 or of degree 0'. Proofs that a theory T is
undecidable generally show, in effect, that the halting problem for Turing
machines is reducible to T. And the reducibility here is (or can become) <,,
so that the proof shows that K =, T. If T is recursively axiomatizable, then
we have T = K.

For the cases of =, and =, we can give an intrinsic characterization of
the sets in the highest r.e. degree. Theorem 6.2 states that a r.e. set A is
non-recursive iff each r.e. subset of its complement A fails to fill A. By
uniformizing this last condition, we obtain the following definition, due to
Post [1944].

9.2, DerpniTioN. A set A of numbers is creative if A is r.e. and there
exists a recursive partial function f such that whenever W, C A then
flx)EA =W,

The function f in this definition is called a productive function for A. For
example, our set K is creative; we can take f(x)=x.

9.3, THEOREM (MYHILL [1955]). The following conditions on a set of num -
bers are equivalent.
(i) A is creative.
(ii) A is a r.e. set to which all r.e. sets are =-reducible.
(iii) A is a r.e. set to which all r.e. sets are =, -reducible.

Trivially (i) = (iii) and it is not hard to show that (iii) = (i). The main
part of the proof is establishing (i) = (ii). This breaks down into two steps,
first showing that a creative set has a one-to-one total productive function,
and secondly using a version of the recursion theorem.

The above theorem implies that the usual undecidable axiomatizable
theories such as first-order Peano arithmetic have creative setsof theorems.

There is still the question of what (if anything) lies between the recursive
sets and the creative sets. For =,, and =, reducibilities, the existence of
intermediate sets was established by Post [1944]. He noted that a creative
set must have a very rich complement, and proceeded to construct sets with
sparse complements. Call a r.c. set S simple if § is infinite but includes no
infinite r.e. subset.

9.4, THeoreMm (Post [1944]). Simple sets exist,

Proor. Imagine a fixed method of enumerating all r.e. sets. For each n, put
into § the first discovered (if any) member of W, that is greater than 2n.
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Then § is r.e., § intersects every infinite r.e. set, but § contains at most n
of the first 2n + 1 numbers. [J

A simple set is obviously non-recursive, And it is easy to generate an
infinite r.e. subset of the complement of any creative set, so a simple set
cannot be creative. Thus the above theorem establishes the existence of r.e,
sets of intermediate =,, and =, degree. “*Post’s problem™ is the question
whether there are r.¢. sets of Turing degree intermediate between 0 and 0.
This question is not answered by the simple sets, which can be of degree 0’
Post had hoped that by placing even more stringent requirements on §, he
could force § to be of intermediate degree of unsolvability. This approach
turned out to be unsuccessful. Finally in 1956 (two years after Post’s death)
the problem was solved simultaneously and independently by Friedberg (in
his senior thesis at Harvard and in FRIEDBERG [1957]) and MuénIk [1956] in
the Soviet Union. They showed that intermediate r.e. degrees do exist, and
in great profusion. Their method of proof has been termed the “‘priority
method”. In broad terms, this method involves a construction in which
there are infinitely many requirements to be satisfied. But some of these
requirements conflict with one another, so at various stages of the
construction one must satisfy requirements of high priority, allowing those
of lower priority to be injured. If all goes well, at the end each requirement
has received enough attention for the construction to succeed.

Since 1956 the r.e. degrees have been studied extensively. We will quote
here two theorems, both due to Sacks [1964, 1963]. The r.e. degrees are
dense, in that if a<c then a<b<c for a third r.e. degree b. And any
countable partial ordering can be embedded in the partial ordering of r.e.
degrees. (For this it suffices to embed some countable atomless Boolean
algebra — as a partial ordering — in the r.e. degrees.)

10. Definability and recursion

Mathematics is, as it has always been, largely the science of measure-
ment. But “measurement™ must here be understood as referring to more
than the meter stick. The genus of a topological figure measures one of its
aspects; objects of genus zero are in a sense simpler than those of higher
genus, There are many dimensions of measurement in mathematics, and
they go by many names: characteristic, transcendence degree, cardinality,
fundamental group, etc. Occasionally we are so successful in the science of
measurement that we can completely characterize an object (at least to
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within some concept of isomorphism) by giving, as it were, its latitude and
longitude, i.e., its measurements in the relevant dimensions.

Usually the measurement values in a particular dimension can be
ordered or at least partially ordered. They then induce a ranking on the
objects being measured, according to whether the measurement of the
object vields a value that is small or large.

MNow consider the case of measurement of sets of natural numbers. This
case is not as specialized as it might seem, since it is applicable to anything
that can be encoded into sets of numbers, such as formal languages (sets of
strings of symbols). First of all we have a binary measurement: a set of
numbers can be recursive or non-recursive. For example the set of primes
is recursive, and the set of theorems of set theory or group theory, suitable
encoded, is not recursive. There are countably many recursive sets, so
almost all sets (in the usual measure on P(N)) are non-recursive.

The degrees of unsolvability provide one scale of measurement, indicat-
ing how far a set is from being recursive, But the degrees themselves form
an untidy array, with only a few reliable bench marks to help us get our
bearings.

The scale of measurement to be treated in this section is definability. It is
applicable, in the present context, to sets that are definable in the structure
N =(N,0, 5, +,-) by formulas of first or second order. For each natural
number n, let n be the corresponding numeral in the formal language of M.
A formula ¢ (x) with just x free is said to define A in N if for every n,

neEA < NEg()

(This notation is from Chapter A.1.) Thus A consists of exactly those
numbers making ¢ true in M. In the case of a k-ary relation, we use a
formula @(x,,...,x,) with several free variables.

Obviously only countably many sets are definable. We can produce an
artificial example of a non-definable set by diagonalization. Nevertheless,
among the N, sets that are definable in 3 lic most of the interesting sets of
numbers. After all, if we are interested in A, then we probably know what
A is, and that knowledge can probably be formalized to yield a definition
of A in M.

If a set is definable in 9, then we want to have a measurement indicating
how definable it is. For a start, call a set arithmetical if it is definable in <
by a first-order formula, and call it analytical if it is definable by a
second-order formula. Then the arithmetical sets constitute a subclass of
the analytical sets, and it is a subclass of sets that are more ecasily definable
than are the sets in its complement.
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Within the class of arithmetical (or analytical) sets, we can ask for finer
measurements as to just how definable a given set is. For example, we
could use as a measurement the length of the shortest defining formula, or
the number of quantifiers. But to obtain intrinsically significant measure-
ments, some care is needed.

For example, exponentiation (as a ternary relation) is definable in . But
it is not easy to find a defining formula, and any defining formula will be
fairly long. Yet our decision to include addition and multiplication in M and
to exclude exponentiation was rather arbitrary. We want measurements
that are free from such arbitrary choices. For this reason we decide to
measure “‘definability modulo recursiveness’”. We have available the
following theorem, which is essentially due to GopeL [1931].

10.1. THeoremM. Every recursive relation on N is arithmetical.

The proof uses the techniques of Section 4 to translate statements about
Turing machines into statements about numbers. It is necessary to have an
arithmetical way of encoding a sequence of numbers into a single number.
The Chinese remainder theorem provides such a method.

From this theorem we can further conclude that r.e. relations on N are
also arithmetical, since the defining formula for {x: 3y R (x, y)} requires
only one quantifier more than the defining formula for R. And comple-
ments of r.e. relations are arithmetical, and so forth.

Before making that “and so forth™ more systematic, we should note that
we can now prove the undecidability of number theory. Let T be the set of
sentences true in M, suitably encoded into numbers. The set K is
arithmetical, and so for some formula ¢, we have x € K iff ¢(x)E T. But
this yields K =, T, so T cannot be recursive. We will see presently that a
modification of this argument shows that T is not even arithmetical,

To return to definability, note that another consequence of Theorem
10.1 is that the arithmetical relations on N are exactly those definable in the
structure with universe N and with all recursive relations. This is the
natural structure in which to measure definability modulo recursiveness.
Any relation definable in this structure is of course definable by a formula
in prenex form. We will use the number of alternations between universal
and existential quantifiers in that prenex formula as a measure of
definability.

We can formulate these ideas in the following way, and for an arbitrary
space N. Let I, be the class of recursive relations. Define X, |, to be the
class of all projections of [T, relations, where in the present context P is
called a projection of R if
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P={z: 3y, --- Iy, R(y;,.... ¥ E)}.

Thus if R is a (k + [, m )-ary relation, then P is a (k, m )-ary relation. We
allow projection here only along numerical axes, not function axes. To
complete the definition, let IT, be the class of complements of relations
in X

An equivalent definition of X, and IT, can, at least for countable X, be
formulated in terms of the structure | with universe N and with all
recursive relations. A relation is in X, ., iff it is definable in R by a prenex
formula having n alternations between universal and existential quantifi-
ers, and whose outermost quantifier is existential. IT,., can be given a
similar characterization, wherein the outermost quantifier is universal. (For
uncountable &, analogous characterizations are possible, if provision for
function variables is made. We must allow formulas expressing &(x) = y.)

Although we have deliberately shifted from the structure N to |, it was
proved in 1970 that the above paragraph remains correct with 3, in place of
. Matijacevié’s theorem that solved (or rather unsolved) Hilbert’s tenth
problem shows that any r.e. set of numbers can be put into the form

{y: 3x(p(xy)=qx y)i

where x EN" and p and q are polynomials over N. For details on this
theorem, see Chapter C.2.

To return to the arithmetical hierarchy, it is convenient to define also the
class

'dn:}'_"nn”n

when n = 1. For example, Theorem 6.2 implies that 4, is the class of
recursive relations, since X, is the class of semi-recursive relations and IT,
is the class of complements of semi-recursive relations. By using vacuous
quantifiers in defining formulas we can easily establish the following
inclusions.

The class of arithmetical relations is the union of all these classes. All the
inclusions shown above are proper. This follows from the hierarchy
theorem below, due to KLEe~E [1943].
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10.2. TueoreM. For each k, m, and n:

(i) There is a (k +1,m)ary relation in X,,, that is universal for
(k, m)-ary relations in 2, (ie., every (k, m}yary relation is obtainable by
holding the first numerical variable fixed as a parameter).

(ii) There is a (k, m)-ary relation in X, ., that is not in IT,.,.

Part (ii) follows from part (i) by diagonalization, and part (i) follows from
the Normal Form Theorem,

It is easy to see that both X, and [, are closed under many-one
reducibility. They are not closed under Turing reducibility, since every set
of numbers is recursive in its complement,

We can now extend our proof that the set T of sentences true in 9 is not
recursive, to show that T is not arithmetical. In place of K, take any X,
subset A of M that is not IT,,,. Then as before A =, T, so T cannot be
II,.,. Since n is arbitrary, T cannot be arithmetical.

We can relate the arithmetical hierarchy to the jump operation on
degrees of unsolvability, thus linking the definability concepts with the
ideas of Section 8. The jump operation was there characterized by an
existential quantifier, which corresponds to projection of relations. This
line of thought leads eventually to the theorem below, which is proved by
iteration of Theorem 8.3(ii). Let @’ be the result of applying the jump
operation s times to B

10.4. THEOREM (PosT [1948]). A subset of N is in X, iff it is r.e. in g™
(and this holds iff it is one—one reducible to 0™*"). It is in 4,,, iff it is
recursive in 9.

Recall that the analytical sets are those definable in i by formulas of
second order. As in the arithmetical hierarchy, we can use the number of
alternations between universal and existential quantifiers (now quantifying
function variables) as a measurement of definability. Let

X, = IT, = the class of arithmetical relations.

Define ., to be the class of all projections along function axes of
relations in [T! Thus a relation in .., is of the form

{x: Fa,---Fey Rz, @y, ..., o)}

where R isin [T} Define IT} to be the class of complements of relations in
X, and define A to be X,N 1T},
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The simplest facts about the arithmetical hierarchy can be extended to
the analytical hierarchy. We have the inclusions:

All inclusions here are proper, by a hierarchy theorem directly analogous
to Theorem 10.2.

These classes in the analytical hierarchy enjoy stronger closure proper-
ties than do their counterparts in the arithmetical hierarchy. This is
illustrated by Theorem 10.5 below, which is a quantitative version of the
transitivity of definability. The classes X% and 3P are defined by replacing
recursiveness by the relativized notion of recursiveness in B

10.5. TransTiviTy THEOREM, Assume that of C N and B € N
(i) dcEl &EBEA. D AEZ Lni
(ii) HEXFEBEA,DHAET iwin

The proof of (i) is straightforward. The proof of (ii), due to SHOENFIELD
[1962], begins by writing

ied o Iy[y=B& Oz, 7))

where Q isin X ,,. The expression on the right is then put into prenex form.
Part (ii) prevents having an analogue of Post’s theorem (Theorem 10.4)
hold for the analytical hierarchy.

What is in 417 A clue is provided by descriptive set theory. When we
relativize recursiveness to N, then X, becomes the class of projections of
Borel sets of finite rank. These are the analytic or A-sets of descriptive set
theory. Souslin’s theorem Sousvin [1917] shows that a set and its comple-
ment are both analytic iff the set is a Borel set. This suggests, by analogy,
that A, consists of the sets obtained by extending the arithmetical
hierarchy into the transfinite. This is exactly correct; the hierarchy is called
the hyperarithmetical hierarchy. It can be constructed by suitably iterating
the jump operation over all ordinals that are “‘recursively countable” in the
sense of being the order type of some recursive well ordering of numbers.

Determining the location of a given set in these hierarchies reduces to
two problems. First there is the (usually easy) matter of establishing the
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positive fact that the set in question does belong to, say, X 1. Then there is
the negative task of showing that this is the best possible result, by showing
that the set does not belong to the dual class IT;. Take for example the
subset R of N consisting of the total recursive functions from N into N.
Then R € X, because

aER ¢ JeVx Iy [Tlelx)y) & U(y)= al(x)]

and the part in brackets is recursive. SHOENFIELD [1958] has shown that R is
not in IT,.

We have seen that the set of true sentences of arithmetic is not
arithmetical. This set does lie in the hyperarithmetical hierarchy, at level w.
This is a sharpening of Gédel's incompleteness theorem, which asserts that
the set is not r.e. But now consider the characteristic function 7 of the set of
true sentences. Then the singleton {r}, as a subset of N, is in IT,. To prove
this we look closely at the definition of satisfaction in 3 (Definition 3.8 of
Chapter A.1). Viewed as conditions on 7, the definition is a [T, statement
that is true of  and nothing else. Since {7} is in [T, it follows easily that
truth is in A}:

5is true & Va [a E{r] = a(s)=1]
& Ja[e it & a(s)=1].

The class of well orderings of N can be identified with a subset of N,
namely
{a € N™ {(x,y): a((x, y}) =0} well orders N}.

It is easy to see that this set is in I1}; we just write out its definition
carefully and then count quantifiers. The set is not in Z1; in fact by a
classical result it is not even analytic,

11. Recursive analogues of classical objects

The recursive functions are those you can actually write computer
programs for; the others are more slippery and elusive. If one wants to
approach mathematics from a constructive viewpoint, the recursive func-
tions have a firmer ontological status than the others. One can, in principle,
approach a mathematical object (the set of countable ordinals and the set
of real numbers will be featured examples), and extract that part of it that is
sufficiently constructive to be treated by recursion theory. This constructive
part can then be viewed as a recursive analogue of the original.
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As a preliminary example, let us consider the extent to which the
collection R of total recursive functions on M is an analogue for the
collection N" of all functions on N. There is the obvious disparity of size; N
is uncountable whereas there are only countably many recursive functions.
But the complete analogue of the uncountability of N would say that there
is no recursive one-to-one correspondence between the natural numbers
and indices of total recursive functions. One formulation of this phenome-
non is the following simple result.

11.1. Tueorem. There is no rtoral recursive function [ on N such that
{fin)l: n € N} coincides with the collection R of total recursive functions.

Proor. As in the proof of the uncountability of N, we diagonalize. The
equation g(x)={f(x)}(x)+ 1 defines a total recursive function that f has
omitted, There is another proof that gives more quantitative information,
From the fact (see Section 10) that R is not [1;, we conclude that there
cannot be any X, set A such that R={{xp x€ A} O

The operations of addition, multiplication, and composition of functions
are applicable to R as well as to W™, But from the recursive viewpoint we
need additional information: it must be possible, given indices of f and g,
to find effectively indices for f+ g, f-g and feg To prove that this can
indeed be done, observe for example that {x}{z)+{y}(z) is a recursive
partial function of x, v, and z, and apply the parameter theorem,

We can summarize this by saying that the operations of addition,
multiplication, and composition of functions are “effective on the indices™.
That is, each of our functions has indices that denote it, and operations on
the functions are induced by operations on the indices, which in the present
case are recursive operations. This phenomenon will recur in the subse-
quent examples: the constructive members of the classical object come
with indices that denote them, and effective operations must work with
these names.

For a more serious example of a recursive analogue of a classical object,
take (as a classical object) the set of countable ordinals. Knowing that
ordinal numbers are useful in transfinite constructions (as in the Borel
hierarchy), we should not be surprised to find that a recursive analogue
would be useful in transfinite constructions in recursion theory (as in the
hyperarithmetical hierarchy, mentioned in the preceding section).

A cheap analogue is provided by the set

W = {x: {x}"" encodes a well ordering},
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where f is said to encode a well ordering if f is a total function from N XN
into {0, 1} and {(x, ¥): f(x, y) =0} is a well ordering of a subset of M. More
briefly, we can refer to W as the set of indices of recursive well orderings.
For x in W, let | x|| be the ordinal number of the corresponding well
ordering. Since an initial segment of a recursive well ordering is another
such ordering, the set {||x|: x € W} is an initial segment of the countable
ordinals. Its least upper bound will be called “recursive w,”. Although
recursive w, is countable, it is the first ordinal that is not recursively
countable.

Unfortunately, W has some deficiencies that impair its usefulness. For
example, given x in W, we cannot tell effectively whether | x |} is a successor
ordinal. Even if it is a successor ordinal, we cannot effectively find a
member of W denoting the predecessor.

A better quality analogue is provided by a system of ordinal notations
introduced by KLeeng [1938]. The set O is built up from below, unlike the
set W, We will give an inductive definition simu ltaneously for the set O, the
binary relation <o, and a map x = |x| from O into the ordinals. (The
definition differs only slightly from Kleene's version.)

(i) 1€ O and |1|=0. Thus 1 is the unique number denoting the ordi-
nal 0.

(i) If x€O then 2?€0. x<,2% and | |=|x|+1. This is the
successor step.

(i) If x <oy <oz then x <gz. The relation <o will in the end be a
partial well ordering on O.

(iv) If {e} is a total recursive increasing sequence of notations {i.e.,
le N—> O and {e}(n)<of{e}(n+1) for each n), then 3I-50,
le}(n)<o3-5° for each n, and |3-5"|= sup{|{e}(n)|: n EN}.

This inductive definition assigns notations to an initial segment {[x|:
x € O} of the countable ordinals. It turns out that the least ordinal not
receiving a notation is again recursive w,. In fact there are several other
ways to characterize recursive w.: it is the the least ordinal that is not the
order type of any X} well ordering of numbers, and it is the least admissible
ordinal after w (in the sense of Chapter C.5).

As a final example of recursive analogues, we will consider recursive real
numbers. This subject was first treated in Turing [1936]; a more recent
reference is Rice [1954). Any real number can be approximated by
rationals, but we want to single out those numbers for which we can
effectively generate rational approximations, and with a known estimate of
the error. These are the realest of the reals.

Just as there are several ways to construct the reals from the rationals, so
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are there several equivalent ways of making precise the concept of a
recursive real. For example, we could require that the binary expansion of
the fractional part of the number be given by a recursive funtion. Equiva-
lently, we can adapt the Cauchy sequence construction. To each natural
number n assign the rational number r(n) = ((n),— (n))/((n);+ 1). Then
say that ¢ denotes a recursive real if {¢} is total and whenever m = n then

e} (n) = rie}(m)] < 5+

The essential feature of both definitions is that we can effectively produce
both upper and lower rational bounds converging to the number.

The recursive reals form a field, since for x# () we can get rational
bounds of the same sign which then convert to rational bounds on 1/x. (But
given that ¢ denotes a recursive real, there is no effective way to decide
whether that real is zero.) Not only do we get a field, but the algebraic
operations are “effective on the indices™, e.g., there is a recursive function f
such that if @ and b denote recursive reals then f(a, b) denotes their sum.

The algebraic real numbers are all recursive. In fact it is not too hard to
see that the recursive reals form a real closed ordered field, i.e., an ordered
field in which any polynomial that changes sign has an intervening root.
Consequently the result of adjoining W' —1 to the field is algebraically
closed. (See van bER WagRDEN [1953], section 70.) Furthermore by Tarski’s
theorem, the field of recursive reals is elementarily equivalent to the field
of all real numbers (see Chapter A.2).

In addition to the algebraic numbers, various transcendental numbers
such as e and # are recursive, since there are well-known methods of
churning out convergent upper and lower rational bounds.

The recursive reals are not as kind to analysts as they are to algebraists,
The following example occurs in Rice [1954]; see also SpEckeR [1949]. Start
with a non-recursive r.e. set K. There is a one-to-one total recursive
function f whose range is K (think of f(n) as the (n + 1)-st distinct number
to emerge in an effective enumeration of K). Consider the set of rational
numbers:

1] 1 1 1 1 1

2@ T g T o T g

This is a bounded recursive set of rational numbers. But its least upper
bound (which is the only limit point of the set) is not a recursive real
number, lest K be recursive.

Finally, let us consider the analogues of functions of a real variable. A
function F from the set of recursive reals into itself is called a recursive
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operator if there is a recursive partial function f such that whenever e
denotes a recursive real x then f(e) is defined and denotes F(x). Thus f,
working on the indices, performs F. We state without proof the following
result.

11.2. TueoreM (KreiséL, LacomBé and SHoenFlELD [1939], Ceimin
[1959]). Every recursive operator is continuous. Moreover, given an e
denoting a recursive real and a positive rational &, we can effectively find a &
that works.
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