J.Donald Monk

Mathematical Logic

.

)

Springer- Verlag
New York Heidelberg Berlin
1976

J. Donald Monk
Department of Mathematics
University of Colorado
Boulder. Colorado 8032

Editorial Board

P. R. Halmos F. W. Gehring C. C. Moore

Managing Editor University of Michigan University of California at Berkeley
University of California Departiment of Mathematics Department of Mathematics
Department of Mathematics Ann Arbor, Michigan 48104 Berkeley, California 94720

Santa Barbara, California 93106

AMS Subject Classifications
Primary: (02-xx
Secondary: 10N-xx, 06-XX, O8-X X, 26AY8

Library of Congress Cataloging in Publication Data

Monk, James Donald. 1930
Mathematical logic.

(Graduate texts in mathematics ; 37)

Bibliography

Includes indexes.

1. Logic. Symbolic and mathematical. L Title, 11, Series.
QAQ. M6R 511°.3 7542416

All rights reserved.

No part of this book may be ranslated or reproduced in any form without written permission from
Springer-Verlag.

© 1976 by Springer- Verlag Inc,

Printed in the United Siates of America

ISBNO-387-90170-1 Springer-Verlag New York

ISBN 3-540-90170-1 Springer-Verlag Berlin Heidelberg

to Dorothy

Preface

This book is a development of lectures given by the author numerous times at
the University of Colorado, and once at the University of California, Berkeley. A
large portion was written while the author worked at the Forschungsinstitut fur
Mathematik, Eidgennossische Technische Hochschule, Ziirich.

A detailed description of the contents of the book, notational conventions, etc. .
is found at the end of the introduction.

The author’s main professional debt is to Alfred Tarski, from whom he learned
logic. Several former students have urged the author to publish such a book as this;
for such encouragement 1 am especially indebted to Ralph McKenzie.

I wish to thank James Fickett and Stephen Comer for invaluable help in finding
(some of the) errors in the manuscript. Comer also suggested several of the
exercises. '

J. Donald Monk
October, 1975

Contents

Introduction 1
Interdependence of sections 9
Part |
Recursive Function Theory B
1. Tunng machines | 14
2. Elementary tecursive and primitive recursive functions 26
3. Recursive functions; Turing computability 45
*4, Markov algorithms 69
5. Recursion theory 76
6. Recursively enumerable sets 62
7. Survey of recursion theory 105
Part [
Elements of Logic 113
*8. Sentential logic 115
*§, Boolcan algebra 141
10. Syntactics of first-order languages 162
11. Some basic results of first-order logic 194

#12. Cylindric algebras 219

Part il
Decidable and Undecidable Theories

13.
14.
15.
16.
7 8

Some decidable theories

Implicit definability in number theories
General theory of undecidability

Some undecidable theories
Unprovability of consistency

Part IV

Model Theory

18.
19.
*20.
21
L
*23.
24,
25,
26.
27.
28.

Construction of models

Elementary equivalence

Nonstandard mathematics

Complete theories

The interpolation theorem

Generalized products

Equational logic

Preservation and characterization theorems
Elementary classes and elementary equivalence
Types

Saturated structures

Part V

Unusual Logics

29.
30.
1

Inessential variations
Finitary extensions
Infinitary extensions

Index of symbols

Index of names and definitions

262
279
298

309

311
327
341
349
365
376
384
393
406
441
454

471

473
488
504

521

325

Introduction

Leafing through almost any exposition of modern mathematical logic,
including this book, one will note the highly technical and purely mathe-
matical nature of most of the material. Generally speaking this may seem
strange to the novice, who pictures logic as forming the foundation of mathe-
matics and expects to find many difficult discussions concerning the philos-
ophy of mathematics. Even more puzzling to such a person is the fact that
most works on logic presuppose a substantial amount of mathematical back-
ground, in fact, usually more set theory than is required for other mathe-
matical subjects at a comparable level. To the novice it would seem more
appropriate to begin by assuming nothing more than a general cultural
background. In this introduction we want to try to justify the approach used
in this book and similar ones. Inevitably this will require a discussion of the
philosophy of mathematics. We cannot do full justice to this topic here, and
the interested reader will have to study further, for example in the references
given at the end of this introduction. We should emphasize at the outset
that the various possible philosophical viewpoints concerning the nature or
purpose of mathematics do not effect one way or the other the correctness
of mathematical reasoning (inciuding the technical results of this book). They
do effect how mathematical results are to be intuitively interpreted, and which
mathematical problems are considered as more significant.

We shall discuss first a possible definition of mathematics, and then turn
to a deeper discussion of the meaning of mathematics. After this we can in
part justify the methods of modern logic described in this book. The intro-
duction closes with an outline of the contents of the book and some comments
on notation.

As a tentative definition of mathematics, we may say it is an a priori, exact,
abstract, absolute, applicable, and symbolic scientific discipline. We now

Introduction

consider these defining characteristics one by one. To say that mathematics
is @ priori is to say that it is independent of experience. Unlike physics or
chemistry, the laws of mathematics are not laws of nature or dependent upon
laws of nature. Theorems would remain valid in other possible worlds, where
the laws of physics might be entirely different. If we take mathematical
knowledge to mean a body of theorems and their formal proofs, then we can
say that such knowledge is independent of all experience except the very
rudimentary process of mechanically checking that the proofs are really
proofs in the logical sense—lists of formulas subject to rules of inference.
Of course this is a very limited conception of mathematical knowledge, but
there can be little doubt that, so conceived, it is a priori knowledge. Depending
on one’s attitude towards mathematical truth, one might wish to broaden
this view of mathematical knowledge; we shall discuss this later. Under
broadened views, it is certainly possible to challenge the a priori nature of
mathematics: see, e.g., Kalmar [6] (bibliography at the end of this intro-
duction).

Mathematics is exact in the sense that all its terms, definitions, rules of
proof, etc. have a precise meaning. This is especially true when mathematics
is based upon logic and set theory, as it is customary to do these days. This
aspect of mathematics is perhaps the main thing that distinguishes it from
other scientific disciplines. The possibility of being exact stems partially from
its @ priori nature. It is of course difficult to be very precise in discussing
empirical evidence, because nature is so complex, difficult to classify, obser-
vations are subject to experimental error, etc. But in the realm of ideas
divorced from experience it is possible to be precise, and in mathematics one
is precise. Of course some parts of philosophical speculation are concerned
~ with a priori matters also, but such speculation differs from mathematics in
not being exact.

Another distinguishing feature of mathematical discourse is that it is
generally much more abstract than ordinary language. One of the hallmarks
of modern mathematics is its abstractness, but even classical mathematics is
very abstract compared to other disciplines. Number, line, plane, etc. are not
concrete concepts compared to chairs, cars, or planets. There are different
levels of abstractness in mathematics, too; one may contemplate a progression
like numbers, groups, universal algebras, categories. This characteristic of
mathematics is shared by many other disciplines. In physics, for example,
discussion may range from very concrete engineering problems to possible
models for atomic nuclei. But in mathematics the concepts are a priori,
already implying some degree of abstractness, and the tendency toward
abstractness is very rampant. ;

Next, mathematical results are absolute, not revisable on the basis of
experience. Again, viewing mathematics just as a collection of theorems and
formal proofs, there is little to quarrel with in this statement. Thus we see
once more a difference between mathematics and experimental evidence; the
latter is certainly subject to revision as measurements become more exact.

Introduction

Of course the appropriateness of a mathematical discipline for a given
empirical study is highly subject to revision. Experimental evidence and a
posteriori reasoning hence piay a role in motivation for studying parts of
mathematics and in the directions for mathematical research. One’s attitude
toward the absoluteness of mathematics is also colored by differing commit-
ments to the nature of mathematical truth (see below).

A feature of mathematics which is probably not inherent in its nature is
its applicability. A very great portion of mathematics arises by trying to give
a precise mathematical theory for some concrete, perhaps even nonmathe-
matical, situation. Of course geometry and much of classical mathematics
arose in this way from special intuition derived from actual sense evidence.
Also, logic owes much to this means of development; formal languages arose
from less formal mathematical discourse, the notion of Turing machine from
the intuitive notion of computability, etc. Many very abstract mathematical
disciplines arose from an analysis of less abstract parts of mathematics, and
may hence be subsumed under this facet of the discipline; group theory and
algebraic topology may be mentioned as examples. This aspect of mathematics
is emphasized in Rogers {12], for example.

Finally, the use of symbelic notation is a main characteristic of mathe-
matics. This is connected with its exact nature, but even more connected
with the development of mathematics as a kind of language. In fact, mathe-
matics is often said just to be a language of a special kind. Most linguists
would reject this claim, for mathematics fails to satisfy many of their criteria
for a language, e.g., that of universality (capability of expressing usual events,
emotions, ideas, etc. which occur in ordinary life). But mathematics does
have many features in common with ordinary languages. It has proper
names, such as = and ¢, and many mathematical statements have a subject—
predicate form. In fact, almost all mathematical statements can be given an
entirely nonsymbolic rendering, although this may be awkward in many cases.
Thus mathematics can be considered as embedded in the particular natural
language—English, Russian, etc.—in which it is partially expressed. But
also mathematics can, in principle, be expressed purely symbolically; in-
deed, a large portion of mathematics was so expressed in Russell and
Whitehead’s Principia Mathematica.

Now we turn to a discussion of the nature of mathematical truth. We shall
briefly mention three opposed views here: platonism, formalism, and in-
tuitionism. The views of most mathematicians as to what their subject is all
about are combinations of these three. On a subjective evaluation, we would
estimate the mathematical world as populated with 65%, platonists, 307,
formalists, and 59 intuitionists. We describe here the three extremes. There
are (perhaps) more palatable versions of all three.

According to extreme platonism, mathematical objects are real, as real as
any things in the world we live in. For example, infinite sets exist, not just

Introduction

as a mental construct, but in a real sense, perhaps in a *“hyperworld.” Simi-
larly, nondenumerable sets, real numbers, choice functions, Lebesgue measure,
and the category of all categories have a real existence. Since all of the mathe-
matical objects are real, the job of a mathematician is as empirical as that
of a geologist or physicist; the mathematician looks at a special aspect of
nature and tries to discover some of the facts. The various mathematical
statements, like the Riemann hypothesis or the continuum hypothesis, are
either true or false in the real world. The axioms of set theory are axioms in
the Greek sense—self-evident statements which form a partial basis to deduc-
tively arrive at other truths. Hence such results as the independence of the
continuum hypothesis relative to the usual set-theoretical axioms force the
platonist into a search for new insights and intuitions into the nature of sets
so as to decide the truth or falsity of those statements which cannot be
decided upon the basis of already accepted facts. Thus for him the inde-
pendence results are not results about mathematics, but just about the
formalization of mathematics. This view of mathematics leads to some
revisions of the “‘definition” of mathematics we gave earlier. Thus it no
longer is independent of empirical facts, but is a$ empirical as physics or
chemistry. But since a platonist will still insist upon the absolute, immutable
nature of mathematics, it still has an @ priori aspect. For more detailed
accounts of platonism see Mostowski {10] or Gédel [3].

In giving the definition of mathematics we have implicitly followed the
view of formalists. A formalist does not believe that any mathematical
objects have a real existence. For him, mathematics is just a collection of
axioms, theorems, and formal proofs. Of course, the activity of mathematics
is not just randomly writing down formal proofs for random theorems. The
choices of axioms, of problems, of research directions, are influenced by a
variety of considerations—practical, artistic, mystical—but all really non-
mathematical. A revised version of platonism is to think of mathematical
concepts not as actually existing but as mental constructs. A very extensive un-
derstructure for much of formalism is very close to this version of platonism—
the formal development of a mathematical theory to correspond to certain
mental constructions. Good examples are geometry and set theory, both of
which have developed in this way. And all concept analysis (e.g., analyzing
the intuitive notion of computability) can be viewed as philosophical bases for
much formal mathematics. Another motivating principle behind much
formalism is the desire to inter-relate different parts of mathematics; for
example, one may cite the ties among sentential logic, Boolean algebra,
and topology. Thus while mathematics itself 1s precise and formal, a mathe-
matician is more of an artist than an experimental scientist. For more on
formalism, see Hilbert [5], A. Robinson [11], and P. Cohen [2]. For another
discusston of platonism and formalism see Monk [9].

Intuitionism is connected with the constructivist trend in mathematics:
a mathematical object exists only if there is a (mental) construction for it.
This philosophy implies that much ordinary mathematics must be thrown

Introduction

out, while platonism and formalism can both be used to justify present day
mathematics. Even logical principles themselves must be modified on the
basis of intuitionism. Thus the law of excluded middle—for any statement A,
either A holds or (not A) holds—is rejected. The reasoning here goes as
follows. Let A, for example, be the statement that there are infinitely many
primes p such that p + 2 is also a prime. Then A4 does not presently hold,
for we do not possess a construction which can go from any integer m given
to us and produce primes p and p + 2 with m < p. But (not A) also does not
hold, since we do not possess a construction which can go from any hypo-
thetical construction proving 4 and produce a contradiction. One may say
that intuitionism is the only branch of mathematics dealing directly with real,
constructible objects. Other parts of mathematics introduce idealized con-
cepts which have no constructive counterpart. For most mathematicians this
idealism is fully justified, since one can make contact with verifiable, applicable
mathematics as an offshoot of idealistic mathematics. See Heyting [4] and
Bishop [1].

Now from the point of view of these brief comments on the nature of
mathematics let us return to the problem of justifying our purely technical
approach to logic. First of all, we do want to consider logic as a branch of
mathematics, and subject this branch to as severe and searching an analysis
as other branches. It is natural, from this point of view, to take a no-holds-
barred attitude. For this reason, we shall base our discussion on a set-
theoretical foundation like that used in developing analysis, or algebra, or
topology. We may consider our task as that of giving a mathematical analysis
of the basic concepts of logic and mathematics themselves. Thus we treat
mathematical and logical practice as given empirical data and attempt to
develop a purely mathematical theory of logic abstracted from these data.
Our degree of success, that is, the extent to which this abstraction corresponds
to the reality of mathematical practice, is a matter for philosophers to discuss.
It will be evident also that many of our technical results have important
implications in the philosophy of mathematics, but we shall not discuss these.
We shall make some comments concerning an application of technical logic
within mathematics, namely to the precise development of mathematics.
Indeed, mathematics, formally developed, starts with logic, proceeds to set
theory, and then branches into its several disciplines. We are not in the main
concerned with this development, but a proper procedure for such a develop-
ment will be easy to infer from the easier portions of our discussion in this
book.

Inherent in our treatment of logic, then, is the fact that our whole discus-
sion takes place within ordinary intuitive mathematics. Naturally, we do not
develop this intuitive mathematics formally here. Essentially all that we pre-
suppose Is elementary set theory, such as it 1s developed in Monk [8] for
example. (See the end of this introduction for a description of set-theoretic
notation we use that is not standard.) Since our main concern in the book is

Introduction

certain formal languages, we thus are confronted with two levels of language
in the book: the informal metalanguage, in which the whole discussion takes
place, and the object languages which we discuss. The latter will be defined,
in due course, as certain sets (!), in keeping with the foundation of all mathe-
matics upon set theory. It is important to keep sharply in mind this distinction
between language and metalanguage. But it should also be emphasized that
many times we take ordinary metalanguage arguments and *“translate’ them
into a given formal language; see Chapter 17, for example.

Briefly speaking, the book is divided up as follows. Part 1 is devoted to
the elements of recursive function theory—the mathematical theory of
effective, machine-like processes. The most important things in Part I are
the various equivalent definitions of recursive functions. In Part II we give a
short course in elementary logic, covering topics frequently found in under-
graduate courses in mathematical logic. The main results are the completeness
and compactness theorems. The heart of the book is in the remaining three
parts. Part IIl treats one of the two basic questions of mathematical logic:
given a theory T, is there an automatic method for determining the validity of
sentences in 7’7 Aside from general results, the chapter treats this question
for many ordinary theories, with both positive and negative results. For
example, there is no such method for set theory, but there is for ordinary
addition of integers. As corollaries we present celebrated results of Gaédel
concerning the incompleteness of strong theories and the virtual impossibility
of giving convincing consistency proofs for strong theories. The second basic
question of logic is treated in Part IV: what is the relationship between
semantic properties of languages (truth of sentences, denotations of words,
etc.) and formal characteristics of them (form of sentences, etc.)? Some im-
portant results of this chapter are Beth’s completeness theorem for definitions,
Lindstrom’s abstract characterization of languages, and the Keisler-Shelah
mathematical characterization of the formal definability of classes of struc-
tures. In both of these chapters the languages studied are of a comprehensive
type known as first-order languages. Other popular languages are studied in
Part V, e.g., the type theory first extensively developed by Russell and
Whitehead and the languages with infinitely long expressions.

Optional chapters in the book are marked with an asterisk *. For the
interdependence of the chapters, see the graph following this introduction.
The book is provided with approximately 320 exercises. Difficult or lengthy
ones are marked with an asterisk *. Most of the exercises are not n'messar}r
for further work in the book; those that are are marked with a prime ’. The
end of a proof is signaled by the symbol [].

As already mentioned, we will be following the set-theoretical notation
found in [8]. For the convenience of the reader we set out here the notation
from [8] that is not in general use. For informal logic we use * =" for *‘im-
plies,” “*<=="" or “iff” for *if and only if,” “—* for “not,” “¥* for “for
all,”” and **3™ for *““there exists.” We distinguish between classes and sets in
the usual fashion. The notation {x : ¢(x)} denotes the class of all sets x such

Introduction

that ¢(x). Inclusion and proper inclusion are denoted by € and < respec-
tively. The empty set is denoted by 0, and is the same as the ordinal number
0. Welet A ~ B={x:x€ A, x¢ B}. The ordered pair (a, b) is defined by
(a, b) = {{a}, {a, b}}; and (a4, b, ¢) = ((a, b), ¢), (a, b, ¢, d) = ((a, b, c), d), etc.
A binary relation is a set of ordered pairs; ternary, quaternary relations are
defined similarly. The domain and range of a binary relation R are denoted
by Dmn R and Rng R respectively. The value of a function f at an argument a
is denoted variously by °f, .f, % fa, fa, f(a); and we may change notation
Jrequently, especially for typographical reasons. The symbol {z(i}:ie I) de-
notes a function fwith domain [such that fi = +(i) for all i € [. The sequence
{Xgs ..y Xm_1> 15 the function with domain m and value x; for each i e m.
The set 4B is the set of all functions mapping 4 into B. An m-ary relation is a
subset of ™4, for some 4. Thus a 2-ary relation is a set of ordered pairs,
{x, ¥>. By abuse of notation we shall sometimes identify the two kinds of
ordered pairs, of binary relations, ternary relations, etc. We write f*4 for
{fa:ac A). The notations f: A — B,f: A B, f: A>> B,and f: A>» B mean
that fis a function mapping A4 into (onto, one-one into, one-one onto respec-
tively) B. The identity function (on the class of all sets) is denoted by I. The
restriction of a function F to a set A is denoted by F [A. The class of all
subsets of A4 is denoted by SA4. Given an equivalence relation R on a set A,
the equivalence class of @ € A is denoted by [a]; or [a], while the set of all
equivalence classes is denoted by 4/R. Ordinals are denoted by small Greek
letters o, 8, ¥, ..., while cardinals are denoted by small German letters
m, n, The cardinality of a set 4 is denoted by |A|. The least cardinal
greater than a cardinal m is denoted by m*. For typographical reasons we
sometimes write (exp (m, n) for m" and exp m for 2™.

One final remark on our notation throughout the book: in various sym-
bolisms introduced with superscripts or subscripts, we will omit the latter when
no confusion is likely (e.g., [a]r and [a] above).

BIBLIOGRAPHY
1. Bishop, E. Foundations of Constructive Analysis. New York: McGraw-Hill
(1967).

2. Cohen, P. Comments on the foundations of set theory. In: Axiomatic Set
Theory. Providence: Amer, Math. Soc. (1971), 9-16.

3. Godel, K. What is Cantor’s continuum problem? Amer. Math. Monthly, 54
(1947), 515-525.

4. Heyting, A. Intuitionism. Amsterdam; North-Holland (1966).

5. Hilbert, D. Die logischen Grundlagen der mathematik. Math. Ann., 88 (1923),
151-165.

6. Kalmar, L. Foundations of mathematics—whither now. In: Problems in the
Philosophy of Mathematics. Amsterdam: North-Holland (1967), 187-194.

7. Kreisel, G. Observations on popular discussions of foundations. In: Axiomatic
Set Theory. Providence: Amer. Math. Soc. (1971), 189-198.

8. Monk, J. D. Introduction to Set Theory. New York: McGraw-Hill (1969).

Introduction

10.

11.

12.

Monk, J. D. On the foundations of set theory. Amer. Math. Monthly, 77
(1970), 703-711.

Mostowski, A. Recent results in set theory. In: Problems in the Philosophy of
Mathematics. Amsterdam: North-Holland (1967), 82-96.

Robinson, A. Formalism 64. In: Logic, Methodology, and the Philosophy of
Science. Amsterdam: North-Holland (1964), 228-246.

Rogers, R. Mathematical and philosophical analyses. Philos. Sci., 31 (1964),
255-264.

Introduction

1 2 10 8
3 11 9
4 5 18 12
6 19
\
7 13 14 20 21 22 23 24 2 27 29 30 31
|
15 25 28
16
17

Interdependence of Chapters

Turing Machines

In this chapter we shall present a popular mathematical version of
effectiveness, Turing computability, which will form our main rigorous basis
for the mathematical discussion of effectivity. Actually in this section we
present only some of the basic definitions concerning Turing machines and
some elementary results which both illuminate these definitions and form a
basis for later work. The definition of Turing computability itself is found
in Chapter 3. After giving the formal definition of a Turing machine we
discuss briefly the motivation behind the definition.

In our exposition of Turing machines we follow Hermes [2] rather closely.
A Turing machine (intuitively) consists of a mass of machinery, a reading
head, and a tape infinite in both directions. The machine may be in any of
finitely many internal states. The tape is divided up into squares called fields
of the tape (see figure).

i L] N i1

it — reading head Bt

Mass of
machinery

The machine proceeds step by step. At a given step it takes an action depend-
ing on what state it is in and upon what it finds on the field that the reading
head is on. We allow only two symbols, 0 and 1, to be on a given field, and all
but finitely many of the fields have 0 on them. These are the actions the
machine can take:

(1) Write 0 on the given field (first erasing what is there).
(2) Write 1 on the given field (first erasing what is there).

14 -

Chapter 1: Turing Machines

(3) Move tape one square to the right.
(4) Move tape one square to the left.

(5) Stop.

We now want to make this rigorous.

Definition 1.1. A Turing machine is a matrix of the form

¢ 0 o d,
e 1 vy dy
¢ 0 vy d,
g 1 1y d,

Crm 0 Vam-1 dﬂm-l
Cm]- Ugm dﬂm

where: ¢y, ..., ¢, are distinct members of w, vy,..., 0., €{0, 1, 2, 3, 4}
and dy, ..., don€{c1,. .., Cn}. €1, .. .,0n are called states. ¢, is called the
initial state of the machine.

We think of a row ¢; « v; d; of this matrix as giving the following informa-

tion: when the machine is in state ¢; and scans the symbol e on the tape, it
takes action v; and then moves into state d,. Here the action given by v, is

as follows:

vy = 0: write 0 on scanned square;

v; = 1: write] on scanned square;

v; = 2: move tape one square to the right;
vy = 3: move tape one square to the left;
v; = 4: stop.

To make this precise, we proceed as follows:

Definition 1.2. Let Z be the set of all (negative and nonnegative) integers.

A tape description is a function F mapping Z into {0, 1} which is 0 except
for finitely many values. A configuration of a given Turing machine 7T
is a triple (F, d, e) such that F is a tape description, d is a state, and ¢ is
an integer (which tells us, intuitively, where the reading head is). A com-
putation step of T is a pair ((F, d, e), (F’, d’, €')) of configurations such

-

Part 1: Recursive Function Theory

that: if the line of the Turing machine beginning with (d, Fe)is (d, Fe, w, f),
then:

ifw=0 then F'=F§, d =f ¢ =e;
ifw=1 then F'=F% d =f ¢ =e;
ifw=2 then F'=F, d=f e =e—1;

ifw=3 then FF=F, d =f e=e+ 1

Here F¢ is the function (F ~ {(e, Fe)}) U {(e, €)}. Thus F{ is the tape
description acting like F except possibly at e, and Fie = . A computation
of T is a finite sequence {(Fy, do, €0), - - - » (Fs dms €n)> Of configurations
such that d, = ¢,, (F,, d;, €), (Fi+1, di51, €41)) is a computation step for
each i < m, and the row of the Turing machine beginning (d,,, Fe,) has
4 as its third entry.

The way a Turing machine runs has now been described. To compute a
function f, roughly speaking we hand the machine a number x and it produces
fx as an output. Since only zeros and ones appear on a tape, we cannot literally
hand x to the machine; it must be coded by zeros and ones. The mathematically
most obvious way of coding x is to use its binary represeniation as a “‘deci-
mal’ with base 2. However, this is inconvenient, in view of the very primitive
operations which a Turing machine can perform. We elect instead to represent
x by a sequence of x + 1 one’s. (This is sometimes called the tally notation.)
The extra “one™ is added in order to be able to recognize the code of the
number zero as different from a zero entry on the tape whose purpose is just
as a blank. The precise way in which functions are computed by a Turing
machine will be defined in Chapter 3. In this chapter we want to see how
these rather primitive looking machines can nevertheless perform some
intricate operations on strings of zeros and ones. These results will be useful
in Chapter 3 and Jater work.

Using the intuitive notion of coding we can argue as follows that Turing
machines are really quite powerful: We have seen informally how to represent
any number on a tape. A sequence of numbers can be represented by putting
blanks (zeros) between the strings of ones representing the numbers. By using
two blanks one can code several blocks of numbers, or one can use the two
blanks to recognize a portion of the tape set aside for a special purpose. By
repeated adjoining of a one, it is possible to add with a Turing machine; and
by repeated addition, one can multiply. Since a new state depends on the
currently scanned symbol, it is possible to set up different actions depending
upon what is on the tape. And we are not really restricted to just one square
in this decision making, since by using several states we can examine any
restricted portion of the tape.

In the general theory of Turing machines, one allows several symbols
instead of just 0 and 1 (see, e.g., [2]). However, it is clearly possible to code
these different symbols by different strings of 1’s. Several tapes may also be
allowed. Again such a modification can be coded within our machines; in

- -

Chapter 1: Turing Machines

the case of two tapes, for example, one may instead use odd and even
numbered squares on a single tape.

These intuitive comments on the strength of Turing machmes of course
would require proof, Some of them will be proved later, and we hope that
they will all seem plausible after we have worked with Turing machines a
while. For a more detailed argument on the strength of Turing machines see
the introduction to [2].

Definition 1.3. 7, is the following machine:

D 8 2 1
k2 1
1 0 4 1
1 1 4 1

Proposition 1.4. For any tape description F and any eeZ, {(F,0,e),
(F, 1, e — 1)) is a computation of Trygy:.

Thus Ty, merely moves the tape one square to the right, and then stops.

Definition 1.5. T is the following machine;

0 0 3 1
01 3 1
1 0 4 1
I .E & 1

Proposition 1.6. For any tape description F and any eeZ, {(F,0,e),
(F, 1, e + 1)) is a computation of Tieq.

Thus 7)., moves the tape one square to the left and then stops.

Definition 1.7. T, is the following machine:
0 0 40
0 1 0 0
Proposition 1.8. For any tape description F and any e € , (i) if Fe = 0, then
{(F, 0, e)) is a computation of Ty; (ii) if Fe = 1, then {(F, 0, e), (F§, 0, €)>

is a computation of Ty. Thus T, writes a O if a zero is not here, but does not
move the tape.

Part 1: Recursive Function Theory

Definition 1.9. 7 is the following machine:

0010
01 40

Proposition 1.10. For any tape description F and any e € Z, (i) if Fe = 0, then
{(F, 0, e), (F5, 0, e) is a computation of Ty; (i) if Fe = 1, then {(F, 0, e)>
is a computation of Ty. T, writes a | if a 1 is not there, but does not move
the tape.

Definition 1.11. If g 1s any set and m € w, let @™ be the unigue element of
m{a}. Thus a™ is an m-termed sequence of a’s, a™ = (a,a,...,a) (m
times). If x and y are finite sequences, say x = {xq,..., Xm-,> and y =

<yﬂ'l LY yn-l): we let Xy = <x0, ceesXm—1s Vos -« -s yn—1>~ Frequent]}f we
write a for {(a}.

Definition 1.12. T}, 15 the following machine:

0 0 21
01 2 1
1 0 41
1 1 160

A computation with 7.0 can be indicated as follows, where we use an
obvious notation:

e n l{m] a
h

— 01" V1g
M

—01"A11a
A

01 11 g
A

I L P
A

1
Reading head

Thus Teeexo finds the first O to the left of the square it first looks at and
stops at that 0. In this and future cases we shall not formulate an exact
theorem describing such a fact; we now feel the reader can in principle
translate such informal statements as the above into a rigorous form.

Chapter 1: Turing Machines

Definition 1.13. T, i 0 Is the following machine:
0 0 3 1
01 3 1
1 0 4 1
1 110

T, seexco finds the first O to the right of the square it first looks at and stops
at that 0.

Definition 1.14. T, 1S the following machine:

e o 2 1
01 2 1
1 0 00
1 1 4 1

T} seexc1 finds the first 1 to the left of the square it first looks at and stops
at that 1. It may be that no such 1 exists; then the machine continues forever,
and no computation exists.

Definition 1,15, 7, ..., is the following machine:
0 0 3 1
01 3 1
1 0 0 0
1 1 & 1

T, seexc1 finds the first 1 to the right of the square it first looks at and stops
at that 1. But again, it may be that no such | exists.

Definition 1.16. Suppose M, N, and P are Turing machines with pairwise
disjoint sets of states. By M — N we mean the machine obtained by
writing down N after M, after first replacing all rows of M of the forms
(c04d4dyor(c' 14 d)bytherows(c, 00 e)or(c’ 1 1 e) respectively,
where e is the initial state of N. By

M irg N

3

we mean the machine obtained by writing down M, then N, then P, after
first replacing all rows of M of the forms (¢ 0 4 d) or (¢’ 1 4 d’) by the

Part 1: Recursive Function Theory

rows (c 0 0 &) or (¢" 1 1 €') respectively, where ¢ is the initial state of
N and ¢’ is the initial state of P.

Obviously we can change the states of a Turing machine by a one-one
mapping without effecting what it does to a tape description. Hence we can
apply the notation just introduced to machines even if they do not have
pairwise disjoint sets of states. Furthermore, the above notation can be
combined into large “flow charts” in an obvious way.

Definition 1.17. 7,..x, is the following machine:

Start

1 e s

irg if 0 4 it D]
Tright. : riﬁl__} Iieft ; irj_“_:" TI&&EH:I — TD"}' Tright ¥ l_""Tfseekl _"TD

N |

Stop i Rm— y —
| l
e Ty
| l
Tr gealc 1 TTI seek 1

(Here by Tyigns i Stop we mean that the row (1 1 4 1) of T,y 18 not to

be changed.)

This machine just finds a 1 and stops there. It must look both left and
right to find such a 1; I’s are written (but later erased) to keep track of how
far the search has gone, so that the final tape description is the same as the
initial one. If the tape is blank initially the computation continues forever.

Since this is a rather complicated procedure we again indicate in detail a
computation using 7.....,. First we have two trivial cases:

Starting with 1 a Starting with 0 1
A A
1 a 0
A
l a 1
A

[
S DO D B e 30 D

Chapter 1: Turing Machines

In the nontrivial case we start with — 0™ (g —:m > 0:
A
Start
Oum 0 O
A
Qm-1) 0 Qtn+1)
A
ﬁ[m—l) 1 {Fn+1]
A
om-1 0 O™
I
O(m—i}] D{Eiwﬂ) {} U(n—l-l- 1)
A
om-o 02~ | gr-t+D)
A
Om-9 | (%= | gn-f+D)
A
O{TI"I-—ﬂ U 0(2!-2.'! I 0('1—’-!-1]
A L]
Qm-i-1 @ Q@i-1 | gm-i+D
A
Om-i-1] 0{2:-1} 1 Om—t+D
A
Oim=-1-1) | 0= | gm-i+D
A
Qm-t-1 1 02t~ On-i+D
A
G(m-i—u l U{Bi} O Um-ﬁ
A

Here i = 1 initially, and the portion beyond (m-1 1 (2~ 2’{] O =+1) takes
place only if i < m and i < n. Thus, if we start with — 1 0‘*“’ D 0™ —, and

n + 1 > m, we end as follows (setting i = m):

11 0@em-2 0 Qin-m+1)
A
1 1 (f2m-2) I Oin—m+1)
A
1 1 0(2#1 2) 1 U(ﬂ—m-l-]}
A
l 0 0(2»1—-2} 1 0{n—m+11
A
1 D{Emul) 1 Oin-m+1)
A
l D{Em—l}] ﬂtn-—m-}l‘:
M
1 G(Em—-l) 0 n-m+1)
A
1 C,(n+m+1'.i
A

n

Part 1: Recursive Function Theory

On the other hand, if we start with — 0™ 00™ | -—, andn + | < m we end

A
as follows (setting i = n + 1):
ges=n=1] Q= 01
A
UETH“!'I--]-.'I l 0(211) l l
A

gm==-D | gew | |
A

Om=n-1 0 0@ 1 |
O[m—n.—ﬂ} ; (fen+1) 1 1
D(m—n-ﬂ}‘: (Q@En+1) 1]
Om-n-2 | (an+D) : 1

U(m-—n+2: 1 0{2n+1) 1

Oim-—n—ﬂ} 1 {}(211.-1-2)

= 0 >

D{m—n—ﬂ) 1 0(2ﬂ+2]' 1
A

O{m—n--ﬂl U 0{2n+2} l
A

0(m+n+1} 1
A

Definition 1.18. 7.4 is the following machine:

irt
o ir0
Start — T} peexc0 — Trigne —> Trere

T,ena Moves the tape to the right until finding 00, and stops on the right-
most of these two zeros. T}.,a does not start counting zeros until moving
the tape.

Definition 1.19. T,,., is the following machine:

if 1
iro
Start _}Tr seek 0 T.‘let't. —* dright

T, ena moves the tape to the left until finding 00, and stops on the left-most
of these two zeros. T,..q does not start counting zeros until moving the
tape.

22 N

Chapter 1: Turing Machines

Definition 1.20. T},,... is the following machine:

!

if 1 y
Start —+'T|En, > Tlcft_ —¥ To — A pight s ?1

L

Trlkhl-
The action of T},a. 18 indicated thus, in the case of interest to us:

a0]®+D g
A

a l'l'.h+1} 0 0
A
The tape is otherwise unchanged

Definition 1.21. 7)., is the following machine:

{ |

Start — T soerco —> Trlght, —ﬂl" Tu = T! Lrans

Jiro

-Ti trans

T} enire acts as follows in the case of interest to us:
P n I(x+1) 0 I(:H‘l) U
A

0 l(y+1) 6 0(x+2)
M

The tape to the left and right of this portion of x + y + 5 symbols is
unchanged.

Definition 1.22. T, is the following machine:

i if 1 T
Start — Tygeexo — Tright — Therr ~* Trseexo — Tismire

lim

?-'! trans

a2

Part 1: Recursive Function Theory

Ty, acts as follows in the case of interest to us:

= 0[2} 'I(xn+1} 0 1{;:1+11 0 --- 0 I{x{m—lu-l} 0 11‘.1.r+1} 0
M

.]_{y+11 0 U{p}
M

wherep = xo + X, ++--+ Xn-1 +2m + 2. In case m = 0, it works like
this:

g oo RN RFETE]
A

-

_ (WD U o
A

In each case the tape is otherwise unchanged. Here “fin™ abbreviates
“finish.”
This machine will be used at the end of computations to erase scratchwork.

Definition 1.23. Ty is the following machine:

il 1 pr i
Start — T'lscekﬂ 4 TJ.eft. S TD = Trnmun s Trsaa}:ﬂ = Tl — T, seek0 I seeco — fT;

lirﬂ

-'rr seak 0

Toops acts as follows:

e —— L 'D l{x-}-l) U 0(x+2]
M

I 0 liau-n 0 I<x+n 0
M

The tape is otherwise unchanged.

A machine M repeated m > 0 times will be indicated by M™ in our
» diagrams.

Definition 1.24. For n > 0, T, .o,y is the following machine:

"
Tr seek

if
- . ! i il o
Start — TPseeko = Tienn — To > Tlseexo ~* = Tlase > T

Chapter 1: Turing Machines

Tacopy acts as follows:

)]ix0+1) 0 1>+ p ... [{xn-1+1) 0 Ot=0+2
i
0 10+ () [*x1+D (g ... ([*Ke-D+D () ... J&0+1D (
A

The tape is otherwise unchanged. This machine copies the nth block to the
left.
These are all the basic machines needed to compute functions. We shall

return to Turing machines after discussing some classes of number-theoretic
functions.

BIBLIOGRAPHY

1. Davis, M. Computability and Unsolvability. New York: McGraw-Hill (1958).

2. Hermes, H. Enumerability, Decidability, Computability, 2nd ed. New York:
Springer (1969).

3. Minsky, M. Computation. Englewood Cliffs: Prentice-Hall (1967).

EXERCISES

1.25.

1.26.

1.27.
1.28'.
1.29'.
1.30°.
131,
1.32.

1.33,
1.34.

Give an example of a Turing machine which gets in a loop—repeats some
configurations over and over.

Give an example of a Turing machine which never stops, but doesn’t get
in a loop.

Prove rigorously that 7}...ns does what is said in the text.
Prove rigorously that 7). does what is said in the text.
Prove rigorously that 7y, does what is said in the text.
Prove rigorously that T, does what is said in the text.
Prove rigorously that T}, ..,y does what is said in the text.

Show that there is no Turing machine which, started at an arbitrary
position, will find the left-most 1 on the tape.

Construct a Turing machine which will print the sequence 11001100. . ..

Construct a Turing machine that stops iff there are at least two one’s on
the tape.

Elementary recursive and
primitive recursive functions

To show that many number-theoretic functions are Turing computable,
it is convenient to distinguish some functions by closure conditions.

The class of elementary recursive functions which we shall now define in
this way 1s a class of intuitively effective functions which contains most of
the effective functions actually encountered in practice. However, not every
effective function is elementary recursive. Toward the end of the chapter we
introduce the wider class of primitive recursive functions, which still does not
cover all kinds of intuitively effective functions. In the next chapter we go
from primitive recursive functions to a class of functions, the recursive func-
tions, intuitively corresponding to the entire class of effective functions. An
elementary recursive function is just a function obtainable from the usual
arithmetic operations of addition, subtraction, multiplication, and division
by composition, summation, and multiplication. Most of this chapter is
concerned with listing out some elementary functions and with giving oper-
ations which lead from elementary functions to elementary functions. This is
necessary in order to be able to easily recognize that some of the rather
comphicated intuitively effective functions are, in fact, elementary recursive.
A more detailed treatment of the topics of this section can be found in
Péter [2].

Definition 2.1. A number-theoretic function is a function which is, for some
positive integer m, an m-ary operation on w. The class of elementary
recursive, or for brevity elementary functions, is the ntersection of all
classes 4 of number-theoretic functions such that, first of all, the following
specific functions are in A:

(1) +, the usual 2-ary operation of addition;
(2) -, the usual 2-ary operation of multiplication;

76 N

Chapter 2: Elementary recursive and primitive recursive functions

(3) the 2-ary operation f such that f(m, n) = |m — n| for all m, n € w;
(4) the 2-ary operation f such that f(m,n) is the greatest nonnegative
integer <m/n (if n # 0), 0if n = 0; we denote f(m, n) by [m/n];
{3) for each positive integer n and each i < n, the n-ary operation f on w
such that forall xg, ..., x,_; € w, f(xq, . . ., Xn_1) = X;; fis denoted by
5 it 1s called an identity or projection function.

Second, and last, 4 is required to be closed under the following operations
upon number-theoretic functions:

(a) The operation of composition. If fis an m-ary function, and g, ...,
g.,- are n-ary functions, then the composition of fwith go, ..., gn-)
is denoted by K7 (f; g, - . -» €m_1); it is defined to be the n-ary function
h such that for all xg,..., x,_; € o,

ﬁ'{xn. (R -1.x11-1) =f(gﬂfxﬂ!' = xn—l]r' . ':gm—l{xm LS | xﬂ.—l}}'

(b) The operation of summation. If fis an m-ary function, then g (m-ary)
is obtained from f by summation, in symbols g = > f, if for all x,, .
'xl‘?:—l E o,

By i o5 Xoon) = 3 00wy Xy) 3 9 % K}

[note that if m = | the definition reads.

gx= D> fy;
=X
for any m, we have g(x,, ..., x,,_3, 0) = 0 by convention].
(c) The operation of multiplication. If f is an m-ary function, then g
(m-ary) is obtained from f by multiplication, in symbols ¢ = || f, if
forall Xau. ... % 460,

g(x'ﬂ-! LR R xm—l} S l 1 {f(xlils sy Kmo2, _]’j} ¥y < xm—l}
[if x,,_, = 0, the right hand side is | by convention].

It should be evident that each elementary function is effectively calculable
in the intuitive sense. To convince oneself of this, it is enough to argue that
each of the functions (1)-(5) above is effectively calculable, and that the class
of effectively calculable functions is closed under the operations (a)—(c). For
(1)-(5). the ordinary school algorithms suffice for this argument. As to (a)—(c),
suppose, for example, that f, an m-ary function, is effectively calculable, and
we wish to show that > falso is. Given xq, . . ., X, € w, we merely calculate
PN b B O T e Bt L e R B Bin o 1), WhiRh
we can do since fis effectively calculable, and then we add them all up by the
school process, giving us (2 f)(xg, - . ., X 1)

Proposition 2.2. Suppose fis m-ary, g, .. ., g, , are n-ary, and hg, . . ., hy 4
are p-ary. Then

K;'{K:f':figop --1gm—l);huv "‘!l'hn—l} = K;‘ [f; Kﬁ (gﬂ;hﬂ!-v-‘}hn—l}} ==y
ik W YRR T | 3

7

Part 1: Recursive Function Theory

Proor. If xg, ..., X, € w, then, with [= left hand side and r = right hand
side,

Hxes s Xaos Vo= SR EUF ~ g ol i Ml o o)isspltycal(Xon s ovs =1)
=f{gn(hﬂ{xﬂ: ey xp—l}s - e hn—l(xm ce-3 Xp -1)}: - ey
B kBl Koy g Yo vvas B thyin v 0 Xt 11
=f((KE (gﬂ ; I?Gt LIS] hﬂ -1))[xl}1 ke -xp—l)i sy
(K; (gm—l > ﬁﬂ: ol S hn—l)}(xm s ary x-p-l])

=r(x0!---1 xp-.i)' Ll

The following theorem is the usual set-theoretical consequence of a
definition like 2.1.

Proposition 2.3. A number-theoretic function f is elementary iff there is a
finite sequence {gq,...,8x-1y 0f number-theoretic functions such that
gi_1 = [, and for each i < k one of the following conditions holds:

{1) gi = +t
(ii) g = -,
(iii) g; = subtraction (in the sense of 2.1(3)),
(iv) g; = division (in the sense of 2.1(4)),
(v) g, = U7 for some n > 0, some j < n,
(vi) g is n-ary, and for some m > O there existj < iand ke, .. ., ky_y < i
such that g, is m-ary, 2o - - -+ Sum—1, are n-ary, and g, = Ky (g;;
Lios - - s Erom- 1) { 21 is obtained from earlier functions by composition),
(vii) there is a j < i such that g; = > (gy),
(viii} there is a j < i such that g; = [] (g;).

Proor. Let A be the set of all f such that there is a finite sequence of the
kind described in the theorem. By considering 1-termed sequences it is easy
to see that +, -, subtraction, division, and U} are all in A (for any n > 0
and j < n). Suppose f€ A, fis m-ary, hg, ..., hn €A, all of by, ..., by,
are n-ary. Choose a finite sequence <{gg, ..., g.-1 such that g,_, = f and
or each i < & one of the conditions (i)-(wiif) holds for g,. For each j < m
choose a fimte sequence </; o, ..., l; o;—17 such that [, ,;_, = &, and for each
i < a, one of the conditions (i)-(viii) holds for [;;. Then consideration of the
sequence

<gﬁr' -2 Br-1s "'I],Dr"': Iﬂ.nﬂ—h i "!"’fr! ~1,0% = = *»

fﬂ! I, a{m—1) K‘;: [f: hﬂi SRCET hm l})

shows that K (f: hg. ..., h,_1) e A. Thus A4 is closed under composition.
If fe A, so that a sequence g, ..., £, exists as in the theorem, then
consideration of {gg, ..., 8- > f>and {g;, ..., &1, [| [show that > f,
[1f€e A. Hence every elementary function appears in A. This proves —=_ If
fe A, with “gg, ..., g,y given as in the theorem, then 11 15 easily shown by
induction on i that g, is elementary for each i < k. In particular, f = g, _,
is elementary; this proves <. -

LT3 -

Chapter 2: Elementary recursive and primitive recursive functions

We now proceed to show that many garden-variety number-theoretic
functions are elementary and that simple operations on elementary functions
again give elementary functions.

For later purposes it is convenient to formulate results of the second kind
in a more general way. A class 4 of number-theoretic functions is said to be
closed under elementary recursive operations provided A contains all the
elementary functions 2.1(1)—(5) and is closed under composition, summation,
and multiplication. Obviously the class of all elementary functions is closed

under elementary recursive operations, So will be all of the wider classes of
effective functions which we discuss later.

Proposition 2.4. Let A be closed under elementary recursive operations. If f
is m-ary and f € A, and = is a permutation of {0, . . ., m — 1}, then the m-ary

Junction g such that g(xq, ..., Xu-1) = f(Xnos + + s Xeom—1y) for all x,, . . .,
X, _1 Ewis also in A.

ProoF. g = KR(f; UZs ..., Upn-n)- &

i

Proposition 2.5 (Identification of variables). Let A be closed under ele-
mentary recursive operations. If f is m-ary, m > 1, and fe A, then the
(m — V)-ary function g such that g(xo, . .., Xp-2) = f(Xgs .. . Xm—g, Xo) fOF
all xos..., Xm—gEwisin A,

ProOF. g = K2_, (f;Ug~%,..., Up-4, Us-Y). O

By means of 2.4 and 2.5 variables can be identified in an arbitrary number
of places. Thus if fis 3-ary elementary, so is the function g with g(x, y) =
S(x, y, y), forif h(x, y, z) = f(y, x,), his elementary by 2.4; letting k(x, y) =
h(x, y, x) for all x, y € w, k is elementary by 2.5, and g(x, y) = k(y, x) for all
X, ¥ € w, 50 g is elementary by 2.4. Usually it is just as easy in cases like this
to use the method of proof of 2.4 and 2.5.

Proposition 2.6 (Adjoining apparent variables). Ler A be closed under ele-

 mentary recursive operations. If f is m-ary and f € A, then the (m + 1)-ary
fﬂﬂﬂﬁﬂﬂ g such fhﬂ'f g('xl]: o x:m]' = f(xm AL xm—l)fﬂr ﬂ'H Xgy -+ -3 X €
isin A.

PROOF. g = Ko, (f; Ug*L,..., Usth. 0

Definition 2.7

() Forn > 0, m € w, C}, is the n-ary function such that C2 (xg, . . ., X, _,)
= mforall xo,..., x,_1 € w.
(if) sg and sg are unary functions; for x € w,

e 0 im=,
EX=1U1 ifx=0,
_x—{l if x =40,
ET Y0 iFxeb

29

Part 1: Recursive Function Theory

(iif) 4 is a unary function:

;ﬁx;{i_ml ;;i:g for all x € w.

(iv) By convention, 0° = 1, 0* = O for x # 0; 0! = 1.
(v) ¢ is a unary function: ox = x + 1 for all x € w.

Thus C? is the n-ary constant function with value m. The functions sg and
sg are of a technical usefulness. # is the predecessor function and ¢ the suc-
cessor function.

Proposition 2.8. The following functions are elementary:

(i) C (for n # 0)
(i) «
(iii) sg
(iv) sg
(v) exponentiation
(vi) factorial
(vii) #
PRrROOF
(1) C}is elementary: C} x = [x — x| for all x € w.
(2) sg is elementary: Sg x = [[, <. C} », for all x e w.
(3) sg is elementary: sg x = sg 5g x for all x € w.
(4) Ciis elementary: C} x = §g C} x for all x € w.
(5) C} is elementary: (by induction on m) CL,, x = Ch x + Cl x for all
X € w.
(6) C is elementary: C¥ (Xg,-..s Xp-1) = Ch, US (Xgs ..., X,-,) for all
Xos -3 Xn_1 Ew,
(M) e:ax=x+ Cl x.
(8) exponentiation: x¥ = [.., U2 (x, 2).
(9) factorial: x! = [.., 9z
(10) : fx = |x — Cix|-sgx. 0

Definition 2.9

(i) By an m-ary number-theoretic relation (m > () we mean a set of
m-tuples of natural numbers. ™w is the set of all m-tuples of natural
numbers. As usual, we identify 'o and w, in an informal way.

(ii) If R is an m-ary number-theoretic relation, its characteristic function
¥g. 15 the m-ary number-theoretic function such that for all xg, . . .,
Xm—1 E w,

0
x!f(xﬂl T -xm—l) = {1

(iif) An m-ary number-theoretic relation R is elementary if yg is elementary.

if<xﬂu- LS | 1"'L'i':'1—~‘1> ¢Hs
if {xp,...9Xm_y>€ER.

3“_ -

Chapter 2: Elementary recursive and primitive recursive functions

The definition 2.9(iii) is motivated by our intuitive feeling that a relation
R is effective iff y; is an effective function. In fact, if we have an effective
procedure for determining membership in R, then we can effectively calculate
xx as follows. Given any object g, determine whether a€ R or a ¢ R. In the
first case, yra@ = 1, and in the second case, yza = 0. Conversely, suppose we
have an effective procedure for calculating values of y;. Given any object a,
calculate yza. If yza = 1, then a€ R. If yga = 0, then a ¢ R.

Given any class A of number-theoretic functions, an m-ary number-
theoretic relation R is said to be an A-relation if x, € A.

Proposition 2.10. 0 and w are elementary; if x € w then {x} is elementary.

PrROOF. xo = C} and yx, = C}. If x€w, then for any yew, yuy =
sg (|x — y|); hence xy = SE(|C3 y — Ug y)). N

By 2.10, {x} is always on effectively decidable set. Intuitively speaking,
to check whether y € {x} we simply check if y = x (surely an effective matter).
As an example, let B = {0} if Fermat’s last theorem is true, while B = 0 if it
is false. B is an effectively decidable set, although we do not know now
whether 0 € B or not. Thus there is a decision procedure for membership in
B, but we don’t know what it is (it is either the obvious one for {0} or the
obvious one for 0).

Proposition 2.11. Let A be closed under elementary recursive operations. If R
and S are A-relations, then so are RN S, RU S, and "o ~ R.

Proor. For all Xoy -+ -5 Xm—1s XRHS(xﬂr LR xm—l) =3 XR(xEI! T) xm—l)'XS(xﬂs
voos Xmo1)y Xa{Xo, - - s Xm—1) = SE xp(Xo, -« +» Xm-1), With T = "w ~ R, RU
S ="w~ [("w ~ R) N ("w ~ 5] u

Corollary 2.12. Every finite subset of w is elementary, and so is every cofinite
set.

Proposition 2,13. The binary relations <, <, >, =, # are elementary.
Proor. Forany x, ye w,

x<(x, y) = 5g [oxfoy] = §g [¢ U3 (x, y)/o Ui (x, y)].
Thus < is elementary. Further

x+(X, ¥) = sg (|x — y)),
80 # is elementary. Finally, < = (< U =), > = ((w ~ <), > = (2w ~ <),

== (Cw ~ #), N

Proposition 2.14 (Bounded existential quantifier). Let A be closed under
elementary recursive operations. Suppose R is an m-ary A-relation. Let

a1

Part 1;: Recursive Function Theory

S ={{Xoy:..s Xn_1: thereisay < X,_, such that {xo,..., Xn_2, y> € R}.
Then S is an A-relation.

PRGGF. XE{X{],.+., .xm_;) = SEZ{XR(IG:'--; B .}’):y < xm—l}' E

Proposition 2.15 (Bounded universal quantifier). Let A be closed under
elementary recursive operations. Suppose R is an m-ary A-relation. Let
T = {{Xgy.:.s X1 JOr every y < Xp,_, we have {Xg, ..., Xny-2, ¥ € R}.
Then T is an A-relation.

Proor. let S be as in 2.14, with R replaced by ™w ~ R. Then T =
My ~ 8.]

Definition 2.16 (Bounded minimum). Let R be an m-ary relation. For all
Ko« 5 Xnop Ew, Jet
the least y < x,,_, such that {xq,..., Xpn_9, > ER,
i T, M if there is such a y,
0 otherwise.

f(xﬂj LY | xm—l) iS denCltEd b}' n“'y < xm—IR(xU: daay xm—ﬂ: }r)‘

Proposition 2.17. Let A be closed under elementary recursive operations. If R
is an m-ary A-relation, then the function f of 2.16 is a member of A.

Proor. Note that

- 1 if (xgy- -5 Xpm-1,¥> ¢ Rforall y < i,
1 TRCRICR T e T — i
(1) se ,,Zﬁ X(Xo ¥m-2) {0 otherwise,

Let g(Xo---» Xm-3,) = 88 2y<i Xal¥os - - +» Xm—2, ¥) for all xq, ..., X, g
i€ w. Thus g e A. From (1) we see that

| R, I, if there is a y <
z{g(xn,---,xm-z, #)od € Epo it =4 Fowchthat O, ... B o VER
> otherwise.

Hence
f(xﬂv s o xm-l) = 5—g g{xl}t bt xm—l)'z {g(-xﬂ: vy Xm—2, ‘”) . { = xm-—l}!
so fe A. LI

The rather technical proof of 2.17 may be compared with a proof of the
intuitive version of the proposition, which goes: if R is an m-ary effective
relation, then the function f of 2.16 is effective. In fact, to calculate
S(xo, . . .5 Xp—1), We test successively whether {x;, ..., Xn_2, 0> € R, {x,...,
Xm-2, 12 ER, ..., {X0y.. ., X_3, Xn_,» € R. If at some point we reach an i
such that {xq, ..., Xp_2, i) € R, we set f(x,,..., X,-1) = i and stop testing.
If we complete our testing without finding such an i we set f(xg, . .., Xn-1) = 0.

Proposition 2.18 (Definition by cases). Let A be closed under elementary
recursive operations. Suppose go,...,8n_1 are n-ary members of A,

32 =

Chapter 2: Elementary recursive and primitive recursive functions

Ry, ..., R, are pairwise disjoint n-ary A-relations with \ ;. R = "w,
and [is the n-ary function such that, for all x,, ..., x,_; € w,

gﬂ[xl]r'--:lxn—l) 'if(xﬂ:~ -~:xn—1>ER0s

O W v O ot O

Then fc A.
Proor. Forany x,,...,X,_, Ew,

ﬁ:xm +aey x‘il'l—l) = XRU(XI‘J! ey x‘n—l)'gﬂ{xﬁs eoay xn--l) g Hie
+ XR(m—l}(xﬂa] xn—l)'gm—l('x{.'lr b | -‘rn.—]_)- D

Definition 2.19
(i) for x, y e w, let

x___y={x—y ifx = y,

0 i3 i o 1 .
(i) X ifx <
; 3 <y
mm{x,y}—{y if x > y.

(#ii) (by induction). For m > 2, min,, (xg, . . ., Xn_1) = min (min,, _; (xg,
<+ o5 Xm—2)s Xm-1), With min; (x,) = min (x, y).
(iv) max (x, y), max,, (xg, ..., Xn_1) similarly.
(v) rm (x, y) = remainder upon dividing x by y, if y % 0; rm (x, 0) = 0.
(vi) | = {(x, y) : x divides y} = {(x, y) : there is a z such that y = x-z}.
(vii) PM = {x : x is a positive prime}.

Proposition 2.20. Al of the functions and relations of 2.19 are elementary.

PrOOF. Obvious, as concerns (i)—(iv). For (v),

N Jx—(IxyD ify#£0,
m(x’})_{n if y = 0.

For (vi), note that x|y iff there is a z such that y = x-z iff there isa z < y
such that y = x-z; now see 2.14. Finally, p € PM iff for every x < p, either
not x|porx = 1,and p # 0, p # 1; cf. 2.15.]

Definition 2.21. For every k let p, be the (k + 1)st prime; thus p, = 2,
P = 3:P2 o 5,‘,..

Proposition 2.22 (Number-theoretic). For every k, p, < exp (2, 2%).
PrROOF. By induction on k. Trivial for k = 0, 1. Induction step, &k > 0:

Pre+1 =< Po----Pr — 1 (Euclid)
<exp(2,29-...-exp(2,2¥) — 1 (induction hypothesis)
— ZE{Bxp{Z,l):iik} ! l

exp (21 — 1) — 1 < exp (2%+), m

-

Part 1: Recursive Function Theory

Proposition 2.23. p is elementary.

ProoF. Let N = {(x, y): x, ye PM, x < y, and y is the next prime after x}.
Thus N = {(x, ¥): x, ye PM and x < y and for all z < y, either z < x or
not z ¢ PM}, so N is elementary. Let Pr = {(x, k) : x is the (k + I)st prime}.
Thus (x, k) e Prif xe PM and >, .. yemy = k, so Pr is elementary. Finally,
Pr = px < exp (2, 2%) + 1((x, k) € Pr), so p is elementary. O

Definition 2.24. If a=0 ora= 1, let (g); =0. If a > [let (a); be the
exponent of p; in the prime decomposition of a. Sometimes we write (a)i
instead of (a),.

Proposition 2.25. () is elementary.

PrOOF. (@) = px < a(pf|a and not pf*i|a).]
Definition 2.26. la = greatest i such that p;|x (=0if x = 0 or 1).

Proposition 2.27. 1 is elementary.
ProoF. la = pi < a[py|x and Vj < a(i < j = p;ta)l. O

We now proceed to study a larger class of functions, the class of primitive
recursive functions. Most of the effective functions encountered in the litera-
ture were actually shown to be primitive recursive. Actually most of them are
even elementary, and usually this can easily be shown. We feel-that it is only
an historical accident that elementary functions are not more widely discussed
than primitive recursive functions.

Definition 2.28. The class of primitive recursive functions is the intersection
of all classes 4 of functions such that s, Ul e A4 for all m > O and i < n,
and such that A4 is closed under composition and under the following two
operations:

(i} The parameterized operation of primitive recursion: if fis m-ary and h
(m + 2)-ary, m > 0, then define g recursively as follows:

8(X0s - - -5 Xm-1,0) = flxp, - - s Xpu—1)s
By sou5 M= ".}"} =Xy -5 X35 Vs By < s Xp=15 ¥))s
forall x,, ..., X,_-1, ¥ € w. Then g is obtained from f and h by primitive
recursion, in symbols g = R™(/, h).
(ii) The no-parameter operation of primitive recursion: if ac w and h is
2-ary, define g:

20 = a,
gay = h(y, gy),
for all y € w. In symbols g = R%a, A).

Chapter 2: Elementary recursive and primitive recursive functions

A relation R is primitive recursive iff x5 is a primitive recursion function.

Note that the operations of primitive recursion are rather special kinds
of recursive or inductive definitions. Many recursive definitions can be
reduced to primitive recursive ones; see, e.g., the important course-of-values
recursion, 2.33. But there are recursive definitions which cannot be reduced
to primitive recursion. See, e.g., Theorem 3.6. The class of general recursive
functions introduced in the next section encompasses all of the natural
notions of recursive definitions.

Clearly the primitive recursive schema affords an effective procedure for
calculating values of R™(f, k), if fand 4 are effectively calculable. Similarly

for R%a, k). Thus every primitive recursive function is effectively calculable
in the intuitive sense.,
Analogously to 2.3 we have:

Proposition 2.29. A number-theoretic function f is primitive recursive iff there
is a finite sequence {gy, . .., 8.1y of functions such that g,_, = f, and for
each i < k one of the following conditions holds:

{‘.} & = 9
(ii) g = U for somen > 0, j < n,
(iii) as in 2.3 (vi) (composition),
(iv) there exist j, h < i and me w, m # 0, such that g; is m-ary, g, is
(m + 2)-ary, and g, = R"(g;, g»),
(v) there exist j < i and a € w such that g; is 2-ary and g, = R%a, g,).

A class 4 of number-theoretic functions is said to be closed under primitive
recursive operations provided A contains all the primitive recursive functions
9, U and is closed under the primitive recursive operations given in 2.28,
including composition.

Theorem 2.30. If A is closed under primitive recursive operations, then A is
closed under elementary recursive operations. In particular, every elementary
Junction is primitive recursive.

PROOF
(1) £ is primitive recursive. For,

#0 =0,
#ay = Ug(y, A»).

(2) = is primitive recursive. For,
x=0="1U}x
x=ap=£US(x, y, x = p).
(3) Cj is primitive recursive:

Cix=Ulx=~Ulx

15

Part 1: Recursive Function Theory

(4) + is primitive recursive:
x4+ 0=Ujx,
x+ oy =0U(x, 5 x + ¥
(5) - is primitive recursive:
x0=0Clx
x-ay = x:y + x = +(US (x, y, x-), Ug (x, y, x-))-
(6) [x —y| = (x=p) + (¥ = x).
(7) sg is primitive recursive: sg x = 1 = x.
(8) sg(x) = sgsgx.
(9) rm is primitive recursive. Define
f (-xi G) — 0:
Sfx, 9) = of (x, y)-sg |x — of (x,)|
Then rm (x, y) = f(3, x).
(10) Division is primitive recursive, Define

f(x,0) =0,
S(x,) = f(x, y) + 5g |x — arm (x, y)].
Then [x/y] = f(y, x).
Now assume that 4 is closed under primitive recursive operations. In
particular, A4 is closed under composition.

(11) A is closed under summation. For, suppose f€ 4, fm-ary, and g = 2 f.
Then

g(xos . - oo ¥m-2,0) = 0,
g(xﬂs sy Xm—2s dz} == z f(xm veey Kme—gs J")

y<daz

= Z f[x;_-:,,..., Xm—2s _}’} +f(xl]!"-rxm—21 Z)

== g(xnr cery X2 Z) + f(xﬂa covs Km—2s Z).
Hence g € A.
(12) A is closed under multiplication.
This is proved similarly. The proof of 2.30 is complete. CJ

The converse of 2.30 fails; see 2.45.

To express another important property of primitive recursion, we need a
new coding device. Given a finite sequence {xq, . . ., X, 1> of natural numbers,
it is natural to code it by the single integer [[; < pi***. The added one in the
exponents is essential for uncoding, to distinguish between the codes for
¢2,3,0> and <2, 3>, for example. The mapping that assigns to each finite
sequence of natural numbers its code as above is a one-one function into w.
From the code y the original sequence x is easily extracted:

x=4{No=L.... P = D.

The following definition gives a special instance of this coding device:

36 -

Chapter 2: Elementary recursive and primitive recursive functions

Definition 2.31. If fis an m-ary number-theoretic function, we define f, the
course-of-values function for f, as follows: f is again m-ary, and for any
KXoy - - s Am-1 € w,

_)F(xna---1xm—1} =]-’I {pﬂxﬂ xm—2n+1 - § xm-l}

Thus f[xc, ..., Xn_1) codes the whole sequence {f(xop, - +s Xm-2,0),. .-,
P~ oy Bt Tt~ 1)). Note that f(x;, . . ., Xm-2,0) = L.

Proposition 2.32. Let A be closed under primitive recursive operations. Then
feAifffe A
Proor. Assume first that fe A. Then

f(—xi}:“-lxm—ﬁnn) = 1

f{xu; R d_}?) n pﬁx{} xim =204+ 1
i<oy
2 f(x:u iR y)_pitxﬁ..,.,x{m—m.y}+l ,
= h{xﬂs*“& Xm—2s P,f{xu: seey Xm—gs y))!
where A(Zgs - . - » Zn) = Zyp PEE =+ for all zo, . . ., Zn € w. Conversely,

if fe A, then

f(-xﬂs L xm-l) — {f{xﬂa ceny Xm—a2 ﬁxm-—l])mn—lh

s0 fe A. [

The next proposition shows that recursion in which the successor step
depends on several preceding values can still be reduced to primitive recursion.

Proposition 2.33 (Course-of-values recursion). Let A be closed under primitive
recursive operations. Suppose f is an m-ary function and h is an (m + 1)-ary
member of A such that, for all x,, ..., Xy €@,

f(xﬂ! RRT xm—l) = h(xg, - - - xm—hf{xm -y xm—l))-
Then fc A.
Proor

f(‘xﬂs « sy Hn—ay 0) = l!
f{xﬂg T xm_z, 6_}4’}] l I p{{#ﬂ.-..-ﬂﬂ“ 2y +1

f< oy

=f(xg, i B y]_p;cxu...,.xm-—m.yul
= F{X0s - + s Xm—gs P} PLEOr w0 = 2, YefCrDsursxtrt = 20,30 +1

Thus fe A. By 2.32, fe A. O

Next we show how close elementary functions are to primitive recursive
functions—the class of elementary functions is closed under a restricted kind
of primitive recursion.

17

Part 1: Recursive Function Theory

Proposition 2.34 (Bounded primitive recursion)
(i) Suppose m > 0, f and h are elementary, m-ary and (m + 2)-ary
respectively, g = R™(f, h), k is elementary, and g(xo,..., Xn) <
k(x, . - -, Xp) Jor all xq, - - ., X € w. Then g is elementary.
(ii) Suppose h is a binary elementary function, g = R%a, h) (with a € w),
and gx < kx for all x € w, with k elementary. Then g is elementary.

Proor. (i) For any X, . .., X, Z € w let

g+ v or Xm) = (m + 1)+ D KXoy - - Xm-15 2)-

Z< XM

Let R consist of all (m + 2)-tuples {Xq, - - ., Xm, ¥ such that there 1s a g <
p;c(;n.....xm‘.l so that

(1) (Q)D =f(x0!-“: xm—l)

and, for all z < x,,,

(2) (g}a-i-l S h(xﬂr coes Xpm—1s £y (Q)a)
and, finally, y = (g).m. Obviously R is elementary. Now (i) follows from

(3) X0y o eos X)) = pY < K(Xgy« o o5 Xm)[{Xos - + 23 Xms YD E R].

To prove (3), assume that xy, ..., X, € w, let # be the sequence Lol .
Kirigs O o vy PG +-50 w5 Ko a5 Xl 5 a0 Bt
g=] pt
f<xm

Then for each i < x,, we have

't[< k{xD!' cea Xm=1s I) = z k(xﬂi' ces Xm—1» z)

ZExm

and so

q‘ 5 pﬁﬂﬂ.....mﬁ_

Furthermore, g satisfies the conditions (1), (2). Thus {xo, ..., Xm, (X0, - - -,
x,)> € R.Itisalsoclear that {xg, . . ., Xn, ¥> € Rimpliesthaty = g(xq, . . ., Xm),
so (3) holds.

Condition (i) is proved similarly.]

As our final result of this chapter we shall give an example of a primitive
recursive function which is not elementary.

Definition 2.35. « is the binary operation on « given by the following
conditions: for any m, h € w,

a(m, 0) = m,
alm,n + 1) = m*™m,

3R -

Chapter 2: Elementary recursive and primitive recursive functions

Thus a(m, n) is the iterated exponential, m raised to the m power n times.
Although exponentiation is elementary by 2.8(v), we shall see that iterated
exponentiation is not. The reason is that it grows faster than any elementary
function; see 2.44. Obviously, we have:

Lemma 2.36. « is primitive recursive.

Lemma 2.37. m < a(m, n) for all m, n.

PrOOF. We may assume that m # 0. Now we prove 2.37 by induction on n:
a(m,0) = m. Assuming m < a(m, n),

a(lm,n + 1) = m®™" > m™ > m.]
Lemma 2.38. a(m,n) < a(m,n + 1) forallm > 1 and all n € w.
PROOF. a(m,n + 1) = m*™™ > a(m, n). O

Lemma 2.39. «(m,n) < alm + 1, 1) for allm # 0 and all n € w.
Proor. We proceed by inductiononn: a(m,0)=m <m + 1 = a(m + 1,0).
Assuming our result for », "
alm,n + 1) = m*™"» < (m + 1)*™™
< (m + D%+ 1m = g(m + 1,n + 1). Cl

Lemma 2.40. «(m, n) + a(m, p) < a(m, max (n, p) + 1) for all m > 1 and
all n, p € w.

PrOOF. «(m, n) + a(m, p) < 2«(m, max (n, p)) by 2.38

=
< Za(m.maX(np)) o peim max(n,r)

a(m, max (n, p) + 1). 1

Lemma 241, «(m, n)-a(m, p) < a{m, max (n, p) + 1) for allm > | and all
n,pe w.

Prooe. If n = p = O then the inequality is obvious. Hence assume that
‘n# 0orp # 0. Then

a(m, n)- a(m, p) < «(m, max (n, p))* by 2.38

[ma(m, max (f,r) = 11}3 sag mZar[m. max (n,p)=1)

e 2. f2(m, max (n,p) = 1)) £ mw{m.max {n.p)

a{m, max (n, p) + 1). i

oA I IA

Lemma 2.42. a(m, n)*™? < a(m,max(p + 2,n + 1)) for all m > 1 and
all n, p € w.

Proor. For n = 0 we have
a(m, n)* ™" = WP = a(m,p + 1) < a(m,max (p + 2, n + 1))
(using 2.38). If n # 0 we have

m(m, n}z{m,p,‘l - md{m.n—lj-(&{m.m < prfim.maxin=1,p)+1) b}r 2 41
= a(m, max (p + 2, n + 1)).]

G

Part 1: Recursive Function Theory

Lemma 2.43. ala(m, n), p) < a(m,n + 2p) for allm > | and all n, p € w.
Proor. We proceed by induction on p:

ala(m, n), 0) = a(m, n) = a(m,n + 2-0).
Assuming our result for p, we then have

alalm, n), p + 1) = a(m, n)* ™2 < g(m, n)*rn+20

alm, max(n + 2p + 2, n + 1)) by 2.42
alm,n + 2(p + 1)). [l

oAl

Lemma 2.44. If g is a k-ary elementary function then there is an m € w such
that for all xg, ..., Xy 1 €w, if max (xe,..., Xe—1) > 1 then g(x,, .
X—-1) < e(max (xg, ..., Xk_1)s m).

]

ProoF. Let A be the set of all functions g (of any rank) for which there is
such an m. To prove the lemma it suffices to show that 4 is closed under
elementary recursive operations.

(1) +€ A.

In fact, let m = 2: for any x,, x; € @ with max (xg, x;) > 1,

Xo + X, < max (xg, x;) + max (xg, X;)
e ﬂ"(]“afu {xﬂ1 xl}} ﬂ) + H»{ITIE:LK {xn, xl)1 'ﬂ'}
< a(max (xy, x,), 1) + «(max (xg, x,), 1) by 2.38
< a(max (x4, Xq), 2) by 2.40
Thus (1) holds, Analogously,
(2) e A.
3) fe A, where f(m, n) = |m — n| for all m, ne w.

For if max (xg, x;) > |, then |x, — x;] < max (xq, x,) = e(max (xq, x,),0) <
a(max (xg, x,), 1). Similarly, the next two statements hold:

(4) fe A, where f(m, n) = [mfn] for all m, n € w.
(5) Ule A, for any positive n € w and any i < n.
(6) A is closed under composition.

For, suppose f is m-ary, go,..., gy 1 are n-ary, and f, go,...,8n-1 € 4.
Choose p, g, - - -+ §m-1 € @ such that max (xg, ..., x,_;) > | implies that
F(Xoy+ ooy Xpm—1) < e{max (xg, ..., Xm-1), p), and such that for each i < m,
max (Xg, X,_1) > | impliesthatg,(xe, ..., X,-1) < a(max(xg, - .., Xn_1),q)-
Leth= K0 (f: 8. onBan_i) Let

s=max{qg :i < m}+ 2p + max {f(Xo... s Xm-1) Xgs--os Xm-1 = 1} + L.

Now suppose that max (xg, ..., x,—;) > . Then if go(xe....; Xp-1)s-- .,
Zn_1(Xgs ...y Xa_1) = 1, we obviously have

h(xu: 2 ay xn—l} =f(gﬂ{xﬂm LB | -x-n—_l)v L] gn—l(x[.'l! i 'xﬂ—l))
< 5 < almax (Xg, ..., Xn=1)s) by 2.38

An -

Chapter 2: Elementary recursive and primitive recursive functions

Assume now that max {gd{xg, ..., X,_1): i < m} > 1. Then

[SRR, IR R TS NERURURT | AR | | PERPEPRLE, (A ||
< a(max {g(xo, ..., Xa-1) 1 { < m}, p)
< a(max {e(max {xq, ..., Xy1}hq) i < m}, p) by 2.39
= .a-(a-(mﬂ.ﬁ {xﬂ: ey Xp 1}1 max {QU:— EL gm I}Ji F) b}r 2*38
< a(max {xg, . .., Xy_1}, max {go, - .., gn -1} + 2p) by 2.43
< a(max {Xg,...s Xn-1}s 5} by 2.38

(7) A is closed under 2.

In fact, suppose f€ A4, say fis m-ary, and let g = > f. Since fe A, choose
peEw such that max(xg, ..., X,_,) > 1 implies that f(xq, ..., Xn-1) <
a{max (xg, . .., Xm-1), P). Let

g=p+ 1+ maxff(xo, . o5 X1l Xosoe ey Xmmi S 1}

Then £or Ay Xo; «« ou Bgpq E 0 TRy, v iy K1) S alIAK (00, we 5 Kogions 2 04
using 2.38. Thus if max (xg,..., X, _,) > 1 we have

LY

g(xu,.”, m—],) = Z f{xm“-: Xm— 29 y)

y=xim-=1}

= Z '”’(mal (xD: cens Xm-2s Vs 2)'1 q}
y<x(m—1)

< D a(max(xg,...,Xn-1),q) by 2.39
y<x(im—1)

== m(max (xl‘.h “eey xm—l):- Q)'xm—l
= a/(max (x{h cees Xy 1}3";)'3("1“(1‘5: e -5xm—1]:q) b}’ 2.37
< a(max (Xg, ..., Xp-1),q + 1) by 2.41

Similarly, using 2.42,
(8) A is closed under [|.
This completes the proof of 2.44. il

“Theorem 2.45. There are primitive recursive functions which are not elementary
in fact, « is such a function.

PrROOF. By 2.36, = is primitive recursive. Suppose « is elementary. Let
Jm = a(m, m) for all m € w. Thus fis elementary. By 2.44 choose m € w such
that x > 1 implies that fx < «(x, m). Then

am+2,m+2)=f(m+ 2) < am+ 2,m)

< alm + 2, m + 2) by 2.38
contradiction.]

BIBLIOGRAPHY

1. fzzegnrczyk, A. Some classes of recursive functions. Rozprawy Matematyczne,
1953).

2. Péter, R. Recursive Funktionen. Berlin: Akademie-Verlag (1957).

Al

Part 1: Recursive Function Theory

EXERCISES

2.46.

2.47.

2.48.

2.49.

Show that the following functions are elementary:

max y = E((xg, sy Xm—2y J"’) = R).,
=0 if there is no such y,

(I) f{xlh soay Km—2 z) o

where R is elementary.

(2) g(Xo, . . s Xm—2, ¥) = max {f(Xo, ..., Xm-2,2) : z < y}, with f clement-
ary.

(3) g(Xo, .. s Xm—2, ¥) = min {f(Xo, . .., Xm-2, 2) : Z = y}, With f element-
ary.

Show that the following functions and relations are elementary:

(1) (a, b) = ged (greatest common divisor) of aand b, =0ifa = 0Oorb = 0.
(2) sa = sum of positive divisors of a.
(3) the set of perfect numbers, i.e., numbers a with sa = 2a.

(4) the Euler ¢ function: ga = the number of elements of {x:1 < x < a}
with (x, a) = 1.

Let fn = [e-n] = greatest integer <e-n, for every n € w, where e is the base
of the natural system of logarithms. Show that f is elementary. Hint:
write

11 1 1
E—1+ﬁ+2—!+ +E+m+ ’

1 n! n! 1
—_—a 1 it e i — ‘e
1(""‘“11"‘ +n!)+(n+1)!+

Let Sn = n! + n!Y/1! +++-+ nl/n). Define S primitive recursively, but
show that is bounded by an elementary function. Let Rn = 1/(n + 1)! +---
(Note: R is not a number-theoretic function, since its values are actually
transcendental.) Show that for n > 1, Rn < 1/nl. Hence conclude that
[e-n] = [Sn/(n — 1)!] for n > 1, as desired.

Show that (:;_) (combinatorial symbol) is elementary.

The purpose of the following two exercises is to show how one can be
rigorous in applying the results of this section in showing that functions or
relations are elementary. However, later we shall not use these exercises, SInce
the application of results of this section are obvious anyway. Both exercises
have to do with certain formal languages which are special cases of languages
which will be discussed in detail later.

2.50

(ExpLICIT DEFINITION). Let A4 be a class of number-theoretic functions closed
under composition, and such that U} € A whenever n > Oand i < n For

2.51

2.52,

Chapter 2: Elementary recursive and primitive recursive functions

each fe A introduce a symbol R;. Allow, in addition, variables v, vs,
Ua,.... We define ferm: any variable standing alone is a term. If fe A4,
f m-ary (m > 0), and og,...,0,-1 are terms, then so is Rop,..., On-1.
These are all the terms.

Let i be such that all the variables appearing in a certain term 7 are in
the list vg, . . ., v;. Define g;:

g{(ﬂu, vy vi) i

for all v, . . ., v, € w, where each R, occurring in 7 is interpreted as f. Show
that g, € A. [Try induction on how 7 is built up.]

(CoMPLEX EXPLICIT DEFINITION). For each elementary function f introduce a
symbol Fy, and for each elementary relation R a symbol %5. Also let N,
N, . .. be some more symbols, and v, v,, . . . variables. For logical symbols
we taked, V, p, —, vV, A, —, <>, =. Specjal symbols: (,), <. We define terms
and formulas simultaneously and recursively:

(1) v, is a term;

(2) if fis an m-ary elementary function and oy, ..., o, -, are terms, then
Fiog, ..., 0m-1) is a term;

(3) N,is a term;

(4) if R is an m-ary elementary relation and gy, . . ., o1 are terms, then
Frlog, ..., 0m-1) 15 a formula;

(5) if o, = are terms then ¢ = 7 is a formula;

(6) if @ and ¢ are formulas then so are -, @ V ¢ A @ — b, p =i

(7) if v; does not occur in a term o, and if ¢ is a formula, then J2; < o, @
and Yy, < o, ¢ are formulas;

(8) under the assumptions of (7), pv; < o, @ is a term.

These are all the terms and formulas, Now show:

(9) if oisatermwhose variables areinthe list v, . . ., v, andif f(ve, - . . ,0)) =
o for all vg, . . ., v; € w, then [} is elementary;
(10) if ¢ is a formula whose variables are in the list vy, . . ., vy and if Ry =
{Cvg, . .., U i Vg, . .., Uy €w and @}, then R is elementary.

In (9) and (10), the symbol F; is to be interpreted as f; 9 as R; Nyas i,
and the other symbols are to have their natural meanings.

Suggestion: prove (9), (10) simultaneously by induction on how o and ¢
are built up.

Suppose g and g’ are l-ary primitive recursive and A and k" are 3-ary
primitive recursive. Define f and f* simultaneously:

f(x, 0) = g(x), SfGx, ¥ + 1) = h(f(x, ¥), f'(x, ¥), x)
F(x,0) =g'(x), [f&xpy+1)=K/(xy)fx)),x).

Show that f and f” are primitive recursive. Hint: define f“(x, y) = 2/t=%).
x|

AT

Part 1: Recursive Function Theory

2.53. Suppose that g is 1-ary primitive recursive, / is 4-ary primitive recursive and
£ is defined as follows:

f(O,n) = f(1,n) = gn
fm + 1,n) = K(f(m — 1, n), f(m, n), m, n) for m > 0.

Show that f is primitive recursive.

2.54. Show that there are exactly X, primitive recursive functions. Show that
there is a number-theoretic function which is not primitive recursive.

Recursive Functions;
Turing Computability

In this chapter we shall give three versions of the notion of effectively
calculable function: recursive functions (defined explicitly by means of closure
conditions), an analogous but less redundant version due to Julia Robinson,
and the notion of Turing computable function, based upon Turing machines.
These three notions will be shown to be equivalent ; here the results of Chapters
1 and 2 serve as essential lemmas. In the exercises, three further equivalent
notions are outlined : a variant of our official definition of recursiveness, the
Godel-Herbrand-Kleene calculus, and a generalized computer version which
is even closer to actual computers than Turing machines. As stated in the
introduction to this part, none of these different versions stands out as over-
whelmingly superior to the others in any reasonable way. The versions
involving closure conditions are mathematically the simplest. The ones using
generalized machines seem the most intuitively appealing. The Kleene calculus

‘and the Markov algorithms of the next section are closest to the kinds of
symbol manipulations and algorithmic procedures that one works out on
paper or within natural languages. Take your pick.

Definition 3.1. Let m > 1. An m-ary number-theoretic function f is called
special if for all x,, . . ., x5 € wthereis a y such that f(xy, ..., Xp-2, ¥) =
0. If f'1s a special function, we let

k(xq, . ..s Xm_g) = the least y such that f(xq, ..., Xpn_2, y) = Q.

We write “1(f(Xes: s Xm—-2, ¥) = 00" for “k(xg, ..., Xn-g)- The
operation of passing from f to k is called the operation of (unbounded)
minimalization.

The class of general recursive functions is the intersection of all classes
A of functions such that o, Ul € 4 for all n > 0 and i < n, and such that
A is closed under composition, primitive recursion, and minimalization

AR

Part 1: Recursive Function Theory

(applied to special functions). A relation R is general recursive ifl xg 1s
general recursive. Frequently, both for functions and relations, we shall
say merely recursive instead of general recursive. A class A of number-
theoretic functions is said to be closed under general recursive operations
provided that 4 contains all the functions ¢, U} and is closed under com-
position, primitive recursion, and minimalization (applied to special
functions).

Qeveral comments on Definition 3.1 should be made before we proceed-
First, the minimalization operator used in 3.1 is somewhat different from the
one in 2.16, and the difference in their notations reflects this. We shall see
later that this difference is essential (see, e.g., 3.6). To see that all general
recursive functions are effectively calculable it suffices to assume that f is
an m-ary special effectively calculable function with m > 1 and that & 1$
obtained from f by minimalization and argue that k is effectively calculable.
In fact, given xg, ..., X -2 € w, start computing f(Xo, - - -5 Xm-2, 0), flxc, ...,
X, g 1),.... Since £ is special, O eventually appears in this sequence. The
first y for which f(xo,. .., Xn-2 ¥) = 0 is the desired value of k at {xg,...,
X.._2>, and the calculation can then terminate. Thus the assumption that f
is special is very crucial. Otherwise, for some arguments this procedure would
continue forever without yielding an output.

We can argue as follows, intuitively, that every effectively calculable
function is general recursive. Let f, m-ary, be effectively calculable. We then
have a finitary procedure P to calculate it. Given an argument {Xo, . . ., Xm- 45
from P we make a calculation ¢; the last step of the calculation has the value
f(xg, - . .» Xm_1y coded in it. Let T consist of all sequences (P, X, - - ., Xm-1, <
of this sort. Presumably T itself is effectively calculable and probably more
easily calculable than f. By a coding device we may assume that P € w and
c e w. Let V be the function that finds the output f(xo, . .., Xn-y) Within c.
Now it is reasonable to suppose that both T and ¥ are simple enough that
they are recursive, for no matter how complicated f'is, T and } must be
very routinely calculable. Also, it is reasonable to assume that ¢ is uniquely
determined by P and x, ..., x,_,. Hence

f(xﬁ! Lrey xm—l) = V.UC(E :‘:T{P! Kga + = +» Xm—1» C) = D):

so fis recursive. We shall see that this intuitive argument is very close to the
rigorous argument that every Turing computable function is recursive,
Church’s thesis is the philosophical principle that every effectively calculable
function is recursive. This principle is important in supplying motivation for
our notion of recursiveness. We shall not use it, however, in our formal
development. Later, especially in Part III, we shall use what we will call the
weak Church’s thesis, which is just that certain definite arguments and con-
structions which we shall make are to be seen to be recursive (or even
elementary) without a detailed proof. The weak Church’s thesis rests on the
same foot as the common feeling that most mathematics can be formalized

Chapter 3: Recursive Functions; Turing Computability

within set theory. Of course we can take extensive practice with checking the
weak Church’s thesis as strong evidence for Church’s thesis itself.

Theorem 3.2. If A is closed under recursive operations, then A is closed under
primitive recursive operations. In particular, every primitive recursive
function is recursive.

Now we want to see that there is a recursive function which is not primitive
recursive. The argument which we shall use for this purpose is of some
independent interest, so we shall first formulate it somewhat abstractly.

Definition 3.3. Let A be a collection of number-theoretic functions. A binary
number-theoretic function f is said to be universal for unary members of
A provided that for every unary g € A there is an m € w such that for every
new, f(m,n) = gn. .

Theorem 3.4, Let A be a set of number-theoretic functions closed under
elementary recursive operations. If f is universal for unary members of A,
then f¢ A.

Proor. Assume that fe 4. Let gm = f(m, m) + | forallmew. Thus g € 4.
Since fis universal for unary members of A4, choose m € w such that f(m, n) =
gn for all n€ w. Then gm = f(m, m) = f(m,m) + 1, contradiction. =)

The proof just given is an instance of the Cantor diagonal argument. Other
instances will play an important role in this part as well as in Part III; see,
e.g., 15.18 and 15.20.

Lemma 3.5. There is a general recursive function which is universal for unary
primitive recursive functions.

Proor. We first define an auxiliary binary function / by a kind of recursion
which is not primitive recursion, and afterwards we will show that / is
actually general recursive. We accompany the recursive definition with in-
formal comments. We think of a number x as coding information about an
associated primitive recursive function f: (x), is the number of arguments
of f, and the next prime factor of x indicates in which case of the construction
of 2.29 we are in. The definition of A(x, y) for arbitrary x, y € w breaks mnto
the following cases depending upon x:

Case I (Successor). x = 2. Let h(x, y) = (»)o + 1 for all y.
Case 2 (Identity functions). x = 2%-3'*! wherei < n. Let h(x, y) = (¥k
for all y.
Case 3 (Composition). x = 2"-5".p&-pi®-...-piiz", with n, m > 0.
For any y, let
h{x' _]v’) — h(f}', pg{rﬂ.:u}_ 5 ‘Ph{r_[le}.y} i

Note here that g < x and r0,...,r(m — 1) < x, so the recursion is legal.

47

Part 1: Recursive Function Theory

Case 4 (Primitive recursion without parameters). x = 2-79-11¢ with
g > 0. We define h(x, y) by recursion on y:

hx, 1) = a,
h(x! 2y+1) — h{qi T 3!:{.1:. exp{:!,w!),
h(x,2) =0 for z not of the form 2*,

Case 5 (Primitive recursion with parameters). x = 27*1.11%.13" with
m > 0 and g > 0. We define #(x, y) by recursion on y. First let y be given
with (), = 0. We set

h(x, y) = h(g, y)
hx, y-pa*?) = hir, y-ph-piid > "),

Case 6. For x not of one of the above forms, let A(x, y) = 0 for all y,
This completes the recursive definition of h. We first claim:

(1) for every me w ~ | and for every m-ary primitive recursive function f
there is an x € @ ~ 1 such that, for all yg, ..., ym-1 Ew,

Sos - < s Ym-1) = Bx, PB°- ... -PEETY).
Indeed, let T be the set of all fsuch that an x exists. Then, for all y,
h2,29) =y + 1,
so ¢ € I'. Next, suppose i < n. Then for any yg,..., Yu_1€w,
W23+ P PRETY) = s,

so Ur e I'. To show that T is closed under composition, suppose that fel,
Loy s8m-1 €L, f m-ary, and go, ..., gu-1 €ach n-ary. Choose u € w for f
and vo,....0pn_1 €w fOT go,. .., 8m-1 respectively so that (1) holds for f,

2380 Vo33 8n-1» Um-1. Let x = 2"-5"-p§-pi-....pp%3". Then for any
Yos - - s Ju-1 € w We have, with z = pg°-.... Py, g(¥o, - - +» Yn-1) = i for
each i < m,
h(x, z) = h(u, pieoa. . phvp-1.2)
= b, Y- ... -pASY

Zf{gu{}’u: L y‘n--l}a .. -wgm-- 1{,}101 =s ey yn—-l‘n'

Thus I is closed under composition. To show that T is closed under primitive
recursion without parameters, suppose f € [, fbinary, with associated number
g so that (1) works, and suppose that x = 2'-7%-11° Let k0 = a4, k{(n + 1) =
fin, kn) for all n € w. Then we show that ky = h(x, 2*) for all y @« by induc-
tion on y:

h(x,2°%) = a = k0,
h(x, vt 1) e h(q, ., 3?1(.1’.&:::: fﬂ.w}}
= h(g, 2-3")
= fly, ky) = k(y + 1).

Chapter 3: Recursive Functions; Turing Computability

It is similarly show that I is closed under primitive recursion with parameters.
Thus (1) holds.

Now let f(x,) = hix, 2¥) for all x, y € w. Then by (1), f is universal for
unary primitive recursive functions. Hence it only remains to show that A
(and hence f) is general recursive. This proof can easily be modified to show
that almost any legal kind of recursion leads to a general recursive function.
This kind of proof is, however, very laborious. There is a much easier way of
proving this kind of thing; see the comments following the recursion theorem
in Chapter 5.

The computation of /i(x, y) can be done in finitely many steps, in which
we compute successively certain other values of &: A(a,, be), .. ., Man_1, b)),
We identify this sequence of computations with the number pg°: ... -pSm; 1,
where, foreach i < m, ¢i = 2°-3%.5M2.5_ This intuitive idea should be kept
in mind in checking the following statement, which clearly shows that # is
general recursive. For brevity, we write (a);; (or (a), ; or (a)(i, j)) in place of
((a););; similar abbreviations hold for (((a),),),. ett.

Statement. For any x, y € w, A{x, ¥} = (2)..0, where z 1s the [east v such
that u = 2, (4),, 0 = x, (), = y, and for each i < lu one of the following
holds:

(2) (¥)ip = 2 and (W)ye = (U)o + 1;
(3) W(u)o = 1 and (u)ior — 1 < (U)igo and (u)z = ()i, 1, (1)icn — 1);
(4) (t)igo # 0, (W)ip1 = 0, (20)inz # O, W)y < (4)io2 + 3, and thereisa j < i
such that (u);e = (Wigs, M) < (W)iee — 1, for all k < (u);e there is a
q < i such that (u)go = (U)i,0.k4 45 (W)gr = (W)ir, @and (W)ez = (W)j1x, AN,
finally, (1);2 = (u)a;
{5) {u}iﬁﬁ e I\ (u}fﬂl = {H]in-z — ﬂ, (H}mg + D, I.{H)m = 4, and one ﬂf lhﬂ
following three cases holds:
(3) (u)y, = 1 and (1) = (W)ieas
(57) there is a w < (u); such that (u);; = 2¥*!, and there is a j < i such
that (u);0 = (4)iea and for some k < i, (U)o = (Wi, (Wl = g
(1), = 232, and (1)ye = (W23
(5") there is no w < (u); such that (v),, = 2%, and (1), = 0;
(6) (2)ico > 1, (Wior = (Wioe = (o = 0, (W)ioa # 0, (1) < 5, and one of
the following conditions holds (with (u),0q — | = m for brevity):
(6") (4)m = 0 and there is a j < i such that (1);, = (#)i04, ()2 = (Wi,
and (u);z = (1)z;
(6") (W)am # 0, say (u);, = 1-p.., and there exist j, k < isuch that (&), =
(Whioss (W) = 1-€XP (P 1y (W2)s (o = (Wios (W) = 2,and (1), =
(10);2:

(7) none of the above, and («),, = 0.

To check this statement carefully, let 4 be the set of all ¥ = 2 satisfying the
condition above beginning *“for each i < lu”". Then the following condition
is clear:

49

Part 1: Recursive Function Theory

(8) if u, ve A, then u-[[y Pihi41 € A.
(9) for all x, y € w, there is a u € A with (u),, ¢ = x and (u),,.y = y; for any
such u, (1),,.2 = h{x, y).
Condition (9) is established by induction on x. /
This completes the proof of 3.5. L]

Theorem 3.6. There is a recursive function which is not primitive recursive.

Theorem 3.7. There are exactly ¥, recursive functions.

ProofF. Let A, consist of all of the functions s, U} with i < n. Thus |4,] =
N,. Having defined A4,, let A,,, consist of all members of A4, together with
all functions obtainable from members of A4, by one application of com-
position, primitive recursion, or minimalization (applied to special functions).
Thus if [A4,| = Xy, then |A4,,,] = Ro. Clearly, then, [Unce 4. = No.
Obviously | e 4, is exactly the set of all recursive functions. [

Theorem 3.8. There is a number-theoretic function which is not recursive.

Although Theorem 3.8 follows from 3.7 purely on grounds of cardinality,
we can also explicitly exhibit a nonrecursive function. Let f,, fi,... be an
enumeration of all unary recursive functions (by 3.7). Define gm = f,m + 1
for all m € w. Then g is obviously not in our enumeration, so g is not recur-
sive. We are really just repeating the proof of Theorem 3.4 here in a special
case.

We now turn to the notion of a Turing computable function.

Definition 3.9

(i) Ifg = {go,..., gn-1y 15 a finite sequence of (’s and 1's and Fis a
tape description (recall Definition 1.2), then we say that g lies on F begin-
ning at g and ending at n (where g, n € 7), provided that Fg = g0, F(¢ + 1) =
Bisoos Fo=gn_;(thusn=q + m - 1I).

(/1) An m-ary number-theoretic function fis Turing computable iff there
is a Turing machine M, with notation as in Definition 1.1, such that for
every tape description F, allg,ne Z,and all x,, ..., x,_; Ew, il Q10+ 1
0---01%"-1+D Lies on F beginning at g and ending at », and if Fi = O for
all i > n, then there is a computation {(F,c;,n + 1), (Gy, a,, by), ...,
(Gp_1,ay-1, b,_1)> of M having the following properties:

(1) G,_yi = Fiforalli < n + |;

(2) 1VO¥m=I0+ D Jjes on G,_, beginning at n + 2 and ending at
By~ 1;

(3) G,_,i=0foralli = b,_,.

We then say that fis computed by M.

There are, of course, several arbitrary aspects in this definition of com-
putable function. Many details could be changed without modifying in an

50 -

Chapter 3: Recursive Functions; Turing Computability

essential way the power of the notion. We have simply specified in a detailed
way how an input for the machine is to be presented and how the output is
to be located. The condition (1) is particularly useful in combining several
computations. Now we show that every recursive function is Turing computable.

Lemma 3.10. ¢ is Turing computable.
ProoF. A machine for ¢ is:

Toopy — Ty — Tt]

Lemma 3.11. U} is Turing computable.
ProoF. The machine is T, _ yoopy-]

Lemma 3.12, The class of Turing computable functions is closed under
composition.

PROOF. Suppose f m-ary, g, - .., &m-1 n-ary. Suppose f, o, ..., £n-1 are
computed by M, Ny,..., N,,_, respectively. Then the following machine

computes K (1 go, - - -» &m-1):

n
fﬂm =7 Tl =¥ Tlcft i T(u + lcopy Tlnscnkﬂ =% Tmlght —+ T{] —* L ypppa —
n
ND - T(n+1murpv‘_7’ JFIIIII-Irl ST SR m+1}cupy = Nm—l - T(:m (m — 1)njepy >
jil-‘i_'lfill+[:|r|':|.---2:Ijrl,]l:'.un].l_'lr_} Ll T-rr1::|:u:|:.- — M — J:ir-|i'i1'.|-' -

Lemma 3.13. The class of Turing computable functions is closed under primi-
tive recursion without a parameter.

PrOOF. Suppose that fis a binary operation on w, computed by a machine
M, and aew. Let g0 =a, gn + 1) = f(n,gn) for all new. Then the
following machine computes g:

Til‘l’t = Tl —* Tlufr. — T:ai:l:::py = Tlseeku = Trjghi_. — Tﬂ_}' Tmr-d =¥

: +1 if 1
Tlen.“"‘(Tl = Tla[t.)q — 15 copy — Trlght._)‘ To— Tright —— ety —+

Jes

TI"! n
¥ ' [

s A e . if1
. g Tl = Imf“ i TB“’M'*’ =M Tif-‘ﬂl'lzr =¥ Tﬂkht - T{] —* I right , Tleft. = Tiun;:v

lim

T'—'Iin. D

Lemma 3.14. The class of Turing computable functions is closed under primi-
tive recursion with parameters.

Proor. Suppose that fis m-ary, m > 0, g is (m + 2)-ary and that they are
computed by M and N respectively. Let h(x,, . . ., x,,_1,0) = f(X0s - - .2 Xm—1)s

g1

Part 1: Recursive Function Theory

hl‘x&! vep X ¥]) = g[—xﬂ: sevn Km_1s _}’,H(xm crey A1y _}'D. Then the
following machine computes /fi:

+1 -
TIet’t. = TJ‘. - jwh:rr. o TZ copy T I(ﬂ;taf- Sjcopy ?.-fﬂ.;m_r}cﬂ e Jﬂ."i,:_rlu. e
if 1
TD =% Trend. > M — T{m+2} cupy ~ T['iEhl- = TD T Tﬂzhl. left —*
l ifg
iﬁﬂn

" a if'1
T[m 2)copy T Tlcft = -Tl o Tlet‘t e T(m + 3ycopy 7 N =¥ T{m-‘rd-lm;:sr - fnght e

{ \[u 0
Tﬂn

m 4+ 1
e — T%m +4) copy 1

Lemma 3,15, The class of Turing computable functions is closed under
minimalization (applied to special functions).

ProOF. Let f be an m-ary special function, m > 1, and suppose that f is
computed by a machine M. Let g(xg, ..., x,_s) = py[fixg, ..., Xpoo ¥) =
0] for all xy, ..., x,_o & w. Then the following machine computes g:

'l' . if
' : 3 if 1 =
TJe:t"* Tl.' > Tiep, —> M — T:-lgm. > To > Togn, —> To—+T right
lim feme li“
Stop]

Summarizing Lemmas 3.10-3.15, we have:
Lemma 3.16. FEvery general recursive function is Turing computable.

We now want to get the converse of 3.16. This requires Gédel numbering.
This process, whose name 1s just a catch-word for the process of number-
theoretically effectivizing nonnumber-theoretic concepts (already hinted at in
the introduction to this part), has already been used twice in less crucial
contexts. In discussing course-of-values recursion, we numbered finite se-
quences of numbers: see 2.31. And in constructing a function universal for
unary primitive recursive functions essentially we numbered construction
sequences for primitive recursive functions: see 3.5. Now we want to effectively
number various of the concepts surrounding the notion of Turing machine.
Besides our immediate purpose of proving the equivalence of Turing com-
putability and recurstveness, this effectivization will be important for our
later discussion of general recursion theory.

The script letter 4 will be used for Gédel numbering functions throughout

this book ; we will usually just depend on the contexi to distinguish the various
particular uses of ** 4.’

Chapter 3: Recursive Functions; Turing Computability

Definition 3.17. Let E be the set of even numbers. Let 7 be the class of all
Turing machines. If M is a Turing machine, with notation as in 1.1, we let
the Gddel number of M, gM, be the number

[Tt

i<Zm

where, for each i < 2m, (i = 200 +22], JUENI+1), Ui+ 1), Fad+1)
Lemma 3.18. 4*T is elementary.

PROOF. Forany x € w, x € 4*Tif Ix is odd, x > 1, for every i < Ix we have
((x))2 < 5, for every i < Lx there is a j < Lx such that (x))s = ((x),)o, for
every i < lx, if i is even then ((x)), = ((x)i41)e, and for all i, j < lx, if
i + 2 < j, then ((x),) # ((x);)0, and if i is even then ((x)), = 0, while if i is
odd, ((x)), = 1. . [

Definition 3.19. If F is a tape description, then the Gédel number of F, gF,
is the number

fiﬁﬂ
i=0
where
£ F(if2) if 7 is even,
YT AR(=G + D) ifiis odd.

Note that a natural number m is the Gédel number of some tape descrip-
tion iff Vx < lm((m), < 2) and m # 0.

Definition 3.20. A complete configuration is a quadruple (M, F, d, €) such
that (£, d,) is a configuration in the Turing machine M. C is the set of
all complete configurations. The Gédel number (M, F,d, e) of such a
complete configuration is the number

29M.39F.58.n
where

2 ife>=0,

PNl de<il

Lemma 3.21. ¢*C is elementary.

PrROOF. For any x € w, x € #*C iff Vi < 1(x),(((x),), < 2), (), # O, (x)o €
#*T, and there is an i < I(x), such that (x)2 = (((x)g))o, and Ix < 3. (]

Definition 3.22. (i) For any e Z, let

0={b ife >0,
4 —Fp= 1 ife < 0.

5%

Part 1: Recursive Function Theory

For any x € w, let

x4+ 2 if x is even,
Jox = {0 ifx=1,

x — 2 if x1s odd and x > 1, A
x— 2 if x is even and x > 0,

fix =<¢1 ifa=0
{x + 2 if x is odd.

Lemma 3.23. [, andf, are elementary. For any e € I we have fyge = g(e + 1)
and f, ge = g(e — 1).
PROOF

i 2(e + 1) e =0
) fo2e e=0) 7 - _
e = = e =—1 = gle + 1);
fog <kfn(‘—2E —1) e< {]} {_29 s —l} 4

flge: rleE - _ f(ﬁ —Ellﬂ e>0 :f(e#l)‘lj
ﬁhf1(—2‘-’ —1) e<0 —2e + 1 e <0

Lemma 3.24. Let R, = {(x, n, &, y) : x = ¢F for some tape description F,
n = ge for some ecZ, ¢ =0 or e =1, and y = g(F;)}. Then R, is
elementary.

PROOF. (x,n,& y)eRy Iff Vi<Ix((x);<2), x#0, e<2, and y =

[x/pE"] - ps. U

Lemma 3.25. Let R, = {(x, y): x is the Gddel number of a complete con-
figuration (M, F, d, €), y is the Godel number of a complete configuration
(M, F',d', ¢') (same M), and ((F, d, e), (F', d’, €')) is a computation step}.
Then R, is elementary.

Proor. For any x, y, (x, y) € R, iffl x € ¢*C, y € g*C, (x)¢ = (»)o, and there

is an i < I((x)p) such that (x); = (((x)o))o» (((X)e)): = ((x)1)xs and one of
the following conditions holds:

(@) (((x)o))z = 0, ((x)1, (¥)3, 0, (3)1) € Ry, (P2 = (((x)e))s, and (¥)s = (x)a;
(b) ((X)o))2 = 1, ((x)y, (X)a, 1, (W) € Ro, (¥)2 = (((x)o))s, and (p)s = (X)a;
(©) (%)))z = 2, D)1 = (X1, (M2 = (((X)o))s, and (3)s = f1((x)a);

(d) (((x)o))2 = 3, ()1 = (X1, (¥)2 = ((X)e))as and (p)s = fol(x)a). L]

Definition 3.26, A complete computation is a sequence M = (M, Fy, dy, ep),
oy (M, F,, do, €)> such that {(F,, do, €o), - - .y (Fs s €0)) 1S 2 cOm-
putation in M. The Gédel number of such a complete computation is the

number
[T proosse.

i<m

Let R, be the set of all Gédel numbers of complete computations.

gA *

Chapter 3: Recursive Functions; Turing Computability

Lemma 3.27. R, is elementary.

Proor. For any x, x € R, iff for every i < 1x, (x); € *C, and (({(x)o)o)o)o =
((x)o)2> and for every i < lx, ((x);, (X)i;1) € Ry, and there is an i < 1((x)o)o

such that (((x)o)o))o = ((hdz ((X)e)a)i)r = ()1)znzs, and
((((x))o))z = 4. L]

Definition 3.28. If # is a finite sequence of 0’s and 1’s, we let

fh= H Pi@”l‘

i<Dmnhk

For any x € w, let fox = [[;<. Pf.
Lemma 3.29. f, is elementary, and fox = g1** for any x.
Definition 3.30, For any x, y€ w, Cat (x,) = x-[Ti<iy Pi¥is1-

Lemma 3.31. If k and k are finite sequences of O's and 1's, then g(hk) =
Cat (gh, gk). (Recall the definition of hk from 1.11.)

Definition 3.32. fix = Cat (2, fox). Form > 1,
fgl(xﬂa SRR xm—l) = Cﬂt {f?_l(xm Ry xm—.‘a): CH.'[(2: fa—xm—l)}'

Lemma 3.33. f% is elementary for each m, and [f%5(xos...,Xp-1) =
ﬁu lfxﬂ'-i-l) ﬂ,__n ltx[m—l}-kl])_

Lemma 3.34. Let R, = {(x, y,m,n): x is the Gédel number of a tape
description F, y is the Godel number of a finite sequence h of O’s and 1’s»
m = ge and n = ge' for certain e, €’ € Z, and h lies on F beginning at e and
ending at e'}. Then R, is elementary.

Proor. For any x, y,mn(x,y,mmnecRs iff y#0, Vi < Ix((x); < 2),
X # 0, either y = and m = n, orelse y > 1, for every i < Iy[(y), = 1 or
() = 2], and there is a z < (m + 2y) such that (z) = m, fo((2)) = (2)is1
foreachi < lz,1z = 1y, (2} = n, and foreach i < Iz, (X)u = (¥, = 1. O

The notations f, fi, f2, %, Ro, Ry, Rz, R; will not be used beyond the
present section, The relations T,, introduced next, however, are fundamental
for the aspects of recursion theory dealt with in Chapters 5 and 6.

Definition 3.35. For m > 0 let T,, = {(e, X0, . . ., Xn_1,): € is the Godel
number of a Turing machine M, and « is the Gédel number of a complete
computation {(M, Fy, dy, tg), ..., (M, F,, d,, v,)> such that 01=0+D (...
0 1>m—1+D lies on F, ending at — 1, F, is zero otherwise, v, = 0, and
Bl =1}

Part 1: Recursive Function Theory

Note that for any e, Xg,..., Xm—1 € w there is at most one u such that
X v Xacis) ETy:
Lemma 3.36. T, is elementary. |

PROOF. FOr any e, Xg, ..., Xm-1, U, (€, Xo5- s Xm—1, 4) € Tp 1ff e€g*T,

ue Ry, (oo = € (Wo)1s S B(Xos - - -5 Xm—1), 5, 1) € Rzand Vi < ((u)o)y (7 0dd
and 1 > 5 = (W)) = 0)and ¥Vt < ((u)o), (t even = (((w)o)1): = 0) for some

s < (Wohs ((1Wo)a = 0, and ()2 = 1. Jil]

Definition 3.37. For any x € w let
Vx = py < x[(((0)1)1, Cat (23, 2), 2,2y + 4) € Ry]

Obviously V is elementary.

Lemma 3.38. Every Turing computable function is recursive.

Proor. Let M be a Turing machine which computes f as described in
Definition 3.9(ii), and let e = gM. Then for any xq, ..., Xn_1 € w,

f{xﬂ! oy xm—l) = VFH[(E, Xgse - =3 Xm—1s u] < Tm]!
as desired. O

Theorem 3.39. A function is Turing computable iff it is recursive.

We close this chapter with a variant of the notion of recursiveness due to
Julia Robinson [3]. It will be useful to us later on. The idea is to simplify the
definition of recursive function by using rather complicated initial functions
but very simple recursive operations.

Definition 3.40. [4/]is the function such that [4/x] = greatest integer < 4/x
for each x € w. Also, for any x € w we let Exc x = x — [1/x]?; this 1s the
excess of x over a square.

Lemma 3.41. [+/] and Exc are elementary.
ProoF. [v/x] < x for all x € w, Further,

[v0] =0

_[lvnl fn+ 1 # ((Wn] + 1)
[.“K{H + 1)] o [,vrn] =19 | otherwise

= [v/n] + 58 [n + 1 = ([v/n] + 1)?|
Thus we may use 2.34. Finally, Excn = n =~ [+/n].]

The next definition and theorem introduce special cases of the important
device of pairing functions, extensively used in recursive function theory.

56 -

Chapter 3: Recursive Functions; Turing Computability

Definition 3.42. (i) J(a,b) = ((a + b)? + b)* + aforall g, b € w. (i) Lx =
Exc [v/x] for all x € w.

Theorem 3.43
(i) Y and L are elementary;

(i) Exc0 = 0 and LO = 0;

(i) if Exc(@a + 1) # 0, then Exc(a+ 1) = Exca + 1 and L(a + 1) =
La;

(iv) Exc J(a, b) = a;

(v) L(a, b) = b;

(vi) Jis1 — 1. .

ProoF. (i) and (ii) are obvious. As to (iii), choose x such that a = x?
Exca < (x + 1)% Since Exc (@ + 1) # 0, it is then clear that Exc (g -+ 1)
Exca + 1. Furthermore, clearly x* < g < (x -+ 1) and x* < a + |
(x + 1)3, 50 x = [v/a] = [v/(a + I)] and hence La = L(a + 1).

To prove (iv), note that

((a + b)? + b)? < Ja, b)
<((@+bP+bP+2a+b2+20+1
=@+ b+ b+ 1)~

Hence Exc J(a, b) = a, and (iv) holds. Furthermore, clearly from the above
[v/3(a, b)] = (a + b)® + b; since

(a + b)? < [v/Ma, b)]
<(@+b6PF+2a+2b+1

Al +

= {a + b+ 1)21
we infer that LY(a, b) = Exc [v/)(a, b)] = b, as desired in (v). Finally, (vi) is a
purely set-theoretical consequence of (iv) and (v). [

- For the next results we assume a very modest acquaintance with number
theory; see any number theory textbook.

Theorem 3.44 (Number-theoretic: The Chinese remainder theorem). Let
My, . .., m,_, be natural numbers > 1, withr > 1, the m;'s pairwise relatively
prime. Let ay, . .., a,_, be any r natural numbers. Then there is an x € w
such that x = a(mod m,) for all i < r.

Proor. By induction on r; we first take the case r = 2. Since m, and rm,
are relatively prime, there exist integers (positive, negative, or zero) s and ¢
such that 1 = mgs + myt. Then @y — a, = mes(ag — a,) + myt(a, — a,).
Choose u € w such that @, — mys(a, — a,) + umgm, > 0, and let x = a, —
Mes(a, — a,) + umgm,. Then x = ay(mod mg),and x = a, + m,t(a, — a,) +
umegm, = a,(mod m,), as desired.

Now we assume the theorem true for r and prove it with *‘r** replaced by

&7

Part 1: Recursive Function Theory

“p 4 1”.Withs, ¢, uasabove, choose x € wsuch that x = a, — mes(ao ~ a, +
umgm(mod mgm,), x = ag(mod my), ..., x = amod m,). Then x=q,
(mod my) and, since @, — mps(ao — a1) = a1 + myt(a, — @), x = ay(mod m;)
as desired. [0

Definition 3.45. For all x, icwlet B(x,i) = m (Excx, 1 + (7 + I)Lx).

Theorem 3.46 (Number-theoretic: Gédel’s f-function lemma). For any
finite sequence Yo, - . ., Yn-1 0f natural numbers there is an x € w such that
B(x, i) = y, for each i < n.

ProOOF. Let s be the maximum of yq, - - .y ¥n—1, #. FOI each i < n let my =
1 + (i + 1)-s! Thenfori < j < n the integers m; and m;, are relatively prime.
For, if a prime p divides both m; and m;, it also divides m; — n1; = G+ -
s! — (i + 1)-s! = (j — i)-s! Now pfs!, since p|1 + (i + 1)s!. Hence p|j —
i. But j — i < n < s, and hence this would imply that pls!, which we know
is impossible. Thus indeed m; and m; are relatively prime.

Hence by the Chinese remainder theorem choose » such that

v = y(mod my) for each i < n.
Let x = J(, s!). Then Exc x = v by 3.43(iv), and Lx = s! by 3.43(v). Hence
if i < n we have
B(x, i) = rm (Exc x, 1 + (i + 1)Lx)
rm (v, m)
=W]

Definition 3.47. If fisa l-place function with range w, let fVy = px(fx = »)
for all y € w. We say that f<~? is obtained from /by inversion.

Theorem 3.48 (Julia Robinson). The class of recursive functions is the inter-
section of all classes A of functions such that +, 4, Exc, Uled(forO <i<
n), and such that A is closed under the operations of composition, and of
inversion (applied to functions with range w).

Proor. Clearly the indicated intersection is a subset of the class of recursive
functions (f< Py = px(|fx — y| = 0), so we have here a special case of
minimalization). Now suppose that A is a class with the properties indicated
in the statement of the theorem. We want to show that every recursive func-
tion is in 4. This will take several steps.

The general idea of the proof is this: Inversion is a special case of minimal-
ization, and the general case is obtained from inversion by using pairing
functions. Primitive recursion is obtained by representing the computation
of a function f as a finite sequence of the successive values of f, coding the
sequence into one number using the g function, and selecting that number
out by minimalization.

Our proof will begin with some preliminaries, giving a stock of members
of A, which leads to the fact that the pairing functions are in A. First note

- -

Chapter 3: Recursive Functions; Turing Computability

that for any xew, x* < x® 4+ x < (x + 1)?, and hence Exc (x* + x) = x.
Thus

(1) Exc has range w.
Nexi,
(2) Exc! "V (2x) = x% + 2x for all x € w.

For, obviously Exc (x* + 2x) = 2x. If Exc () = 2x with y < x? 4 2x, we
may write y = z% 4+ 2x < (z + 1)®*and so z < x and hence (z + 1)? = z% +
2z + 1 = 2% + 2x < (z + 1)? a contradiction. Thus (2) holds.

Again,

(3) Exc" V"(2x 4+ 1) =x2 + 4x + 2 for all xe w.

For, (x+ 1P =x2 4+ 2x 4 1 <X+ 4x+2<x®+4x+ 4= (x+ 2)?
and hence Exc(x® + 4x + 2) = 2x + |. Now suppose Exc (y) = 2x + 1,
with y < x# + 4x + 2. Choose z such that y = 22 + 2x + | < (z + 1)~
Then 22 + 2x + I =y < x* +4x + 2 =(x 4+ 1)2 + 2x + 1, and hence
z=<x. Hence (z+ 1P =224+224+ 1 <22+ x4+ 1=y <(z+4 1) a
contradiction. Thus (3) holds.

From (2) we see that Cjx = 0 = Exc o Exc“" P (x + x) for all x€ w;
hence

(4) (e
Hence by composition with J,
(5) Cred forall m > 0 and all m € w.

Now let x©y = Exc(Exc“" V" (2x 4+ 2y) + 3x + y + 4) for all x, ye w.
Thus

(6) Oe€A.
Now if x = y, then

(x+y+2PF=x+)°+4x+4y + 4
x4+ P +2x+) +3x+y+4
Exc"D(2x 4+ 2p) + 3x + p + 4 by (2)

1A

<(x+yP+6x+6y+9
= (x + y + 3)~

Hence

(7) XQy=x-y if y < x.

Let fx = x* for all xe w. Then by (2), (7), fx = Exc'~" (2x) — 2x for all
X € w, SO

(8) fe A.
Next note that sg x = Exc s(x*) and 5g x = 1 O sg x for all x € w. Thus

9) sg, Sg e A.

s0

Part 1: Recursive Function Theory

Furthermore,
(10) Exc ¢ ¢ has range w.

For, Exc 40 = 0, and if x # 0, then Exc o(x® + x — 1) = x.
Now using 3.43(iii) we see that #x = Exc (Exc o o)"V(x) for all x € w.
Hence

(11) FEA.
Recall that E is the set of even numbers. Next we show
(12) yE(x) = Exc 9s Exc!"Vx for all x € w.
For, if x = 2y, then
Exc 90 Exc~ x = Exc s () + 2y) by (2)
= Exc (3% + 2y + 2)
= 1;
if x = 2y + 1, then
Exc g0 Exct~V x = Exc oo () + 4y + 2) by (3)
= Exc(y®* + 4y + 4)
=0,
From (12) we have:
(13) xE € A.
Now let gx = 2 Exc x + §g x[Ex for all x € w. Thus
(14) geA.
We claim:
(15) g has range w.

For, if x = 2y then, since y® + y is even, g(»* + y) = 2Exc (* + y) =
2y = x. If x = 2y + 1 then, since (y + 1)* + yis odd, g((y + 1)* + ») =
2y + 1 = x.

Let hx = [x/2] = greatest integer y < x/2 for all x € w. Then

(16) hx = Exc g" VYx for all x € w, and hence h € A.

For, 2 Excg'"Vx + 5g yEg'~Vx = x for any x; thus if x is even, then
2 Exc g~ Vx = x; while if x is odd, 2 Exc g'"Vx + 1 = X, as desired.
For any x € w, let kx = [(Exc £x)/2] + sg x. Thus

(17) keA.
Furthermore,
(18) k(x?) = x for all x.

For, if x = Othe result is obvious. If x # 0,then #x? = x* — 1 = (x — 1)? +
2x — 2, Exc #ix? = 2x — 2, and hence k(x?) = x, as desired.

Fay

Chapter 3: Recursive Functions; Turing Computability

Let Ix = [4/x] for all x € w. Then by (18), Ix = k(x © Exc x), so

(19) le A.

Hence by (8) and (19)

(20) 1, LeA.

(21) ifx <y, thenx@y=3x+y+ 3.
For,

x+y+1)P=xx+yP+2x+2y+1
<{x4+y)+5x+3y+4
<(x+y)VP+4x+4y+ 4
=(x+y+ 2> '

Sincex © y = Exc((x +) + 2(x + y) + 3x + y + 4), (21) now follows.

(22) x2(x,) =sg(xC YO Bx+ y+3)] for all x, yew, and
hence y. € A.

For, if x > y then

sgl(x@NOGBx+y+)] =sglx—»e@x+y+3)] by
sg(3x — 3y +3x+y+ 3+ 3) by(21)

= sg(6x — 2y + 6)

i

)

= 1
If x < y, then
sglxONOBx+y+ N =0Cx+y+3IOCx+y+3)by(2l)
=0 (by (7)
(23) -€ A.

For, x.y = [((x + »*© x> ©»y%/2] for all x, yew. Let m(x,y) =
|x — y| for all x, y € w. Then

(24) me A,

for m(x, y) = yo(x, ¥)-(x© ») + x>0, X)-(y ©).
With the aid of the auxiliary functions which we have shown to be in 4,
we can now show how minimalization can be reduced to inversion.

Suppose [is a 2-ary special function, fe 4. Let gx = wy(f(x, y) =

25) 0), for all x € w. Then for all x € w, gx = Lpz(f(Exc z, L.z) = 0,
Excz + Lz = [4/[4/2]], and Excz = x) (and for each x there
always is a z satisfying the conditions in parentheses).

To prove this, let x € w be given. Let z = J(x, gx). Then f(Exc z, L.z) =
S(x,gx) = 0 by 3.43; Excz + Lz = x + gx = [+/[+/2]] by direct computa-
tion, and Exc z = x. Clearly also Lz = gx. It remains to show that our choice
of z gives the least integer s satisfying the conditions of the p — operator.
Assume that f(Exc s, Ls) = 0, Excs + Ls = [4/[4/5]], and Exc s = x. Say

A1

Part 1: Recursive Function Theory

f
s=p2+ x<(p+ 1)’ Then [+/s] = p, and Ls = Excp. Say p = g* +

Ls < (g + D)2 Then [v/[+/s]] = ¢. Thus x + Ls = g. Since f(Exc s, L) =
0, we have gx < Ls. Hence x + gx < ¢, (x + gx)? < g% (x + gx)* + gx <
P [(x + gx)? + gx]? < p%,and z = J(x, gx) < p* + x = §, a8 desired. Thus
(25) is established.

(26) Under the hypothesis of (25) we have g € A.

For, let nz = §g f(Exc z, Lz)-5g (|Exc z + Lz — [+v/[+/z]]])- Exc z. By (25),
n has range w, and clearly n € A. Clearly for any x € w we have gx = Sg x-
g0 + Lnt"Yx,s0 ge A.

MNext,
(27) if fis special, fe A, and g is obtained from f by minimalization,

then g € A4.

For suppose f is m-ary, m > 1. We proceed by induction on m; the case
m = 2 is given by (26). Inductively assume that m > 2. Define f* by

fI(xD'} LS | -xm—ﬂ} = f{E‘J{C xﬂ: L-x'[h xlv L xm—ﬂ):
for all xg, ..., X, s € w. Clearly f is special, since fis. Let g’ be obtained
from f* by minimalization. By the induction hypothesis, g’ € 4. Now if
Xoy+ » o2 Xpm—2 € W, then
g‘[xu- 1y xm—z) = Fﬂf{-rﬂs- ey Xy y) — D)
= F.'}r'l:f{EKC J{X{J, }:1), L]{Jﬁj, 11}, Koy o v o Km-2s J”} ' {].}
= P}l[f’{-l{xﬂm I_'[}u .Tz, vy xm—zs }J)) n)
i gI{J(xEI! -‘:1}1 Koy o v ey xm—ﬂ);
hence g € A by (20).
For all x, y € w let g(x, y) = [x/y].

(28) ge A

For, if x, y € w then

[x/y] = pz(y-9z > zory = 0)
= p2(x>(x, y-9z)-y = 0),
so g € A by (27) and (22).
Now since rm (x, ¥) = x O ([x/y]}-y), we have

(29) rme A.
Hence by (20),
(30) Be A.

Now we can take care of primitive recursion.

Suppose g is obtained from fand & by primitive recursion, f m-ary

and i (m + 2)-ary, m > 0. Then for any xg ..., ¥n 1, V€ e,
(31) g(Xxoy-- -+ Xm—1. ¥) = Blpz[f(z, 0) = flxg, ..., Xm-1} and

pw(B(z, o) # h(Xo,- - -5 Xm_1, W, B2, W) OF w = ») = y], ¥);

such z and w always exist, for any xg, ..., Xp-1, V€ w.

A7 =

Chapter 3: Recursive Functions; Turing Computability

To prove (31), let xo,..., Xu_1, ¥ € w be given. By Theorem 3.46 choose z
such that B(z, i) = g(xg, - - .» Xm-1, 1) foreach i < y. Thus if sw < y we have

ﬁ(z: {IW) = g(xu, coey Xmo1s dW)
= h(xu, ea ey Am—1s Ws g(x[lg «ees Xmo1, F"‘})
= h(xﬂl vy Xm—1, Wy ﬁ{z: W}).

Hence

pw(B(z, W) # h(xo, . . ., Xm-1, W, f(z, W) OT W = y) = y.

Furthermore, B(z,0) = g(xg, . . -5 Xp—1, 0) = flxq, ..., Xn_,). Hence there is
a z of the sort mentioned in (31). Let ¢ be the least such z. By induction on i
it is easily seen that for any i < y we have B(z, i) = g(xo, . .., Xp—1,). Hence
B(t, y) = g(xo, . . ., Xm-1, ¥), as desired.

Under the hypothesis of (31), if in addition f and A are in A4,

2) then ge 4.

For, first let

kr(xﬂf cees Xm-1, 1525 W) 22 S_g LIB{Z: dW} ERE h(xﬂs cees Xmo1s W._.ﬁ(z, W))l = Sg{lw - .Pl)
for all xo,. .., Xn-1, ¥, Z, w€ w. Then k' € A by (9), (24), and (30). Further-
more, obviously k' is special and
gfxu,- sy Xm—1s P) = ﬁ(.uZLB(Z,U} =f{xl]:---5xm—1) an'd
PH}(ICI{XU: EERE] Im—'ll _}’: Zy W) == U) o] _}’];J’)
Let £"(Xgs .« s Xm—1s Vs Z) = pWK' (Xgy - - oo Xm—10 J» 2, W) = O) for all x, ...,
Xm—1, Vs Z€ @, Then k" € Aby (27). Let k™(xg, - - +» Xm—1, ¥ 2) = sg (|B(z, 0) —
SXor - - s Xm-2)|) + sg8 (k" (x5 - - -+ Xm—-1, ¥, 2) — y|). Then k"€ 4, and by
(31) k™ is special; moreover,
g(xl]r L] xm-l: J’) — .B{Fz{k.(xﬂ! L | 'xl'l'l-—].! .]"': I} = U): J’)«
Hence g € A, as desired.

33 If g is obtained from ¢ and A by primitive recursion, a € w and A
) binary and he 4, then ge A.

The proof is similar to that of (32).

Thus 4, U} € 4, and A is closed under composition, primitive recursion,
and minimalization (applied to special functions). Hence, every recursive
function is in A4, and the proof of 3.48 is complete.]

Definition 3.49. Let P be the two-place operation on one place functions
such that

P(f. g)(x) = fx + gx
for all one place functions f, g and all x € w.

=2

Part 1: Recursive Function Theory

Theorem 3.50. The class of 1-place recursive functions is the intersection of
all sets A of l-place functions such that s, Exc € A and A is closed under
K1, P, and inversion (applied to functions with range w).

Proor. Clearly the intersection indicated is included in the class of 1-place
recursive functions. Now suppose that A satisfies the conditions of the
theorem. Note that Ul e A, since U} = K] (Exc, Exc'™). If fis a I-place
recursive function, then f= Kl (f, U}). Hence in order to show that all
I-place recursive functions are in A (which is all that remains for the proof),
it suffices to prove the statement

if fis an m-ary general recursive function and go, ..., gn-1€ 4,
then KT (f; 8os+ - -» &m-1) € A.

To prove (*), let B be the set of all fsuch that if fis m-aryand go, . .., gn -1 € 4
then K™ (f o» - - .» 8m_1) € A. Note that for f unary we have fe 4 iff fe B.
Hence +, 4, Exc, Ur e B(for0 < i < n < w)and Bis closed under inversion,
applied to functions with range w. To show that B is closed under composi-
tion, assume that f (m-ary) is in B, that h, . . ., h, . (all n-ary) are in B, and
that g, ..., 8,1 € A. Then by 2.2,

KE (KE (f; hﬂ:-"vkm—lj;gl}!' oy gﬂ—l]
= Kr_r; {f9 K‘.{' (hﬂ ;g[ll*- -:gn—l):"'rK? (hm—l;gl:l:- J -13:1—1})-

Now K% (o380 - -»8n-1)s---» K} (lu—1380s---»8n-1) E 4, 50
K2 (KE(S 3 hos - o oo B—1)3 8os - - -2 8n—1) € A.

Thus, go, . - -, &1 being arbitrary, KJ (f; ho, . . ., hn-1) € B. Hence by 3.48
the proof is complete.]

(*)

BIBLIOGRAPHY

1. Davis, M. Computability and Unsolvability. New York: McGraw-Hill (1958).

2. Hermes, H. Enumerability, Decidability, Computability. New York: Springer
(1969).

3. Robinson,). General recursive functions. Proc. Amer. Math. Soc., 1 (1950),
703-718.

EXERCISES

3.51. Show that the set I' in the proof of 3.5 is closed under primitive recursion
with parameters.

3.52%. Let f(O,» =y+ 1, flx+ 1,00 =f(x, 1), and flx+ 1,y + 1) =
fix, fix + 1, »)). Show that [is recursive.

3.53*, (continuing 3.52%). Show that fis not primitive recursive. Hint: prove the
following in succession (for any x, y € w):

) » < filx, »);
(2) fix,» < fix,y + 1);

sA =

3.54.

3.55.

3.56.
3.57.

3.58.

3.59.

3.60.

Chapter 3: Recursive Functions:; Turing Computability

(3) flx,y + 1) = fix + 1,y);

(4 f(x,) < fix+ 1,p)

3 A,y =y+2;

(6) f(2,3) = 2y + 3;

(7) for any ¢y, ..., ¢, there is a d such that for all x, 2,.,., fle,,) <
f(d, x) (prove first for r = 2, taking d = max (¢, ¢2) + 4):

(8) for every primitive recursive function g (say with » places) there is a ¢
such that for all x,,..., x,, g(x1, .. wXn) <6, XL -+)

(9) fis not primitive recursive.

What difficulty would arise in deleting ** primitive”” from Lemma 3.5 [show
that 3.5 would then be false, but also indicate how a proof roughly similar
to that given for 3.5 would break down].

Express a Turing machine to compute + directly in terms of the machines
of Chapter 1, i.e., don’t use results of this section.

Theset {gM : M is a Turing machine with exactly five states} is elementary.
Prove (33) in the proof of 3.48 in detail.

The class of recursive functions is the intersection of all classes A of
functions such that 4, Ul'e A (each n > 0, each i with i < n), +€ A,
~€ A, -€ A, and A is closed under composition and under minimalization
(applied to special functions). Thus we have here another equivalent
definition of the notion of recursive function; this version, or slight
variations of it, are frequently found in the literature,

Let Ji(x,») =2". 2y + 1) — 1 forall x, yc w, let K;x = (x + 1), and
let Lyx = ([(x + 1)/exp (2, K1x)] — 1)/2. Then show:

(1) Ji, Ky, L, are elementary

(2) Li(Kyx, Lix) = x

3) Kiix,y) = x

(4) Liy(x,y) = y

(5) Jymapsw x w1 — | onto w

For any x, yew, let Ja(x,») =[x + > + 3Ix + »]2, Oix =
[([v8x + D1 + 1)/2] = 1, Qox = 2x — (Q1x)%, Kox = (Qox - 0,x)/2,
and Lyx = Q)x — Ku.x. Prove analogs of 3.59(1)(5). Hint: Define
fiw »x w->w x w by putling

_jx+ 1,y =1) ify e
1, 9) 0, x + 1) ify =0.

(The function f describes a certain easily visualized procedure of going
through all pairs (x, y).)

Prove that J.f(x, y) = J.(x, y) + 1 for all x, yew. Thus J; is the
natural mapping @ x w - w associated with f. Then show successively
that J; maps w x w onto w and that for all x, y € w, O,J.(x, yYI=x+y,
Q2Je(x,) = 3x + y, KaJa(x,¥) = x, LaJo(x, ¥} = y. ThenJo(Kox, Lox) =
x follows easily since J, is onto.

t =

Part 1: Recursive Function Theory

!

3.61*. If f is a l-place number-theoretic function, we define f” (temporary
notation) by induction:

=% for all x e w,
frilx = ffrx forallxew.

The function g such that gn = ™0 for all # € w is said to be obtained from
[by iteration.
Prove the following theorem:

Theorem (R. M. Robinson). The class of primitive recursive functions is the
intersection of all classes A of functions such that ¢, Exc, +, Ul € A whenever
i < new and A is closed under composition and iteration.

Hint: As in the proof of 3.48 the essential thing is to show that each primitive
recursive function is in A, where A satisfies the conditions of the theorem. Proceed
stepwise:

(1) C3, sg. SEE A,

(2) Let fx = x + 2Sg Exc(x + 4) + 1. Then fe A.

(3) Let gx = x + 2[+/x]). Then g € A.

(4) Let ix = x° Then h € A.

(5) Let x© y = Exc[(x + »)* + 3x + y + 1]. Then S € A.

(6) Letex = Sgx + 258(x © 1). Thence A.

(7) Let B be obtained from « by iteration, yx = x + 1 + Bx, £ obtained from
y by iteration, kx = [x/2] for all x; then 3 > fx = x (mod 3), and k, =
ex — x,and k € A.

(8) Let ix = [v/x). Then i€ A.

9 -,J,LeA.

(10) Suppose j € A, and k is defined from j as follows:

k0 =0,
k(n + 1) = j(n, kn).
Then k € A. Hint: define &K'n = J(n, kn) for all n € w.
(11) Suppose f; € A, and f; is defined from f; as follows:
fela, 0) = q,
foa, n + 1) = fu(n, faa, n)).
Then f, € A. Hint: define 10 = 0, l{n + 1) = fo(Ln, Excn).
(12) Suppose fi1, f2 € A, and f; is defined as follows:
fa(a, 0) = fa,
fs(ﬂ: n+]) . fg(ﬂ, fﬂ(ﬂ: ”})'
Then fz € A. Hint: define l{a, 0) = a, l{a, n + 1) = Ja, fi(a, n))
(13) If £, fs € A, and f; is defined by:
fﬁ(ﬂ, ﬂ] - ﬁas
Sfola, n + 1) = fsla, n, fe(a, n),

then f € A.
{(14) A is closed under primitive recursion.

3.62.

3.63*

3.64*

Chapter 3: Recursive Functions; Turing Computability

Using 3.61, show that the class of all 1-ary primitive recursive functions
is the intersection of all classes 4 such that s, Exce A and A is closed
under iteration, K}, and P.

(HERBRAND-GODEL-KLEENE CALCULUS). We outline another equivalent
version of recursiveness. We need a small formal system:
Variables: vg, vy, vg, . . .
Individual constant: O;
Operation symbols: £, (m-ary), g.. (m-ary) for all mew ~ 1, new; ¢
(unary).

By induction we define A0 =0, Alm + 1) = 9 Am for all me w;
we denote /Am sometimes by m. Now we define terms:

(1) <wo;

(2) <0>;

(3) if o is a term, so is a0}

4) f mew ~1 and oy,...,0,-; are terms, so are f,o0---0,.; and
gm0 * “On -1 for each n € w;

(5) terms are formed only in these ways.

An eguation is an expression o = 7 with o, T terms.

A system of equations is a finite sequence of equations. If E is a system
of equations, say £ = {gq, ..., ®n-17, then an E-derivarion is a finite
sequence {ifi, . . ., Yn-1> of equations such that for each i < n one
of the following holds:

(6) 3j < myy = gy

(7) 3j < i3 variable « 3 m € w (i, is obtained from y; by replacing each
occurrence of « in ¢; by m);

(8) 3j, k < i ¢y has the form o = 7, §; has the form f,X¢---%X,_; = y or
€raYo - “Xp_1 = ¥, and Y is obtained from i by replacing one occur-
rence of fxp: « - X, -1 (OF peXp- - -X,_1) in 7 by X.

We write E | y to mean that there is an E-derivation with last member y.

MNow an m-place number-theoretic function k is called Herbrand-
Gddel-Kleene recursive if there i1s a system FE of equations such that
Vxor - -Vxm 2aVUE}F foxg: - Xm_y = yiff k(xg, ..., xn-1) =).

Show that & is Herbrand—-Godel-Kleene recursive iff it is recursive.

Hint: To show that every recursive function is HGK recursive, let 4
be the collection of all functions k (say k is m-ary) such that there is a set
E of equations and an assignment of n-ary operations to the n-ary opera-
tion symbols occurring in members of E (for all n € w), k assigned to f,,
under which all members of E become intuitively true for any values
assigned to the variables and such that Yxg- - -Vx,_ 3y (EFfxg- - Xy
¥). Show that A satisfies the conditions of Exercise 3.58 and hence that
every recursive function is Herbrand-Godel-Kleene recursive.

To show the converse, do a Godel numbering. Let Ty, = {(e, x¢.,
Xm-1. 4): € is the Godel number of a system E of equations and # is the
Godel number of an E-derivation with last term of the form f,Xg- - - x,, , =
¥}. Given such a u, V’'u is the y mentioned. Then see the proof of 3.38.

(INFINITE DIGITAL COMPUTER). Yet another equivalent form of recursive-
ness is obtained by generalizing a first-generation digital computer. We

67

Part 1: Recursive Function Theory

Pz}

visualize our computer as an infinite array of storage boxes, labeled
0,1, 2,.... Each storage box is allowed to hold any natural number. By
convention we assume that all but finitely many of the boxes have 0 in
them. Box 0 is the instruction counter. Box 1 is the accumulator. All other
boxes are just fast memory cells. We supply only six instructions:

(1) add one to the contents of Box 1;

(2) subtract one from the contents of Box 1, or leave zero if already 0;

(3) replace the contents of storage n by the contents of storage ! (for
any n);

(4) replace the contents of storage 1 by the contents of storage n (for any n);

(5) (for each n € w) if storage 1 has a zero in it, take the next instruction
from storage n otherwise proceed as usual;

(6) stop.

For technical reasons there is no sfart instruction.

The machine works as follows. We set the storages initially to certain
values (programming). Then the machine starts. It looks at box 0 and
takes its instruction from the box specified there (each instruction will be
assigned a number). After performing the instruction, the instruction
counter advances one step (except possibly for instructions (3) and (6)),
and then the next instruction is executed, etc. The machine continues until
hitting the stop instruction, and then stops. It is possible that the machine
will get in a “loop™, and never stop.

An initial state of the machine is called a program. A program computes
a 1-place function f as follows. We put x in storage 2 and press the start
button. The machine grinds away, and finally stops; fx is then in the
accumulator.

Now we express all of this rigorously. A storage description or program
is a function F mapping w into w such that for some m€w we have
Fn=0foralln = m.

An instruction is a number of the form 2°3¢, 21.39, 22.3n 23.3n 21.3%
0, where n € w. These instructions correspond to (1)-(6) above, respectively.

A computation step is a pair (F, G) such that F and G are storage
descriptions and one of the following conditions holds:

(1) FFO = 2°.3% and G = (Ffo+1)f1+1
(2) FFO = 2*-3%and G = (Fros1)f1-1
(3) FFO = 22-3" (for some n), and G = (Ffo+ 1)
(4) FFO = 22.3" (for some n), and G = (Fpo41)kn
(5) FFO = 2*.3" (for some n), and
G = Ffos1 if F1 # 0,
G=F ifF1=0.

A computation is a finite sequence {Fy, . .., Fy ;> of storage descrip-
tions, with m > 0, such that (¥, F;..) is a computation step for each
i<m—1and F,_,F,_,0 = 0. We say that (Fy, . .., Fu-1> is a computa-
tion beginning with Fy and ending with F,,_,. Now an m-ary function f is
said to be infinite-digital computed by a program F provided that for all
Xo, - - -+ Xm 1 there is a computation beginning with /%7 - 1, and ending
with a program G such that G1 = f(xo, ..., Xp-1)-

Show that a function is infinite-digital computable iff it is recursive.

-

Markov Algorithms

The present chapter is optional; it is devoted to another important and
widely used version of effectiveness, Markov algorithms.

The theory of Markov algorithms is described carefully and in detail in
Markov [3). Here we shall only give enough of its development to prove
equivalence with Turing computability and recursiveness. The equivalence
was first proved in Detlovs [2]. For a brief outline of the theory see Curry [1].

Definition 4.1, Throughout this chapter, by a word we shall understand a
finite sequence of 0's, 1’s, and 2’s. The empty word is admitted. A Markov
algorithm is a matrix A of the form

a b o

such that a, . .., @, by, . - ., b,, are words and ¢, . . ., ¢, €{0, 1}. A word
a occurs in a word b if there are words ¢ and d such that b = cad. Of
course @ may occur in b several times. An occurrence of a in b is a triple
(e, a, d) such that b = cad. It is called the first occurrence of a in b if ¢
has shortest length among all occurrences of a in b,

An algorithmic step under A is a pair (d, €) of words with the following
properties:

(i) there is an i < m such that a; occurs in d;
(if) if i < m is minimum such that a; occurs in d, and if (f, a;, g) is the
first occurrence of @; in d, then ¢ = fb;g.

Such an algorithmic step is said to be nonterminating, if with i as in (i),
¢; = 0; otherwise (i.e., with ¢, = 1), it is called terminating. A computation

A0

Part 1: Recursive Function Theory

under A is a finite sequence {d,, . . ., d,,»> of words such that for each i <
m — 1, (d;, di,,) is a nonterminating algorithmic step, while (d,_,, d,)
is a terminating algorithmic step.

Now an m-ary function [is algorithmic if there is a Markov algorithm
A as above such that for any xg, ..., Xn_1 € w there is a computation
{dq, . . ., d,» under A such that the following conditions hold:

{fff) dﬁ =0 =0+t 0 ... 0 lt.ttm—l}-l-l) 0 2;
(iv) ¢{2) occurs only once in d,;
(ﬂ) 0 U0,xtm=-10+1)) 2 gecurs In dn-

We then say that A computes f.

A row g; b, 0 in a Markov algorithm will be indicated @, — b;, while a

row a; b, 1 will be indicated g; — -b,. A Markov algorithm lists out finitely
many substitutions of one word for another, and an algorithmic computation
consists in just mechanically applying these substitutions until reaching a
substitution of the form g; — -b;. Clearly, then, an algorithmic function is
effective in the intuitive sense. Markov algorithms are related to Post systems
and to formal grammars. Now we shall give some examples of algorithms,
which we shall not numerate since they are not needed later. The algorithm
Ag:

0> — -<0)

works as follows: any computation under A is of length 2 and simply repeats
the word: <{a, a)>, where {0> occurs in 4. Consider the algorithm A, :

{0y — - <013,

Some examples of computations under A, are:

(1) <03, <013
(2) <<00), <010>)
(3) <<110103, <110110).

Let A, be the following algorithm:

0> —> (1)
1) =<,

The algorithm A, takes any word and replaces all 0’s by 1’s, then stops. Let
Ag be

{1> — (11>.

Clearly no computation under A; exists. Starting with a word in which {1>
occurs, A; manufactures more and more one’s.

Lemma 4.2. FEvery Turing computable function is algorithmic.

TN

Chapter 4: Markov Algorithms

ProOE. Let f (n-ary) be computed by a Turing machine M, with notation
as in 1.1 and 3.9. With each row ti = (¢, &, vi, di) of M (1 < { < 2m) we
shall associate one or more rows (i, 0), . . ., t'(i, pi) of a Markov algorithm,
depending on vi.

Case 1. vi = 0 or 1. We associate the row

(op 2 19D 2y (g 2 1@+D 2

Case 2. vi = 2. We associate the rows (in order)

0 & 2 1€i+D 2% (0 2 16@+D 2 g5
{1 ¢ 2 iefi+1) 2)_}@ 2 @i+l 2 &>
(51 2 I(cji+'.l) 2>_,’_<.U 2 I{dl+1) 2 Ei)’

Case 3. vi = 3. We associate the rows (in order)

(g 2 1¥#D 2 35 le O 2 1%*+D 2y
(Ei 2 e+l 9]>—?‘<£i] 2] di+1) 2>
<51 2 Jiefi+1) 2}_3,(31 0 2 Wi+ 2>‘

Case 4. vi = 4. We associate the row
(Ei I LY 2}_},,&1 2>‘

Now let 4 be the following Markov algorithm:
t'(1,0)

t'(1: rl)
t'(2, 0)

t'(2m, p(2m))

<2> —{2 Jte1+1) 2>.
We claim that A computes f. To see this, let xo, . . ., X,-; € @. Since M com-
putes f, by 3.9 there is a computation {(F, ¢, 0), (Gy, @3, b)), . . ., (Gy—y, @41,
b,_1)> of M with the following properties:
(1) 0 10+ 0 ... O |-+ Lies on F ending at —1, and F is O else-

where;

(2) 1&m-D+D ((UGO0....xtm-1)+1) () [jeg on G, ending at b,_,.

Now let G, = F, a, = ¢,, by = 0. Let ¢ _, be the word
0 1(xﬂ+1] 0 «.. O 1(::{:!1—1‘)4-1) 0 2.

Now we define N,, P;, Q, for i < g by induction. Let Ny be 0 1®°+1 (...
0 |xm-1+0 0 P, = 0 (the empty sequence), and Q, = 0 1<+ Q -..
0 [xm-D+1 (2 j€14D 7 Suppose now that i + 1 < g and that N, P;, O,
have been defined so that the following conditions hold:

(3) N, # 0;
(4) N, lies on G, ending at b;;
(5) P, lies on G, beginning at b; + 1;

T

Part 1: Recursive Function Theory

(6) G, is 0 except for N.P;;

(7) exactly two 2's occur in Q,;

(8) N, 2 1"+P 2 P, = O3

(9) if i # 0, then (Q;_;, Q) is a nonterminating algorithmic step under 4.

Clearly (3)-(9) hold for i = 0. We now define N, , P;,,, Oi,,. Let the row
of M beginning with a; G.b, be

a Gb v w

We now distinguish cases depending on v. Note that, sincei < g — 1, v # 4.
In each case we define N, 1, Pis 1, Qis1, and it will then be evident that (3)-
(9) hold for i + 1 in that case. In each case, let Q,,, be defined by (8) for
i+ 1

Case 1. v = 0. Let N;,, be N; with its last entry replaced by 0, and let
P, =P,

Case 2. v = 1. Similarly.

Case 3. v = 2. Here we take two subcases:
Subcase 1. N; has length at least 2. Write N; = N;, &, wheree = 0 or 1, and

set P fe1 = =
Subcase 2. N has length 1. Let Ny, = {0}, Pi,1 = NP

Case 4. v = 3. Again we take two subcases:
Subcase 1. Py # 0, Write P, = eP;,, with e = O or 1, and set N;,; = Ne.
Subcase 2. P; = 0. Let P;,, = 0, N;,, = NJQ.
This completes the definition of N,, P;, Q; for all i < g, so that (3)-(9) hold.
Let O, be the word N,_, 2. Then by (9) it follows that {Q_,, Qo,..., @y
is a computation under 4. Now by (2), (6), and (4), we can write

Nq-—_‘[— N;—l 0 I(ffxﬂ 2m—1)+1) 0;
hence 0 1¢/C0wxim-D+D (2 oecurs in @, and 2 occurs only once in Q,.

It follows that 4 computes f. (]

We now turn to the problem of showing that every algorithmic function
is recursive. This is done by the now familiar device of Godel numbering.

Definition 4.3. If a = {aq, ..., a,_1> is a word, its Gddel number, ga, is

H p‘{_lf‘f'l'

i<m

Thus the empty word has Godel number 1.

Lemma 4.4. The set of Gédel numbers of words is elementary.

PrOOF. m is the Gédel number of aword ifm =1 orm > 1 and Vi < Im
[(m) < 3and 1 < (m)]. O

Chapter 4: Markov Algorithms

Definition 4.5. 1f Aisa Markov algorithm as in 4.1, its Gaédel number, g4,
is the number

[17

i=m

where fi = 2%¢t.3#%.5¢ for each i < m.

Lemma 4.6. The set of Gidel numbers of Markov algorithms is elementary.

Prook. n is the Godel number of a Markov algorithm iff n > 2 and Vi < In
[((n).)o and ((n);), are Gédel numbers of words, (7)) < 1, and i{(n)) = 2L E]

Definition 4.7. Let Ry = {(m, n): m and n are Gddel numbers of words a and
b respectively, and a occurs in b}.

Lemma 4.8. R, is elementary.

ProOOF (m, n) € Rg iff m is the Godel number of a word, n is the Godel
number of a word, and 3x < n 3y < #n[Cat (Cat (x, m), y) = nl. (Recall from
3.30 the definition of Cat.) (]

Definition 49. R, = {(m, n. p, g). m, n, p, q are Godel numbers of words a,
b, ¢, d respectively, and (a, b, ¢) is the first occurrence of b in d}.

Lemma 4.10. R, is elementary.

PrROOF. {m,m, p,g)€ R, if m, n, p, g are Godel numbers of words and
Cat (Cat (m,n), p) =q and ¥x = ¢ Vy < gllx < Im & x and y are Giodel
numbers of words = Cat (Cat (x, n), ¥} # 4]]

Definition 4.11. R, = {(p, m, n) : p is the Godel number of a Markov algo-
tithm A, m, n are Godel numbers of words a, b respectively, and (4, b)isa
nonterminating computation step under Aj}.

Lemma 4.12. R, is elementary.

PrOOF. (p, m, n) € Ry iff p is the Gédel number of a Markov algorithm, m
and n are Godel numbers of words, 3i < 1p such that (((2))o, M) € R, and
Vi < lp¥x < mYVy < ml(((p))o, M€ Ry & Vj < if(((P)os My ¢ Rl & (x,
((p}i)ﬂ’ ¥, m} = Rl 4 Cat (Cal (I, ((P)i)h J") =n & ((_p)i}ﬁ = ﬂ] l..]

Definifion 4.13. R, is like R, except with *“terminating™ instead of “non-
terminating .

Lemma 4.14. R, iy elementary.

Part 1: Recursive Function Theory

Definition 4.15. If <{d,,...,d,> is a finite sequence of words, its Godel

number is
I | pﬁ'm
‘ -

i<m

Also let R, = {(m, n) : m is the G&del number of a Markov algorithm A,
and # is the Godel number of a computation under A}.

Lemma 4.16. R, is elementary.

PrOOF. (m, n) € R, iff m is a Godel number of a Markov algorithm, In = 1,
and Vi < ln = 1[(m, (n);, (n)i41) € Rz] and (m, () =1, (Mhy) € Ry. L]

Definition 4.17. fix = [Ti<x pi-
Lemma 4.18. f, is elementary.

Definition 4.19. fix = Cat (2, fix)-/2* (Xos - - - Xm) = Cat (f3(Xos - - - Xm-1)
fixm)-

Lemma 4.20. [T is elementary, for each m € w ~ {0}.

Lemma 4.21. fT(xo, - - -» Xpm-1) is the Gédel number of

0 1«0+ 0 ... ([w@m-D+1L)

The notations R,, R., Rs, Rs, f1, f3 will not be used beyond the present
section.

Definition 4.22. 7. = {(e, Xo, - - -» Xm_1, €) : € is the Godel number of a
Markov algorithm A, and c¢ is the Gdédel number of a computation
(do, . . - d,y under A, (¢)o = Cat (f5(xps . - -» Xm—1)» 2-3°), and 2 occurs
only once in d,}.

Lemma 4.23. T, is elementary.
Definition 4.24. V'y = px < y[(Cat (f3x, 2-3%), ())) € Rel.
Lemma 4.25. V' is elementary.

Lemma 4.26. Every algorithmic function is recursive.

PrROOF. Say [is m-ary and is computed by a Markov algorithm A. Let e
be the Gédel number of A. Then for any Xg, . . ., Xm-1 € @ We have

f(—-"'u, =i -xm—l) — VJN((‘?: Kga e v en Xm—-1» Z> E TJ;:)-

Thus f is recursive, as desired. [

Theorem 4.27. Turing computable = recursive = algorithmic.

Chapter 4: Markov Algorithms

BIBLIOGRAPHY
1. Curry, H. Foundations of Mathematical Logic. New York: McGraw-Hill
(1963).

2. Detlovs, V. The equivalence of normal algorithms and recursive functions.
A.M.S. Translations Ser. 2, Vol. 23, pp. 15-81.

3. Markov, A. Theory of Algorithms. Jerusalem: Israel Program for Scientific
Translations (1961).

EXERCISES
4.28. Let A be the algorithm
2 0—-0 2
2 1—1 2
2—. 1@
— 2

Show that A converts any word a on 0, 1 (i.e., involving only 0 and 1)
into a 199,

4.29. Construct an algorithm which converts every word into a fixed word a.

4.30. Construct an algorithm which converts every word a into 1™+, where n
is the length of a.

4.31. Let a be a fixed word. Construct an algorithm which converts any word
#a into the empty word, but leaves a alone.

4.32. There is no algorithm which converts any word a into aa.
4.33. Construct an algorithm which converts any word @ on 0, 1 into aa.

4.34*. Show directly that any algorithmic function is Turing computable.

T4

Recursion Theory

We have been concerned so far with just the definitions of mathematical
notions of effectiveness. We now want to give an introduction to the theory
of effectiveness based on these definitions. Most of the technical details of the
proofs of the results of this chapter are implicit in our earher work. We wish
to look at the proofs and results so far stated and try to see their significance.

In order to formulate some of the results in their proper degree of generality
we need to discuss the notion of partial functions. An m-ary partial function
on « is a function f mapping some subset of " into w. The domain of f may
be empty—then f itself is the empty set. The domain of f may be finite; it
may also be infinite but not consist of all of "w. Finally, it may be all of "w,
in which case fis an ordinary m-ary function on w. When talking about partial
functions, we shall sometimes refer to those f with Dmn f = ™w as rotal.

Intuitively speaking, a partial function f (say m-ary) is effective if there is
an automatic procedure P such that for any x,, ..., X, 1 € w, if Pis presented
with the m-tuple {xg,..., xn.1» then it proceeds to calculate, and if
{Xgy - - -5 Xm—1» € Dmn f, then after finitely many steps P produces the answer
flxg, ..., Xn_1) and stops. In case (xq, - - ., X,—1) ¢ Dmn f the procedure P
never stops. We do not require that there be an automatic method for recog-
nizing membership in Dmn f. Clearly if f'is total then this notion of effective-
ness coincides with our original intuitive notion (see p. 12). Now we want
to give mathematical equivalents for the notion of an effective partial function.

Definition 5.1. Let f be an m-ary partial function. We say that f'is partial
Turing computable iff there is a Turing machine M as in 1.1 such that for
every tape description F, allg,ne Z,and all x, ..., X3 € w,if 0 19+ O
--. () Jtxm=1+1 lieg on F beginning at g and ending at n, and if Fi = 0
for all i > n, then the two conditions

Chapter 5: Recursion Theory

{I) {"rﬂ:l e xm—l) € Dmn F:
(if) there is a computation of M beginning with (F, ¢;, n + 1)

are equivalent; and if one of them holds, and {F, ¢;, n + 1), (G, a,, by), . . .,
(Gp-15 Gp-1, by_1)) is a computation of M, then (1)-(3) of 3.9(ii) hold.

Clearly any partial Turing computable function is effectively calculable.

Corollary 5.2. Every Turing computable function is partial Turing computable.
Every total partial Turing computable function is Turing computable.

Next, we want to generalize our Definition 3.1 of recursive functions. To
shorten some of our following exposition we shall use the informal notation

e W g

to mean that --- is defined iff - - - is defined, and if --- is defined, then
--- =--- For example, if f is the function with domain {2, 3} then when

gx + hx =~ f(x + 2) for all x € w,

we mean that Dmn g () Dmn / = {0,1} and for any xe€{0,1}, gx + hx =
f(x + 2).

Definition 5.3
(£) Composition. We extend the operator K7 of 2.1 to act upon partial
functions. Let f be an m-ary partial function, and g,..., g,., n-ary
partial functions. Then K is the n-ary partial function /4 such that for any
Xoseuey Xp_; Ew,

h{xl::l vy K- 1) Ef'[gu(-’f{:u- LR xna—l)i o "'gm—l{xﬂi- = =y xn—l))-

(if) Primitive recursion with parameters. If f1s an m-ary partial function
and f is an (m + 2)-ary partial function, then R™(f, /) is the (m + 1)-ary
partial function defined recursively by:

H{XU,...,xm_I,U)’—vf{-ru,----.-xm_]_)
g[xl.'l'!"'mxm—]_m J_.VJ o h(xﬂvﬂvv-xm 1= .}’-.- g{-’fuw--, -xm |] J“,})

fﬂ[’ E" Xas v+ o9 Km=1s }'E .,
(iii) Primitive recursion without parameters. If ac o and h is a 2-ary

partial function, then R%a, h) is the unary partial function g defined
recursively by

g0 = a
_ gy =~ Iy, gy)
for all y € w.

77

Part 1: Recursive Function Theory

(iv) Minimalization. Let fbe an (m 4+ 1)-ary partial function. An m-ary
partial function g is obtained from fby minimalization provided that for all
Koy + - -9 X1 E Uy

g{xﬂn L xm-‘l) = lﬂaSl ¥y S'LlCh that Vz = y({xﬂ-: ceey X1, E) € Dmnf}
and f(xo . - ., Xm-1, ¥) = 0.

We then write g(xp, . . ., Xm-1) = p{f(X0, - - -» X1 ¥) = 0).

(v) The class of partial recursive functions is the intersection of all
classes C of partial functions such that s € C, Uf € C wheneveri < ne o,
and Cis closed under composition, primitive recursion, and minimalization.

Clearly every partial recursive function is effectively calculable. Note that
it is not appropriate to simplify the definition of minimalization to

g(xg; . - -3 Xm-1) =~ least y such that (x,,..., X5_1, ¥) € Dmn f and
f(xm s Am=1, _F) = U;

for all x,, ..., Xxn_1 € w. For, even if fis calculable there may be no clear way
to calculate g. For example, suppose that (xg, ..., Xn-1, 0) ¢ Dmn £, while
(Xgs - - vy Xm—1, 1) € Dmn fand f(xq, . .., Xn_1, 1) = 0. Without knowing that
(Xps+ - +s Xm—-1, 0) ¢ Dmn f it is unclear at what point in a computation of
g{xgy . - ., Xm_y) one would be justified in setting g(x,, ..., X,_;) = 1. The
above definition of minimalization clearly avoids this difficulty. One can give
explicit examples where f is partial recursive but g, defined in this new way,
is not. (See Exercise 5.38.)

Note that there are nontotal partial recursive functions. For example,
clearly C3 is partial recursive, and hence by 5.3(iv) so is the function g such
that gx ~ py(Ci(x, y) = 0). Obviously, however, g is the empty function.

Corollary 5.4. Every general recursive function is partial recursive,

In contrast to the situation for Turing computability, it is not at all
immediately clear that every total partial recursive function is general recur-
sive; this is, however, true, as our next theorem shows. The proof of this
theorem is rather long when carried out from the beginning.

Theorem 5.5. Partial Turing computable = partial recursive.

PROOF. PARTIAL RECURSIVE => PARTIAL TURING COMPUTABLE. Here it is
only necessary to read again the proofs of Lemmas 3.10-3.16 and check that
they adapt to the situation of partial functions and the new Definitions 5.1 and
5.3,

PARTIAL TURING COMPUTABLE > PARTIAL RECURSIVE. Again one needs only
to reread 3.17-3.38.]

Corollary 5.6. Any total partial recursive function is recursive.

Chapter 5: Recursion Theory

A natural question occurs as to whether every partial recursive function
can be extended to a recursive function; the answer is no:

Theorem 5.7. There is a partial recursive function f such that f cannot be
extended to a recursive function.

Proor. The rule for computing fis as follows. For a given x € w, determine
whether or not x is the Godel number of a Turing machine. If it is not, set
fx = 0. If it is, test in succession whether or not (x, x,0) € Ty, (x, x, 1) € T3,
(x, x, 2) € Ty, etc. The first time we find a u such that (x, x,) € T}, set fx =
Vu + 1. If we never find such a u, the computation never ends. Clearly f is
intuitively a calculable partial function, and it has the following property:
for any x € w,

=4 if x is not the Gédel number of a Turing machine,
Veu((x, x,) e Ty) + 1 if x is the Gddel number
of a Turing machine and there is such a u,

fx is undefined, otherwise.

Q)

It is routine to show that fis partial recursive; we will prove this formally In
this case, but usually not in the future. We can define f by (1). Clearly then,
for any xe w

Jx = [Vpu(xr,(x, x, u) = 1 or yzx = 0) + 1]-xa2x,

so fis partial recursive.

Now f cannot be extended to a general recursive function. For, suppose
f € h with h general recursive. By the proof of 3.38 there is an e € w such
that, for all x € w,

hx = Vuu(e, x, u) € Ty).

In particular, he = Vuu((e, e, u) € T;) and (by the definition of T,, 3.35) e is
the Gédel number of a Turing machine. Thus fe is defined, and

fe = Vuu(le,e,) eT) + 1 =he+1=fe+1,
contradiction. L]

We now turn to the formulation of some basic results called the normal
Jorm, iteration, and recursion theorems.

Definition 5.8. For any ¢ € w and m € w let @7 be the m-ary partial recursive
function such that for all x,, ..., x,_; €,

q}:“.xﬂv i xm-—l) = VP”((et Kos + 09 Xm—1, H) ETm)‘
Note also that the (m + 1)-ary partial function ¢’ defined by

P(Xgs - - -» Xm-1, €) = Vpu((e, Xo, . . -y X1, #) € Tp)

for all xg,..., xp_1, €€ w, is also partial recursive. This remark will be
frequently useful in what follows.

79

Part 1: Recursive Function Theory

Theorem 5.9 (Normal form theorem). For any partial recursive function f
(say m-ary) there is an e € w such that f = @F.

Proor. By the proof of 5.5, second part.]

This theorem, which was implicitly used already in the proof of 5.7, has
many important corollaries, which we shall now explore. First of all, its
normal form nature is made a little more explicit in the following corollary.

Corollary 5.10. For each m € w ~ 1 there exist a 1-place elementary function
fand an (m + 2)-place elementary function g such that for any m-ary partial
recursive function h there is an e € w such that for all x, . . ., X,,_; € w,

h(Xos -« . xm—l) tfpu[g[ﬁ', Xoz»oos Xm—1s H} = ﬂ]

Proor. Letf =V and g = Sg © yqp- L

This formulation suggests the possibility of improving the result by drop-
ping f. (Another possibility, dropping p, is impossible since there are recursive
functions which are not primitive recursive.) As to this possibility, see
Exercise 5.43; the answer 1s no.

Theorem 5.9 and its proof give risc to a certain universal phenomenon as
follows.

Corollary 5.11 (Universal Turing machines). There is a Turing machine M
with the following property. If [is any unary partial Turing computable
Jfunction and a Turing machine N computes it, and if e is the Gidel number
of N, then if 0 1¥*D 0 |**Y 0 js placed upon an otherwise blank tape
ending at — 1 and if M is started at O, then M will stop iff x € Dmn f, and
if xe Dmn f, then after the machine stops 1YY 0 will lie on the tape
beginning ar 1.

ProOF. Let g be the partial recursive function defined by
gle, x) = Vuul(e, x, u) e T,]

for all ¢, x e w. Let M compute g. Clearly M is as desired. 3

In more intuitive terms we can describe the way M is to act as follows:
M is presented with two numbers e and x. First M checks if ¢ is the Godel
number of some Turing machine. If it is, say ¢ = ¢ /N, then M begins checking
one after the other whether 0 or 1 or - - - is the Gédel number of a computa-
tion under N with input x. If there is such a number, M takes the first such
and reads off the result of the computation. It may be that e is not the Gédel
number of a Turing machine or that there is no computation with input x;
then M does not give an answer.

Lat el b g

Chapter 5: Recursion Theory

Corollary 5.12 (Universal partial recursive function). There is a partial re-
cursive function g of two variables such that for any partial recursive function
fof one variable there is an e € w such that for all x € w, g(e, x) ~ fx.

ProoEe. Let g be as in the proof of 5.11. [

In view of the proof of 3.4, the reader might view 5.12 with some suspicion.
Let us see what happens if we try the diagonal method on the g of 5.12. For
any x € w, let fx ~ g(x, x) + 1. Then fis partial recursive, so by 5.12 there
is an e € w such that for all x € w, g(e, x) =~ fx. Now if g(e, e) is defined, then
gle, €) = fe = gle, €) + 1. Conclusion: gfe, ¢) is not defined. We are saved
by g being a partial function. No contradiction arises.

We now turn to the iteration theorem. This basic result, although of a
rather technical nature, is basic for most of the deeper results in recursion
theory. See, e.g., the proofs of 5.15, 6.19, and 6.25.

Theorem 5.13 (Iteration theorem). For any m,ne w ~ 1 there is an (m + 1)-
ary recursive function sy such that for all e, yy, . . ., Vs X15. .., Xg € 0,
‘F:‘-‘-n(-xh ey Xny Via-- oy .Pm) = (‘:PH{EE(E‘ B ST ym}])(xl’ Gl xﬂ')'

ProOF. If M is any Turing machine and y,, ..., ym € w, let M5 ,n be the
following Turing machine:

Start —> (Tiere —> T = (Do = T2 >+
— (TIBH.- —3 Tl)ym — ﬂgfﬁ — M —r T?-B’I-Ift —_— Sl(}p

Clearly there is an (m + 1)-ary recursive function s such that for any
€, V1, - - .» ¥m € w, if e is the Godel number of a Turing machine M, then
s™(€, V1, - - .» Ym) is the Gdel number of M%, ,n. Obviously sy is as desired
in the theorem. Ll

Actually a more detailed analysis would show that s7 in 5.13 can be taken
to be elementary recursive, but we shall not use this fact. As a first application
of the iteration theorem we give

Corollary 5.14. There is no binary function f such that for all x, y € w,

fl,y) =1 ifyeDmngs,
f(x,»)) =0 ify¢Dmng;.

Prooe. Suppose there is such an f; say f = 2. Now for any x, y € w let
g(x, y) = pe[Vpu((y, x, x, u) € Tg) = 0]
Hence for any x, y € w,

glx,y) =0 if y is the Gddel number of a Turing machine,
_ (x, x) € Dmn ¢, and ¢3(x, x) = 0;
g(x, y) is undefined, otherwise.

Rl

Part 1: Recursive Function Theory

Say g = . Then by the iteration theorem,

si(r, €) € Dmn ¢'(si(r, €)) iff (si(r, €), €) € Dmn ¢?
iff f(si(r, €), si(r, €)) = 0

iff si(r, €) ¢ Dmn @'(s}(r, €)),

a contradiction. (]

Thus there is no automatic method for determining of a pair (x, y) whether
y € Dmn ¢}. Otherwise stated, there is no automatic method of determining
of a Turing machine M and a number y whether M will eventually stop with
an output when presented with input y. Thus Corollary 5.14 shows the
recursive unsolvability of the Halting problem for Turing machines. We can
give a more intuitive, informal proof of this result. Suppose we have an
automatic method telling us whether a Turing machine A will stop with
input y. Then we can construct a machine N such that for any ye w the
following conditions are equivalent:

(1) N stops when given input y;
{2) y is not the Goédel number of a Turing machine, or it is the number of a
machine T such that 7" does not stop when given input y.

Let N have Gddel number e. By (1) and (2) we reach a contradiction in trying
to decide whether N stops, given input e.

Theorem 5.15 (Recursion theorem). If m > | and f is an m-ary partial
recursive function, then there is an e € w such that for all xg, ..., Xm_q € w,

{0 T B . S & TR S

Proor. For any xg,..., Xm—3 € w let

Elx0s . - -3 Xn—1) = (Xqs « < o5 Xuoas Sn = 2{Xp-10 Xm1))s

Thus g is partial recursive; say g = ¢'. Let e = s} _,(r, 7). Then by the
iteration theorem, for all x, .. ., X,_o € o,

s ¢ NEPR, R o OGS S |
= g(xﬂs famy xm—-ﬂ: f')
LN 7 [OO, SR | A O

The recursion theorem is extremely useful in checking that functions
defined by rather complicated recursive conditions are, in fact, general recur-
sive. We shall illustrate its use by verifying again that the functions of 3.5 and
3.52 are recursive.

In the case of 3.5, we first define an auxiliary three-place function 4’ that
is obviously partial recursive from the form of its definition, which goes by
cases as in the definition of 4, as follows. Let x, y, € € w.

Chapter 5: Recursion Theory

Casel. x = 2. Leti'(x, y,e) = (})o + 1 for all y.
Case 2. x = 2"-3'*%, where i < n. Let h'(x, y, €) = (y), for all y.
Case 3. x = 2*-5"-pg-p?-...-pina™, withn, m > 0.

Let

K(x, y, e) =~ ®i(g, py-... pimiV),

where #i >~ @Z(ri, y) for each i < m.
Case 4. x = 2-7%-11° with ¢ > 0. Let

ke, l.e)=a,
h(x, 2¥*1, e) ~ @3(qg, 2¢-3Y),

where v ~ (x, 2Y),
W(x,z,e) =0

for z not of the form 2*.

Case 5. x = 2™*1.119-13" with m > 0 and ¢ > 0. Let y be given with
(3)m = 0. We set

H(x, y, €) ~ @i(q, »),
H(x, y-pi't, €) =~ @%r, y-pi Phsr)s
where v ~ @(x, y-p2).
Case 6. For x not of one of the above forms, let 2'(x, y, ¢) = Oforall y, e.

Now we apply the recursion theorem and obtain an e € w such that for all
X,V Ew,

H(x, y, e) ~ @i(x, y).

Now it is straightforward to check by complete induction on x that for all
X, y€w, h(x, ¥) =~ @Zx, y). Thus h = <2 is recursive.

It is similarly shown that the function in 3.52 is recursive. Namely, we
define a partial recursive function f* as follows:

SO, y,e) =y + 1,
f&x+1,0,e) ~ @i(x, 1),
S+ 1,y + 1, e) > @ix, pi(x + 1, y)).
Let e € w be such that f(x, y, €) ~ p¥(x, y) for all x, y € w. Then it is easily
proved by induction on x, with induction on y in the induction step, that
S(x, ¥) = @i(x, y) for all x, y € w. Thus f = 2.

Theorem 5.16 (Fixed point theorem). If f is a unary recursive function then
there is an e € w such that @} = <p},.
Proor. For any x, y € w let
g(x, y) =~ Vpu((fy, x, u) € T,).

Thus g is partial recursive, and g(x, y) ~ ¢}, x for all x, y € w. Now we apply
the recursion theorem to obtain on ¢ € such that g(x, €) ~ ¢ix for all
x € w. Thus ¢ = ¢}, as desired. m)

@2

Part 1: Recursive Function Theory

An important consequence of the fixed-point theorem is given in

Theorem 5,17 (Rice). Let F be a set of one-place partial recursive functions
such that 0 # F and F does not consist of all one-place partial recursive
Junctions. Then A = {e : @l € F} is not recursive.

Proof. Suppose itis. Let ae 4 and b ¢ A. Now define

gx =a x¢A,
gx=25b xe A

Then g 1s recursive. By 5.16 choose e such that ¢! = ¢l.. Then if e 4 we
see that ¢; € F (by the definition of A), hence @), € F, so gee A; but ec A
implies also ge = b ¢ A, contradiction. Also, e ¢ 4 implies on the one hand
;¢ F, ;. ¢ F, ge¢ A, and on the other hand implies ge = a € 4, contradic-
tion. [

Rice’s theorem has many important corollaries; we shall mention a few.

Corollary 5.18. For any unary partial recursive function f, {e : 1 = f} is not
recursive.

Corollary 5.19. {x : <}, is a constant function} is not recursive.

Corollary 5.20. {(x, y): y is in the range of @1} is not recursive.
Proor. If the given set is recursive, then clearly so is
{x : 0 is in the range of ¢1},
contradicting 5.17. kil

Corollary 5.21. {(x, ») : L = !} is nof recursive.

Proor. If the given set is recursive, and e € w, then
{x: @k = @}
is recursive, contradicting 5.17. L]

Thus there is no automatic procedure for determining whether or not ¢}
is a given unary partial recursive function; or whether or not ¢ is a constant
function; or whether or not y is in the range of ¢} ; or whether or not X = ¢!,
Clearly 5.14 is also a consequence of Rice's theorem.

We can use 5.14 to establish the following result concerning the length of
computations.

Theorem 5.22. There is no binary recursive function f such that for all e,
x € w, Jul(e, x, u) € Ty) iff Iu < fle, x)(e, x, ¥) € Ty).

Chapter 5: Recursion Theory

Proor. Suppose there is such an f. Let

gle,x) =1 if Ju < fle, x)({e, x,) € Ty),
gle,x) =0 otherwise.

Thus g is recursive and

gle,x) =1 if x € Dmn ¢},
gle,x) =0 if x ¢ Dmn g,

contradicting 5.14. £

Thus there is no automatic procedure P such that, given a Turing machine
M and a number x, P determines the maximum number of steps in an M-
computation starting with x.

Our final topic of this section is the arithmetical hierarchy. The recursive
relations, as we have argued, coincide with the effective number-theoretic
relations. Certain other relations, namely those obtained by using the quanti-
fiers 3 or V on the recursive relations, are also very natural relations to
consider in many contexts. They can be arranged in the so-called arithmetical
hierarchy, according to the depth of quantifiers used in defining them. We
shall describe this hierarchy and its most important properties.

Our main result, 5.36, depends on the following normal form theorem.

Theorem 5.23. Let m > 1. If R is an m-ary recursive relation, then there exist
e, e € w such that for all xq, ..., Xp_2 € w,

(i) EI_P({-TU, ¥ Awy xm—m .]’1) € R) ﬁaﬂ{f, xm ey xm—ﬂv }’) E Tma—l)'
{ﬁ) vy({xﬂa e .P) € R) w‘#}’{(e}! KXos v vvs Xm—2s .v) ¢' Tm—.‘l)'

Proor. For any Xxo, ..., Xp-2 € w let

f{xﬂs LR xm-ﬂ) = Py({xﬂ! sawy K — 24 ,}’) € R)'
Thus /is partial recursive, so by 5.9 there is an ¢ € w such that for all xy, - . .,
Xm—2 € W,
ﬂxn: i xm—!!} = v#”('[e; Xos «» =3 Xm—2s H) € Tﬂ—l}'
Thus
39((Xos - - -» Xm-2s WER) iff (xq,- .., X_g) € DM f,
iﬁ‘ 3,1’(("—’; Xgs « v os Xm—2s .]”} € Tm—l)-

Thus (i) holds. Condition (ii) is easily obtained from (i). 0

Definition 5.24. lLet &, = [I, = set of all recursive relations. If n, m > 0,
then an n-ary relation R is in Z,, (respectively 1I,;) provided there is an
(m + m)-ary recursive relation S such that, if m is odd,

R={(xp. s Xp-1)E"w:IpewVyewdycw- -
H}’m—a cw 3'.]"J'J"ri-l = W[(xm evey An—1s Fos--+s ym—l} S S]}
(respectively
R=1{(x0,...,%_1)€Mw :Vpewdy cwVyew -
3}’::1—2 EwVPn_1 € w[(xl): ey Xn—1» Yos---» .Pm-l.)' = S]}}!

o5

Part 1: Recursive Function Theory

while, if m is even,

R={(xq,.. ., Xm-E"w:Ipew¥Vyewdy, Ew---
El.l”m-zE‘”VJ’"m-i'EW[(xn-- cea Xn—1s Vas -« <, ym—l}ES]}

(respectively

R={(xg,..., Xy 1) E"w:Vyo€wIpycaVy,Ew---
Vm-2€w Iym_1 €wl(Xpy .. .3 Xno1s Yosr - - s Ym-1) € ST}).

Members of X, (respectively 11,,) are called X _-relations (respectively I1, -
relations). Also let A, = X, N Ii,,. Any member of (e~ (B U 11,) is
said to be arithmetical. -

Note that there are only ¥, arithmetic relations, and hence most number-
theoretic relations are not arithmetical. Now we want to describe the relation-
ships between the various classes ., I1,,, and indicate some operations under
which these classes are closed. The following obvious proposition indicates
how these classes can be inductively defined, and furnishes a basis for induc-
tive proofs of our further results.

Proposition 5.25
(i) An n-ary relation R is in X, , iff there is an (n + 1)-ary relation S
in 11, such that for all xq,...,%x,_1€w, (Xgy...,Xp_1)ER iff yew
((xl‘.h e s .}") € S)‘
(ii) An n-ary relation R is in 11, ., iff there is an (n + |)-ary relation S
in X, such that for all xo, ..., Xp_1€w, (Xgy ..., Xp_1)ER iff VyEw
((x0s - - s Xn-1, ¥) € S).

The following three propositions are now easily established by induction,
using 5.25:

Proposition 5.26. If R is an n-ary X,-relation, f,, . . ., f, _, are n-ary recursive
Sfunctions, and
S = {{xﬂ! ==y xﬂ-l) : (fﬂ(xﬂ: =" By x‘!‘l—'l)! == -an—l{xﬂm sy xn-—l)) ER}?
then S € X,.. Similarly for 11, and A,,.

Proposition 5.27 (Adjunction of apparent variables). If R is an n-ary Z,-
relation and S = {(x, . . ., Xp) : (X1, - - -, Xn) € R}, then S € X,. Similarly for
I1,, and A,,.

Proposition 5.28 (Identification of variables). If R is an n-ary Z -relation,
n>1, and S = {(xq, ..., Xn—2) : (X0, Xp, X1 X3, - - ., Xn-2) € R}, then Re
2. Similarly for 11, and A,,.

Proposition 5.29, [If R and S are n-ary X, -relations, then so are R'\U S and
R N S. Similarly for 11,, and A,

u "'

Chapter 5: Recursion Theory

Proor. The assertions for A, follow from those for £, and I1,,. The asser-
tions for ¥, and Il,, are proved simultaneously by induction on m. The case
m = 0 is trivial. Now assume the assertions for m. We take just one typical
assertion for m + 1:

Assume R, Se X, ,; weshowthat RN SeZ,,,. By 5.25, choose (n + 1)-
ary Il -relations R’, S’ such that for all x, ..., x,_1 € w,

e Xl ER iff 3y e wl(xg, . . -, Xp_1, ¥) € R},
(xl:ll+":l xn-l]ES iﬁayew[(xﬂ:'-'axn—ll _}’}ES‘]*

Then for any xq,..., X4-1 € w,

(Xgy .3 Xz_1)ERN S iff JvewIzew[(xg, ..., xp_1, Y)ER
and (Xa; - Xa-1: 2) €8]

Now let R” = {(xq, ..., Xpns+1) : (X0, - -, X) € R} and §" = {(x0,. .-, Xn41):
(Xgy+ - +s Xn—1> Xns1) €S’} Using 5.26 and 5.27 it is easy to see that R",
S" € I1,,. Now, continuing from above, for any x,, ..., x,_, cw,

(X0.- s ¥n-1) ERNS T dyew3zew|(xe,..., Xn-1, 3, 2) RN S’]
iff 3_}’ (=] w[(xﬂ! caey Xpo1 (y)ﬂ! {y)l) eR"N S”‘"]_

Since R" N S” € I1,, by the induction hypothesis, we get RN SeX, ; by
5.25. O

For m > 0, neither Z,, nor I, nor A, is closed under complementation;
see 5.36. The following proposition is evident.

Proposition 5.30. Jf R is an n-ary Z,-relation withn > 1 and m > 0, and if
S ={(xgy---s Xy o) :Iy€w(Xg,..., Xu_s, V) R}, then Se€X . Similarly
with I1,, and V.

Proposition 5.31. If R is an n-ary Z-relation, then so are the two relations
S = {(Xos+ - +s Xn-2) : I < X0 _3[(Xos - . -, X2, ¥) € R],
T = {(xﬂs LR xn-l) . H_P < xn--l[(xﬂl LR xn-ﬂs .F) € R]'
Similarly for 11, and A,,.

Proor. Again we prove all cases simultaneously by induction on m. The
case m = 0 is trivial. Assume that all of the statements are true for m. We
take one typical case for m + 1:
Let R be an n-ary X, , ,-relation, and let 7 be as above. By 5.25, let R’ be
a Il -relation such that for all x,, ..., x,_; € w,
(xgs ..., Xp_1) ER iff 3z € wl(xo, . . ., Xn-1, 2) € R'].
Clearly, then, it suffices to show that for all x,, ..., x,_, €,

{1) V}’ =< Xp-1 BEEW{(IH, cres Xn—2s Vs z)'E-RJ]
iff zew vy = xn—l[(xﬂs creaXnoa, I (z)y) E Rr]‘

o

Part 1: Recursive Function Theory

Clearly the right side of (1) implies the left side. If the left side holds, choose
for each y < x,_, an integer w, € w such that (x,, ..., x,_-2, J5, w,) € R, and
let z = 1, < ., 1;Py"; clearly then z is as desired in the right side of (1). []

The following proposition is obvious:
Proposition 5.32. [f R is an n-ary relation, then Re X, iff "w ~ Re Il,,.

Proposition 5.33. X, U ll, € A, ;.

PrOOF. LetReZX,,say Risn-ary.LetS = {(xq,..., Xa) : (Xgy ..., Xp_1) € R}.
Then SeZ,, by 5.26 and 5.27. Clearly R = {(xq,..., X, _1) : Vv € w[(xq, - . .,
Xn-1, YES], so Rell,,,. Thus X, < II,,,, and similarly I, < £, ,.
An easy inductive argument shows that Z, = %, ., and 1, = I, ;. O

We will return to the following important result several times later on:

Theorem 5.34. A, = A,.

Proor. We know that A; € A,. Suppose R € A,, say R is n-ary. Then there
are recursive S, T((n + 1)-ary) such that for all x,,..., x,_; € w,

(‘rﬂ!"*!xn—l)cﬁ ?ﬂna.}?[(xﬂi---:xﬂ -lr.PJES]
iff Vyl(xg, ..y Xn-1, Y) €T
Hence, as is easily seen,
Xe(Xos - - s Xn_1)
= x&‘(—xﬂi -3 Xpo1, F}'[{xu: ST . S Pt .PJ ES or (.'xﬂt . T J'.}¢ TD:

s0 R is recursive. &

Intuitively, to determine whether or not (x,,..., x,_;) € R we check in
succession (xg, ..., Xp-1, 0), (Xg,..., X4_q, 1), ... for membership in § and
T. Eventually one of these 1s in S (hence (xg, ..., X,_1) € R), or else one of
them fails to be in 7 (hence (xg, ..., x,_ ;) ¢ R).

Now we extend our normal form results up into the arithmetical hierarchy :

Theorem 5.35. For m, n > O there is an (n +)-ary Z,-~relation R, with the
Sfollowing properties:

(i) for every n-ary X,-relation S there is an e¢e€w such that S =
{{xﬂ! LS Iﬂ—l) . [E: Xos - - =y xn—l) = R::i};

(it) for every n-ary ll,-relation S there is an e€w such that S =
{(XG: LR x:n—l) - {{:‘, X0y - - -3 Iﬂ—.‘l)'@!’Rr’;}-

Proor. We construct R by recursion on m. Let

RE = {(%gy .+ vy i) 2 I € tof(Xos - - o Kns PV € T}

oo -

Chapter 5: Recursion Theory

If Ry, has been defined for all », let

Ravs ={(x0 .- ., xp) : y € of(xq, - - ., X5, ¥) ¢ RE 1P

It is easily seen by induction on m, using 5.23, that the desired conditions
hold. 0

Theorem 5.36 (Hierarchy theorem). For any m, n > 0 there exists an n-ary
relation T € Z,, ~ 11,,. Hence "w ~ T € Il,, ~ X, Furthermore, there is an
n-ary relation We A, , ~ (£, U I1,).

ProoF. Let R: be as in 5.35. Let
T = {(xﬂg veey Xpo 1) : (xl]: Xos X1y Xy 0 0 oy xﬂ*l) € R::l}*
Thus TeX,. If Tell,, by 5.35 choose ¢ € w so that 7T = {(x,,..., X)
(E, Xos = =s xﬂ.—l) ¢ R;}' rrhEﬁ
E‘“"'DER:‘ il’fﬂ[mET iﬂ‘(e)n+1¢R:"
a contradiction. Thus T ¢ I1,,.
For the second part of the theorem, let 7 be as in the first part. Set
W= {(xo,- .., Xn_1) : ((x0)os (X1)0» - - - (Xn-1)0)¢T and
({xﬂ)h (x.[)ll ey (—x:n. 1)1} € T}

Now T, "w ~ TeA,,; by 533, so WelA,,,. Suppose WeZ . Choose
(to,- .., tn_1) € T (T is obviously nonempty since 0 & I1,). For any x,,
X,., € w we have

oy - vy Xnn) § T iff (2%0.3%, .., 2¥n=1) 30n-1) &
80 "w ~ T'€ X, contradiction. Similarly, W € I, leads to a contradiction. []

Thus the arithmetical hierarchy appears as in the following diagram,
where the lines indicate proper inclusions:

Eﬂ\ o [
el

QD

Part 1: Recursive Function Theory

BIBLIOGRAPHY

1. Kleene, S. C. Introduction to Metamathematics. Princeton: van Nostrand
(1952).

2. Malcev, A. 1. Algorithms and Recursive Functions. Groningen: Wolters-
Noordhoff (1970).

3. Rogers, H. Theory of Recursive Functions and Effective Computability. New
York: McGraw-Hill (1967).

EXERCISES

5.37.

5.38.

5.39.

5.40°.

5.41.

S5.42,

5.43-

5.44.

el

If £ is a finite function (i.e., it is a finite set and is a function), then f is
partial recursive.

Give an example of a binary partial recursive function f such that if g is
defined by

gx = least y such that f(x, y) is defined and f(x, y) = 0,
£x = undefined if no such y,

then g is not partial recursive (cf. 5.3 and following remarks).
Give an example of a binary recursive function fsuch that if g is defined by

gx = least y such that f{x, y) = 0,
gx =10 if no such y,

then g is not recursive.

The class of partial recursive functions is the intersection of all classes C
of partial functions such that ¢ € C, Ul e C whenever i < n, and C is
closed under composition, primitive recursion, and minimalization, all
except composition applied only to total functions.

If fis an m-ary partial recursive function and Dmn f is recursive, then f
can be extended to a general recursive function,

Give an example of an m-ary partial recursive function f which can be
extended to a general recursive function, but has the property that Dmn f
is not recursive,

There is a unary partial recursive function f such that for no binary
recursive function g is it true that for all x, fx = wylg(x, ¥) = 0]. Hint:
let fx =~ ¢ix-0 + x for all x. If g works as above, let hx = @ix + 1 if
g(x, x) = 0, hx = 0 otherwise. Show # is recursive and obtain a contradic-
tion.

For any total function f of one variable the following conditions are
eguivalent:

(1) there is a recursive function g of two variables such that for all x € ,
fx = pylg(x, y) = 0].
(2) {(x, fx): x € w} is a recursive relation.

The conditions remain equivalent if in both (1) and (2) *“‘recursive® is
replaced by ** primitive recursive’ or by “*elementary.”

5.45.

5.46.

5.47.

5'“‘

5] 49'

5.50.

5.51.

5.52.

Chapter 5: Recursion Theory

If fis a unary recursive function, then {(x, fx) : x € w} is a recursive relation.
Similarly if we replace both words ““recursive’ by “‘primitive recursive”
or by “elementary.”

Give an example of a unary partial recursive function f such that
{(x, fx) : x € Dmn f} is not recursive.

There is a recursive set which is not elementary.

There is a unary recursive function ffor which there is no binary elementary
function g such that for all x € w, fx = pylg(x, y) = O). Hint: take f = x4,
where A is as in 5.47.

There is a total unary function f such that {(x, fx) : x € @} is elementary
but f is not elementary.

There is no recursive procedure for deciding for an arbitrary e whether
or not ¢} has infinite range.

Assume m > 1. Let A = {e : @ is a special recursive function}. Show that
A is not recursive.

Show that the function f defined as follows is recursive.
f{n! .Y)' =y +]y
fL,y)=y+2,
fix+2,0=f(x+1,1),
fx+2,y+ 1D =fx[(x+11(x+2))

Show that there is no recursive function f satisfying the following condi-
tions:
f0,) =y + 2,
f(-x + 1: ﬂ) - f(x’ l):
fx+Ly+D=f(x+ 1L, (x,y)+ 1.

o

Recursively
Enumerable Sets

In this chapter we shall deal in some detail with the set X, of relations
(see 5.24). Such relations are called recursively enumerable for reasons which
will shortly become clear. The study of recursively enumerable relations is
one of the main branches of recursive function theory. They play a large role
in logic. In fact, for most theories the set of Gddel numbers of theorems is
recursively enumerable. Thus many of the concepts introduced in this section
will have applications in our discussion of decidable and undecidable theories
in Part I1I. Unless otherwise stated, the functions in this chapter are unary.

A nonempty set is effectively enumerable provided there is an automatic
method for listing out its members, one after the other. This does not imply
that there is a decision method for determining membership in the set. The
formal version of this notion 1s given in

Definition 6.1. A set A < w is recursively enumerable (for brevity r.e.) if
A = 0 or A is the range of a recursive function.

This definition can be given several equivalent forms, each having its own
intuitive appeal:

Theorem 6.2. For A < w the following are eguivalent

(i) A = 0 or A is the range of an elementary function;
(ii) A = 0 or A is the range of a primitive recursive function;
(iii) A is recursively enumerable;
(iv) A is the range of a partial recursive function;
(v) A is the domain of a partial recursive function;
(vi) AeZ,.

Chapter 6: Recursively Enumerable Sets

Proor. Obviously (i) = (i) = (iii). To show that (iii) = (iv) we just need
to show that 0 (the empty set) 1s the range of some partial recursive function;
and obviously the only possibility for such a function is 0 (which is also the
empty function). 0 is partial recursive by the argument following 5.3.

(iv) = (v). Let A = Rng ¢;. For any x e w let

Sx = py((e, (o (V1) € Ty and V() = x).

Clearly then Dmn f = Rng ¢, = A, and fis partial recursive.

() = (vi). Suppose A = Dmn ¢?. Then for all x € w, x € A iff Iy((e, x, ¥) €
T,),s0 AeZ,.

(vi) = (i). Suppose AeZX;. By 5.23 choose eew such that 4 =
{x : Iv((e, x, ¥) € T,)}. We may assume that 4 # 0; say ae A. Now for any
X€Ewlet

Sx=(x)o if(e, (X)o, (x)1) € Ty,
fx=a otherwise.

Clearly f is an elementary function and Rng /' = A, as desired. O

An intuitive proof of the equivalence of 6.2(iii) and 6.2(v) is instructive.
First assume that 4 is recursively enumerable, 4 # 0. Say 4 = Rng f,
recursive. We define a function g with domain 4 as follows. To calculate
gx, we look along the list /0, f1, ... for x. If we find it, we set gx = 0. If x
is never found, gx is never computed. Clearly g is effectively calculable (see
introduction to Chapter 5), and Dmn g = A.

Conversely, suppose 4 = Dmn g, g partial recursive, and assume that
A # 0. Now we make the following calculations:

two steps in the calculation of g0
one step in the calculation of gl
three steps in the calculation of g0
two steps in the calculation of gl
one step in the calculation of g2
four steps in the calculation of g0
three steps in the calculation of gl
two steps in the calculation of g2
one step in the calculation of g3

During this process we will occasionally obtain answers. At regular intervals
we list out all the x for which we have so far calculated gx. Since 4 # 0,
eventually we will list at least one x, and then at regular intervals we put
more on our list (with many repetitions). Calling the list f0, f1, ..., clearly
fis an effectively calculable total function with range A.

Now we want to investigate the relationship between recursive and recur-
sively enumerable sets, By 5.33 and 5.36 we have

Theorem 6.3. FEuvery recursive set is recursively enumerable. There is a recur-
sively enumerable set which is not recursive.

93

Part 1: Recursive Function Theory

The second part of 6.3 is one of the most important results of recursion
theory, so we give its proof here in a more direct form:

Definition 6.4. K = {x : Ip((x, x, y) e T,)}.

Theorem 6.5. K is recursively enumerable but not recursive.

Proor. Obviously K € Z; so K is recursively enumerable. Suppose K is
recursive. Then so is w ~ K, soby 6.2(¢v) thereisan ¢ € w suchthatw ~ K =
Dmn <. Then

ecK iff e € Dmn ¢l by the definition of K,
e¢ K iff e € Dmn ¢} by the choice of e,

contradiction. 7]

The set K will be discussed further later on. Another important relation-
ship between recursive and recursively enumerable sets is given in 5.34, which
can be reformulated as follows:

Theorem 6.6. Let A < w. The following conditions are equivalent:
(i) A is recursive;
(ii) A and w ~ A are recursively enumerable.

This theorem can be seen in the following fashion, working directly from
Definition 6.1: Of course (ii) = (i) is the main part of 6.6. Assume (ii). We
may suppose 0 # 4 # w. Then let f and g be recursive functions with
Rngf= A, Rngg = @ ~ A. To determine whether x € 4 or not, list out
f0,20,f1, gl,.... Eventually x will appear in the Jist; if x = fi for some n,
then x € A, while if x = gn for some n, then x € 4. Formally, for any x € w,

xax =1 if fp(fy = xor gy = x) = x,
xax=20 otherwise.
Theorem 6.7. Let A < w. The following are equivalent:

(i) A is infinite and recursive:
(it} thereis a recursive function fwithRngf = A andVx e w(fx < f(x + 1)).

Proor. (i) = (ii). Let a be the least member of A. Define
fO0=a
Jx+1)=pwyeAdand y > fx).

Clearly f'is as desired.
(ii) = (7). Assume f as in (ii). Then by induction on x,

(1) Vxew (x < fx).
Thus
(2) VyeRng fdx < yp (fx = »).

nA -

Chapter 6: Recursively Enumerable Sets

Hence for all y € o,

xay =1 ifdx < y(fx=y)
xay =0 otherwise,

as desired. 0

Theorem 6.8. Any infinite recursively enumerable set has an infinite recursive
subset.

ProvF. Let A be infinite r.e., say 4 = Rng f, f recursive. We define g by
induction:

g0 =10
glx + 1) = fuy(fy > gx).

Thus gx < g(x + 1) for all x € w, and hence, by 6.7, Rng g is infinite and
recursive. Obviously Rng g © A. 1

Next, we want to investigate closure properties of the class of r.e. sets.
Which operations on sets lead out of the class, and under which operation is
the class closed? By 5.29, the class of r.e. sets is closed under union and
intersection. We can give intuitive proofs of these facts directly from the
definition. Let 4 and B be r.e. sets, and ignore the case when one of them
isempty. Let fand g be recursive functions enumerating 4 and B respectively.
One enumerates 4 U B by: f0, g0, f1, g, One can enumerate 4 N B by
looking along this list and putting a number on a separate list as soon as it
appears at both an odd and even step. Both of these procedures can be given
a rigorous formulation.

By 6.3 and 6.6, the class of r.e. sets is not closed under complementation.
Some further closure properties:

Theorem 6.9. If A is r.e. and fis partial recursive, then f*A is r.e.

Proor. We may assume that 4 # 0. Say 4 = Rng g, g recursive. Clearly
S*A = Rng (f<g) and f - g is partial recursive.]

Theorem 6.10. If A is r.e. and f is partial recursive, then f~'*A is r.e.
Proor. Say 4 = Dmn ¢l. Then f~**4 = Dmn (¢! < f) as desired.)
Theorem 6.11. If A is r.e., then | J ., Rng !} is r.e.
Proor. For any y€ o,

¥ Eh'.“g’l Rng ¢, iff 3x € A(y € Rng l).

Since both 4 and each Rng ¢; are in X,, it follows easily that | .., Rng ¢!
is in Z,. []

(31

Part 1: Recursive Function Theory

Before carrying the theory of r.e. sets further we wish to back up and
extend our results obtained so far to relations.

Definition 6.12. A relation R < ™w is recursively enumerable (for brevity
r.e.) if A = 0 or there exist m recursive functions fq, . . ., f -1 such that

R={(fox,-..; fu-1X) : XE w}.

Theorem 6.13. For R ™w the following are equivalent:
(i) R = 0 or there exist elementary functions fy, ..., fm—1 with R =

Hloky <o FneiX) 2 X €)
(it) like (i) with *‘elementary™ replaced by ** primitive recursive™;
(iii) R is recursively enumerable;
(iv) there exist partial recursive functions fo,..., f,-1 with R =
{(foXy..-s fu-1X):xeDmn fy -+ N Dmn f,_,};
(v) R =0 or there is an elementary function f with R = {((fx)q, . . -,
(fX)p-1) 1 X € w};
(vi) like (v), with *“elementary” replaced by *‘ primitive recursive™;
(vii) like (v), with *“ elementary™ replaced by ** recursive™;
(viii) there is a partial recursive function f such that R = {((f*)o, .- -,
(fX)m-1) : x€ Dmn f};
(ix) there is an m-ary partial recursive function f such that R = Dmn f;
(x) REZ,.
Proor. Clearly (i) = (i) = (iii) = (iv).

(iv) = (v). Assume (iv), with f,, ..., f,,_, partial recursive and R =
{(fox,.... fu-1x):xeDmn fy N---N Dmn f,_,}. We may assume that
R £ 0, say (@ - A1) ER. 88Y o = @loyr v s fracr = Phgm1y- FOr A1y
X Ew, let

gx = ﬂ prexE+1) if (eg, (x)o, (X)41) €Ty for all i < m,
f=m

gx=]1] pf otherwise.

i=<m
Clearly g is elementary and R = {((gx)o, - . ., (8X)i-1) : X € w}.
Obviously (v) = (vi) = (vil) = (viil).
(viit) = (ix). Suppose fis as in (viii). Say f = @;. Forany xg, . . ., X1 € w
let

g{xﬂs CRCCE xm—].]' = F‘y((es (.]"')I}: (_}’)1} ETI Eﬂd v{_}"}]_ = H pid)-

f=m
Clearly g is partial recursive and R = Dmn g.
(ix) = (x). Suppose R = Dmn . Then
R = {(—xl}: AL | xm—l} . 3}1{({?! KXoy o os X1, .P) € Tm)}:
so ReX,.
(x) = (i). Suppose R eX;. By 5.23, choose ¢ € w Such that
R = {(xl.‘.l:r o S xm—l) : 3}’((‘-’: Kas o+ -3 Xp—1s .P) = Tm)}'

Chapter 6: Recursively Enumerable Sets

We may assume that R # 0;say (@g, - - ., @m-1) € R. Now for i < mand any
x ew let

ﬁx = (-x}i if (E: {x)ﬂs vriny (x)m) = Tm.
fix = q otherwise.
Clearly each f; is elementary and R = {(foX, ..., fn_1X) : X € w}. O

Theorem 6.14. Every recursive relation is recursively enumerable. For each
positive m there is a recursively enumerable m-ary relation which is not
recursive.

Proor. The first part is true by 6.13(x) and 5.33; for the second part,
use 5.36.]

The following result is proved just as for sets.

Theorem 6.15. Let R € ™w. The following conditions are equivalent:

(i) R is recursive;
(ii) R and "w ~ R are recursively enumerable.

The following important theorem shows that the notion of a partial recur-
sive function can be defined without resorting to the rather complicated
notions discussed at the beginning of Chapter 5.

Theorem 6.16. Let [be a unary partial function. Then the following conditions
are equivalent:

(i) fis partial recursive;
(i) {(x, fx): xe Dmn f} is r.e.
Prook. (i) = (ii). Assume (i). For any x, y € w let
glx, y) =~ pz(ly — fx| = 0).
Clearly g is partial recursive and Dmn g = {(x, fx) : x € Dmn f}.

(i) = (i). Assume (ii), and by 6.12 let g and h be recursive functions such
that

{(x, /x) : x € Dmn f} = {(gx, hx) : x € w}.
Then for any x € w,

Jx =~ hpy(gy = X),
so fis partial recursive. O

We now turn to the study of some special r.e. sets.

Definition 6.17

(i) A set A < w is productive if there is a recursive function f (called a
productive function for A) such that for all e € w, if Dmn ¢t = A then
fee A ~ Dmn <;.

(i) A set A < w is creative if A is r.e. and w ~ A is productive.

Q7

Part 1: Recursive Function Theory

Thus a productive set A is strongly not recursively enumerable: there is
an effective procedure for finding members of 4 ~ B for any r.e. subset B
of A. A creative set, while r.e., is strongly nonrecursive. The sets of Gddel
numbers of theorems of many theories studied in Part III are creative, as we
shall see.

Recall Definition 6.4.

Theorem 6.18. K is creative.

ProorF. By 6.5, K is r.e. Now U} is a productive function for @ ~ K. For
if e€ wand Dmn ! € o ~ K, then e € (v ~ K) ~ Dmn ¢; for

ec K = e Dmn ¢} by definition of K, 6.4
>ecw~ K by assumption Dmne¢; € w ~ K

so e€ w ~ K, and hence by definition of K, ¢ ¢ Dmn ;.]

The next theorem shows that, in a sense, any r.e. set can be obtained from
a creative set; cf. 6.10 and the initial section of Chapter 7.

Theorem 6.19, If A is r.e. and C is creative, then there is a recursive function
f such that A = f~"*C.

Proor. Say A = Dmn ¢}, and let g be a productive function for w ~ C.
For any x, y, z€ w let

iz, y, x) =~ pulz = gsi(x, y)] + @ay.
Thus / is partial recursive. By the recursion theorem (5.15) choose e € w such
that for all y, ze w,
Iz, y, €) = ez, y).

Let fy = gsi(e, y) for all y € w. We claim that 4 = f~1*C. Since fis obviously
recursive, this will complete the proof.
First suppose that y € A. Then

(1) Dmn @'(si(e, ¥)) = {gsi(e, y)}-
In fact, by 5.13 we have

ze Dmn @'(si(e, y)) iff (z,) € Dmn 2
iff (z, v, €) e Dmn [(by choice of ¢)
iff z = gsi(e, y) and y € Dmn @}
iff z = gsi(e, »).
Thus (1) holds. Now if fy ¢ C, this means that gsi(e, y) ¢ C and so by (1)

Dmn ¢'(si(e, y)) € w ~ C. Since g is a productive function for w ~ C we
would get

gsi(e, ¥) € (w ~ C) ~ Dmn @'(si(e, »)),
contradicting (1). Thus fy € C.

~ =

Chapter 6: Recursively Enumerable Sets

Second, suppose that y¢ 4. Then y ¢ Dmn @}, so ¥z (z, y, €) ¢ Dmn |/,
hence Vz((z, ¥) ¢ Dmn ¢2), so by 5.13 Dmn ¢'(si(e, ¥)) = 0. Thus, since g is
productive,

Jy = gsile, y) € (w ~ C) ~ Dmn @’(si(e, y)),
in particular fy ¢ C, as desired. OJ
The following result will not play a role in our logical discussion, but is

important in the general theory of r.e. sets. See also the definition and results
concerning simple sets below.

Theorem 6.20. If A is productive, then A has an infinite recursive subset.

Proor. By 6.8 it suffices to show that 4 has an infinite r.e. subset. Let f be
a productive function for 4. For any x, y, let

k(y, x) ~ pi(i < Ixand y = (x); = 1).
Clearly k is partial recursive; say k = ¢2. Now for any x € w,
(1) Dmn ¢(si(e, x)) = {(x); = 1:i < Ix}.
In fact, for any y € w,

y € Dmn @(si(e, x)) iff (y, x) € Dmn ¢? iff (y, x) e Dmn k
iff 3i < Ix(y = (x); = 1).

Now let r be such that ¢! = 0, and define

gx,y=fr ify=0o0rl,
g(x, ¥) = fsi(e, y) if y# 0and y # 1.

Thus g is recursive. Now define ¢: w — w by setting, for any x e w, tx =
g(x, x). Here #x is defined in 2.31, and by 2.33, 7 is recursive. Now we claim
for all x € w,

(2) txed~{ty:y < x}.
We establish (2) by induction on x. For x = 0,
t0 = g(0,70) = g(0,1) = fre 4

(since @} = 0 = 4 and fis a productive function for 4). Thus (2) holds for
x = 0. Suppose (2) holds for all x’ < x, where x # 0. Then tx = g(x, x),
and fx # 0, 1, so 1x = fsi(e, Ix). Also

Dmn @ (si(e, ix)) = {ty:y < x} = A

by (1) and the induction hypothesis. Since f'is a productive function for A,
tx = fsi(e,Ix) e A ~ {ty : y < x}, as desired. Thus (2) holds. Hence Rng ¢ is
an infinite r.e. subset of A, and the proof is complete. |

Q9

Part 1: Recursive Function Theory

We now give a method to arrive at creative sets.

Definition 6.21

(i)} Two sets A and B are recursively separable if there is a recursive set
Csuchthat A< Cand BE o ~ C.

(ii) A and B are recursively inseparable if they are disjoint but not
recursively separable.

(iif) A and B are effectively inseparable if they are disjoint and there is a
2-ary recursive function f such that for all ¢ and r, if 4 = Dmn ¢l,
B < Dmnef, and Dmn el N Dmn ¢! = 0, then fle,r)ew ~ (Dmn
¢, U Dmn 7).

Effectively inseparable sets will be constructed in abundance in Part 111;
most undecidability results actually yield such sets.
Obviously we have:

Theorem 6.22. [f A and B are effectively inseparable then they are recursively
inseparable.

The converse of 6.22 fails; see Exercises 6.47, 6.48.

Theorem 6.23. If A and B are recursively enumerable and effectively insepar-
able, then both A and B are creative.

Proor. By symmetry it suffices to show that A is creative, i.e. that w ~ 4
is productive. Let f be as in 6.21(iii). Say A = Dmn ¢l and B = Dmn ..
For any ¢, x € w let

glx, e) ~ py((e, x, y) T, or (s, x, y) € T)).
Thus Dmn g = {(x, ¢) : x € Dmn ¢} U B}. Clearly g is partial recursive; say
g = @f. Now for any ¢ € w we have, by 5.13,
O Dmn @'(si(r, €)) = {x: (x, &) e Dmn @} = Dmn @} U B.

Let for any e € w he = f(u, si(r, €)). Thus /4 is recursive; we claim it is a
productive function for w ~ A. In fact, suppose Dmn ¢! € w ~ A. Then,
using (1), A4 = Dmne), B< Dmne'(si{r,e)), and Dmnein
Dmn '(sj(r, €)) = 0. Hence, by 6.21{iii), he = flu,s}r, &) cew ~
(Dmn @y U Dmn @'(si(r, €))), i€, hecw ~ (4 U Dmn ol U B), so hec
(w ~ A) ~ Dmn ¢}, as desired. [J

Theorem 6.24. There exist two recursively enumerable effectively inseparable
sels.
Proor. Let

K, = {x: 3pl((x)s, X,) T; and ¥z < p(((x), x, 2) ¢ T,
Ky = {x: pl((x)1, x, W) e Ty and ¥z < p({(x)o, x, 2) ¢ T}

~

Chapter 6: Recursively Enumerable Sets

Clearly K; and K; are re. and K, N K; = 0, For any ¢, re w let fe, r) =
27-3¢. To verify 6.21(fii}, assume that K, < Dmn ¢! and X, < Dmn ¢} with
Dmn ¢; N Dmn ¢} = 0. Suppose f(e, r) € Dmn ¢} U Dmn ¢}. By sym-
metry, say f(e, r) € Dmn ¢;. Thus 3y((e, 27- 3%, y) € T,), and since Dmn ¢! N
Dmn ¢; = 0, obviously Vz({r,2"-3% z) ¢ T;). Thus 2"-3°e K,, so 2'-3¢¢
Dmn ¢}, contradiction. (]

The next theorem gives an important method of producing new effectively
inseparable sets from old ones:

Theorem 6.25. Suppose that A and B are effectively inseparable, f is a unary
recursive function, C, D < w, CN D =0, A < f~*C, and B< f~1*D.
Then C and D are effectively inseparable.

ProOF. Let h be a function given by 6.21(iii) because 4 and B are effectively
inseparable. For any e, x e w, let g(x, e) ~ py(e, fx, ¥) €T,). Thus g is
partial recursive; say g = 2. Now we can define a function k intended to
satisfy 6.21(iif) for Cand D: for any e, u € w, let k(e, u) = fh(si(r, e), si(r, u)).
Thus k is recursive. In order to verify 6.21(iit), assume that C < Dmn ¢}
and D < Dmn ¢!, where Dmn ¢} N Dmn ¢l = 0. It follows that 4 <
S* Dmn ey, B < f~* Dmn ¢, and f~* Dmn ¢! N f~* Dmn ¢l = 0.
Now for any x € w,

x € f~'* Dmn ¢} iff fx € Dmn ¢}
iff y((e, fx,) eTy)
iff (x, e) € Dmn g = Dmn ¢}
iff x € Dmn ¢'si(r, e).

Similarly, f~1* Dmn ¢l = Dmn ¢@'si(r, u). Thus 4 < Dmn @'(si(r, €), B <
Dmn ¢p'si(r, u), and Dmn ¢'si(r, €) N Dmn ¢'si(r, #) = 0. Hence by choice
of h, h(si(r, €), si(r, u)) € » ~ (Dmn ¢'sl(r, €) U Dmn ¢’si(r, u)), and hence
k(e,) € @ ~ (Dmn ¢} U Dmn <), as desired. a

As our final topic in this chapter we briefly consider a kind of r.e. set much
different from creative sets. We introduce them partly to give a class of sets

which are not creative, and partly because there is a big literature concerning
them.

Definition 6.26. A set 4 < w is simple if A is r.e., @ ~ A is infinite, and
BN A # 0 whenever B is an infinite r.e. set.
Theorem 6.27. A simple set is neither recursive nor creative.

Proor. If A4 is simple and recursive, then w ~ A is an infinite r.e. set and

A O (@ ~ A) = 0, contradiction. If 4 is simple and creative, by 6.20 choose
B infinite recursive such that B € & ~ A. Contradiction. /)

101

Part 1: Recursive Function Theory

Theorem 6.28. Simple sets exist.

Proof. Let g be a recursive function universal for unary primitive recursive
functions (see Lemma 3.5). For any e € w let

Je =~ (pylgle, (#)o) = (¥} and (¥), > 2e));.

Thus f is partial recursive. For each e € w let y.x = g(e, x) for all x € w.
Clearly for any ¢ € w,

(D if e e Dmn f, then fe € Rng ¢, and fe > 2e;
(2) if Rng ¥, is infinite then ¢ € Dmn f.

Now Rng fis simple. For, it is obviously r.e. Suppose B is any infinite r.e,
set. By choice of g, choose ¢ € w so that Rng b, = B. By (2) and (1), fe € Rng i,.
Thus B N Rng f # 0. Finally, to show that w ~ Rng fis infinite, note

(3) if n € w, then 2n N Rog f < f*n.
For, let ie2n N Rng f. Say i = fj. By (1), 2j < fj, so 2j < i < 2n. Thus
Jj<n soief*n.

Since (3) holds, |2n N Rng f| < n, hence [2n ~ Rngf| = n, for any
n € w. Thus w ~ Rng fis infinite. O

BIBLIOGRAPHY

1. Malcev, A. 1. Algorithms and Recursive Functions. Groningen: Wolters-
Noordhoff (1970).

2. Rogers, H. Theory of Recursive Functions and Effective Computability, New
York: McGraw-Hill (1967).

3. Smullyan, R. M. Theory aof Formal Systems. Princeton: Princeton University
Press (1961).

EXERCISES
6.29. Let f: w — w. Then the following conditions are equivalent:

(1) fis recursive;
(2) {(x, fx):x € w}is an r.e. relation;
(3) {(x, fx): x € w} is a recursive relation.

6.30. Prove that the class of r.e. sets is closed under union and intersection using
the argument following 6.8, but rigorously.

6.31. Show that if 4 is a =,-set, n > 0, and fis partial recursive, then f*A4 is X,

6.32. If A and B are r.e. sets, then there exist r.e. sets C, D such that C < A,
De B CuD=Av B andCn D = 0.

6.33. Suppose that f and g are unary recursive functions, g is one-one, Rng g is
recursive, and Vx(/x = gx). Show that Rng fis recursive.

6.34.

6.35.
6.36.
6.37.

51381'

6.39.

6.40.
6.41.

6.42.

6.43.

6.45.
6.46.
6.47.

6.48.

Chapter 6: Recursively Enumerable Sets

For each of the following determine if the set in question is recursive, r.€.,,
or has an r.e. complement:

(1) {x: there are at least x consecutive 7’s in the decimal representation of =} ;

(2) {x: there is a run of exactly x consecutive 7’s in the decimal representa-
tion of =};

(3) {x: el is total};

(4) {x: Dmn ¢} is recursive}.

There are &%, r.e. sets which are not recursive.

There is a recursive set A such that (\x.4 Dmn 1 is not r.e.

If A is productive, then so is {e: Dmn ¢} = A}
There are 2% productive sets. Hint: Let A = {e: Dmn ¢} = w ~ K}

Show that 4 € w ~ K, (w ~ K) ~ 4 is infinite, and any set P with
A€ P < w~ K is productive.

Any infinite r.e. set is the disjoint union of a creative set and a productive
set. Hint: say Rng f = A, Let gn = fui(fi # gj for all j < n). Show that
£*K is creative and A ~ g*K 1is productive.

If Bis r.e. and 4 N B is productive, then 4 is productive.

There is an r.e. set which is neither recursive, simple, nor creative, Hint:
let A be simple and set B = {x :(x); € A}.

For A < w the following are equivalent:

(1) A is recursive and A # 0;
(2) there is a recursive function fwith Rog f = AandVxew(fx < flx + 1)).

For 4 < w the following are equivalent:

(1) A is productive;
(2) there is a partial recursive function fsuch that Ve e w (if Dmn @i € A
then fe is defined and fe e A ~ Dmn).

if A is creative, Bisr.e., and 4 N B = 0, then 4 v B is creative.
There is a set A such that both 4 and & ~ A are productive.
If A is productive and B is simple, then 4 N B is productive.

Two sets 4 and B are strongly recursively inseparable if AN B =0, w ~
(A4 v B) is infipite, and for every r.e. set C, C ~ A infinite = C N B # 0,
C ~ B infinite = C N A # 0. Show that if 4 and B are r.e. but strongly
recursively inseparable, then:

{1} A and B are recursively inseparable,

(2) Awv Bis simple.

(3) neither A4 nor B is creative,

{4) A and B are not effectively inseparable.

Show that there exist two r.e. strongly recursively inseparable sets, Hint:

let £ = lle, x): Iplle, x, y) € T1)i. Show that there exist recursive functions
I, g such that

E=fi,g):i < w}.

103

Part 1: Recursive Function Theory

Show that there exist recursive functions h, k such that

hO = pi(gi > 3fi);
kO = pi(gi > 3fiand gi # ghQ);
hn + 1) = pi(gi > 3fi &Vj < n(gi # ghki) &
Vi < n(fi # fhi) &Yj < n(gi # ghj));
Kn + 1) = pi(gi > 3fi &Vj < n + 1gi # ghi) &
Vi = n(fi # fkj) &Nj = n(gi # gkj)).

Let A = Rng(gch), B= Rng(gek).

104

Survey of
Recursion Theory

We have developed recursion theory as much as we need for our later
purposes in logic. But in this chapter we want to survey, without proofs, some
further topics. Most of these topics are also frequently useful in logical
investigations.

Turing Degrees

Let g be a function mapping w into w. Imagine a Turing machine equipped
with an oracle—an inpenetrable black box—which gives the answer gx when
presented with x. The function g may be nonrecursive, so that the oracle is
not an effective device. Rigorously, one defines a g-Turing machine just like
Turing machines were defined in 1.1, except that v,, ..., vs, are arbitrary
members of {0, 1, 2, 3, 4, 5}. And one adds one more stipulation in 1.2:

Ifw=5and Fle — 1) =0or Fe = 1, then F' = F, d' = f,

e = e, whileif w = 5 and 0 1V 0 lies on F ending at e, then
0 1%+ 0 19**D O lieson F'endingat e, e’ = e + gx + 2,
F’ is otherwise like Fand d' = f.

Then the notion of g-Turing computable function is easily defined.

One can also define g-recursive function: in 3.1, each class A4 is required
to have g as a member. These two notions, g-Turing computable and g-
recursive function, are shown equivalent just as in Chapter 3. In fact, most
considerations of Chapters 1 through 6 carry over to this situation. If 4 is
g-recursive, we also say that /1 is recursive in g. One can extend the notion in
an obvious way to a set of F of functions, arriving at the notion of a function
being recursive in F. At present we restrict ourselves to the simpler notion.
We say that & and g are Turing equivalent if each is recursive in the other.

1nNs

Part 1: Recursive Function Theory

This establishes an equivalence relation on the set of all functions mapping
w into w. The equivalence classes are called Turing degrees of unsolvability.
Each equivalence class has at most ¥, members (actually exactly X, as is
easily seen), since there are only ¥, possible Turing machines with oracles.
Clearly then there are exp ¥, degrees. Let D be the set of degrees. For «,
Be D we write @ < B provided there exist fe « and g€ 8 with f recursive
in g. This relation < makes D into a partially ordered set. Clearly the degree
of recursive functions, denoted by 0, is the least element of D.

Many of the important results about D are concerned with trying to
describe the partial ordering <. A complete description is far from being
known. The rather scattered results which we now want to mention are
among the strongest facts known. Some of their proofs are quite complicated,
involving priority arguments, a kind of argument seemingly unique to this
area.

Proposition 7.1. Any two elements of D have a least upper bound.
Theorem 7.2. There exist two elements of D without a greatest lower bound.

Theorem 7.3. In D, no ascending sequence o, < o; < --+ has a least upper
bound.

Proposition 7.4. Every element of D has only countably many predecessors.

An element e« of D is minimal, if 0 < « and there is no S with0 < 8 < e.

Theorem 7.5. There are exp ¥, minimal degrees.

A subset E of D is an initial segment of D provided that for all «, f€ D,
if « < Be E, then ¢ € E.

Theorem 7.6. Any finite distributive lattice can be embedded as an initial

segment of D; likewise any countable Boolean algebra and any countable
ordinal.

One of the main open problems in the theory of degrees is the conjecture
that every finite lattice can be embedded as an initial segment in D.

There are some special degrees of particular importance for applications
to logic. A degree « is recursively enumerable (r.¢.) provided that y, € « for
some r.e. set 4. Note that there are only X, r.e. degrees. We let 0" be the
degree of yx. We know from Theorem 6.19, p. 98 that y, € 0’ for any creative
set B; and (V' i1s the largest r.e. degree.

Theorem 7.7. No r.e. degree is minimal.

Theorem 7.8. There are two minimal degrees with join 0.

L Fa g =

Chapter 7: Survey of Recursion Theory

Corollary 7.9. There are degrees <0’ which are not r.e.

 Theorem 7.10. For every nonzero r.e. degree « there is a minimal degree <c.

Partial Recursive Functionals

A partial functional is a function F such that for some m, n € w, the domain
of Fis a subset of "(“w) x "w, while the range of F is a subset of w; addi-
tionally we assume m + n > 0. In case m = 0 we are dealing with the partial
functions of Chapter 5. In case the domain of Fis all of "(“w) x "w, we call
F total. An (m, n)-relation R is any subset of "(“w) x "w. We now wish to
give a reasonable meaning to F and R being recursive, and to R being recur-
sively enumerable. Since a function cannot be presented in its entirety to a
machine it is natural to seek a definition of these notions in which only initial
segments of functions are given. If 2A = (fo,- ... fu-1> Xor-- s Xn-1) €
M(®w) x "w, we let for any ye w

Gy =~ (Jo¥s - s Jamals Xos oo os Kuor) €™,

Now we say that an (m, n)-relation R is recursively enumerable (r.e.) provided
that there is an (m + n + I)-ary recursive relation § € "*"*1w such that
for all 2 € "(“w) X "w,

Ae R iff Ix € w[(Ax, x) € §].

Obviously this definition coincides with the definition of r.e. relation if m = 0.
The definition is motivated as follows. We generate the members of S one
after the other. Having generated a member (Vo, - . -5 Vi—1s Z0s - = =5 Zn—1s X)
of S, we have implicitly generated each member 2 of R such that 2x =
(¥os - - -5 Vo—1s Z0s - - -5 Zn—1). Eventually each member of R is generated in
this fashion. A partial functional F is partial recursive provided that its graph

R={(%, x):AcDmn F, FA = x}

is r.e. Again this notion coincides with the old definition for m = 0. Given
A e Dmn F, clearly the above generation of R constitutes an effective calcu-
lation of F2 (provided there is some way to recognize effectively that 2x =
Oos + + - » Ym—15 20y + + + 5 Zn—1) FOF 8iVEN (Vos - + s Yin=15 Z0s « - » Zn—1)). An (m, 1)~
relation R is recursive provided yxj is recursive. These definitions form the
basis for a generalized recursion theory. This generalization, expounded at
length in Shoenfield [9], has many of the properties of ordinary recursion
theory; the enumeration, iteration, and recursion theorems carry over, as
well as the considerations concerning the arithmetical hierarchy. As is sug-

gested above, there is a strong connection between generalized recursion
theory and relative recursiveness:

Theorem 7.11. A function - w —» w is recursive in a function g: w — w iff
there is a total recursive functional F: “w X w —> w such that for all x € w,
Jx = F(g, x).

107

Part 1: Recursive Function Theory

The notion of a functional also enables one to clarify the role of the sets
A, in the arithmetical hierarchy:

Theorem 7.12. A relation is A, iff it is recursive in {xa: A is 11} iff it is
recursive in {x.: A is X},

The notion of recursive functionals also makes possible the construction
of a new hierarchy. An (m, n)-relation R is X}, (resp. I1;,) where m = 1 pro-
vided there is a recursive relation S so that for all ¥ € ™(“w) x "w we have

Ae R iff Oy« Oni:[(% B)e S],

where Q,, ..., O, are quantifiers V or 3 on functions (members of “w),
alternately V and 3 (with @, = 3 (resp. 0, = V), while Q,,,, is a quantifier
VYx or 3x on numbers. By collapsing quantifiers, it is easy to see that any
second-order prefix can be put in this form (see Chapter 30). The classification
of relations in the sets XL and Il forms the analytical hierarchy. Again we
set Al = X! n (11, The theory of this hierarchy shows considerable simi-
larity, in results and proofs, to the classical topological theory of analytic
sets. For example, we have

Theorem 7.13 If P and Q are disjoint X} relations, then there is a Aj relation
R such that P < Rand Q < ~R.

Isols

Two sets 4, B © w are said to be recursively equivalent if there is a one-one
partial recursive function f such that A € Dmn fand f*4 = B. This estab-
lishes an equivalence relation on the set of all subsets of «; the equivalence
classes are called recursive equivalence types (RET’s). They are the effective
version of cardinal numbers.

Proposition 7.14. If « and B are RET's, then there exist A € « and B € B such
that A and B are recursively separable.

Proposition 7.15. If « and B are RET’s, 4, A’ €a, B, B'€f, A and B are
recursively separable, and A" and B’ are recursively separable, then A U B
is recursively equivalent to A" U B'.

By 7.14 and 7.15, we can define a binary operation + on RET by setting
o 4+ B = recursive equivalence type of 4 U B, where 4 € «, Be f3, and 4 and
B are recursively separable.

Recall the function J, from 3.60. It is a one-one function mapping @ x
onto .

Proposition 7.16. [f «, € RET, A, A' € a, and B, B' € B, then J5(A x B)
is recursively equivalent to J%(A" x B').

Chapter 7: Survey of Recursion Theory

It follows that we can define - on RET by setting «-f = recursive equiv-
alence type of J5(A x B), where A e« and Be f.

Proposition 7.17. Addition and multiplication of RET’s are commutative and
associative. Multiplication is distributive over addition.

The structure (RET, +, -) is not, however, a ring, and it cannot be em-
bedded in a ring. This can be seen for example, from the fact thate + f = «
where « and B are respectively the recursive equivalence types of w and of 1.
Since B + B # B, B is not the additive zero of (RET, +, -}, so this structure
cannot even be embedded in a ring.

For each n € w, let @ be the recursive equivalence type of n. Then ~ is an
isomorphic embedding of (w, +, -} into (RET, +, -).

The structure (RET, +, -) has a simple substructure which is much more
closely related to (w, +, -). To define it, let us call a set 4 € w isolated if it
is not recursively equivalent to any proper subset B < 4. An RET « s an isol
if it has an isolated member. We denote by ISOL the collection of all isol’s.

Theorem 7.18. ISOL is closed under + and -. For any «, f, y € ISOL we
have:

(i) e« + B =a+ yimplies f = vy,
(i) B =a-yand «# 0 imply B = y;
(iii) (w, +, -) is a substructure of (ISOL, +, -).

The structure (ISOL, +, -) can be embedded in a ring ISOL*, which has
the ordinary ring of integers as a substructure. It has many interesting
properties. Since it has zero divisors, it cannot be embedded in a field.

Recursive Real Numbers

It is natural to try to effectivize common notions of mathematics, such as
the notion of a real number. We give here a few of the relevant definitions
and results.

Let @ be the set of rational numbers. A sequence r € “Q is recursive iff
there exist unary recursive functions f, g, k such that for all n € w,

rn = (fn — gn)/(1 + hn).

Thus if en = 12" for all n € w, then & is recursive. In fact we may take fn = 1
for all n, gn = Oforall n, and hn = 2™ — 1 for all n. Now a recursive sequence
r € “Q) recursively converges to a real number « provided there 1s a unary
recursive function & such that forall n € w and alln = kmwe have [rn — «| <
em. A real number « is recursive if there is a recursive sequence of rationals
which recursively converges to «.

1N9

Part 1: Recursive Function Theory

Theorem 7.19. The set of recursive real numbers forms a subfield F of the
field of real numbers. Every rational number is recursive. F is countable.

There is a Cauchy recursive sequence of rationals which does not converge
recursively.

Theorem 7.20. If r € “Q ix recursive, strictly monotone, converges to a recur-
sive real number «, then r recursively converges to «.

A sequence r € “Fis recursive provided there are binary recursive functions
f. g, h, k such that for all m, ne w and all p = k(m, #) we have

ira — {{f(p, n) — g(p, mMI/[1 + h(p,M}| < em.

Many other concepts of ordinary mathematics can be given effective formula-
tions in a similar way.

Word Problem for Groups

There is a classical problem in group theory which has been given a
negative solution using notions of recursive function theory. We shall give a
precise formulation of it. Let X be a nonempty set. We form the free group
generated by X as follows. For each x € X let x" = (X, x). Note that ' is a
one-one function whose range is disjoint from X. A finite sequence (perhaps
0) of elements of X U Rng’ is called a word on X; we let Wy be the set of all
words on X. Let = be the smallest equivalence relation on Wy containing
all pairs (0, aa’) and (0, a’a) with a € X. It is easily seen that if @, b, ¢, d € Wy,
a = b, and ¢ = d, then ac = bd. Hence there 1s a binary operation - on the
set Fy of equivalence classes under = such that [a].[b] = [ab] for all a,
b e Wy. Under this operation £y becomes a group, called the free group
generated by X. A defining relation over X is a pair (a, b) of words over X.
If R is a set of defining relations over X, we let R* be the normal subgroup
of Fy generated by all elements [a]- [6] ! with (a, b) € R. Let Fy , = Fyx/R*.
A group G is determined by generators X and defining relations R if it is
isomorphic to Fx p; then (X, R) is a presentation of G. 1t is easily seen that
every group has a presentation. If X and R are finite, then (X, R) is a finite
presentation and G is finitely presentable. If f is a one-one map of X U X'
into w, then any word x of Wy can be given a Gddel number g,x by

. f=i+1
gx=1{pf*

i<m

where x is of length m. We say that the word problem for (X, R) is recursively
solvable provided that for some such f,

{(gsa, g/b) : hla] = h[b]}

is recursive, where / is the natural homomorphism of Fx onto Fy ;. For X
and R finite, this definition does not depend on the choice of f.

Chapter 7: Survey of Recursion Theory

. Theorem 7.21 (Novikov). There is a group G with a finite presentation (X, R)
" which is recursively unsolvable. Thus there is no automatic procedure for
determining of a pair of words (a, b) whether they become equal upon
applying the relations in R.

Solvability of Diophantine Equations.

A diophantine equation is an equation of the form P(x,, ..., x,_1) = 0,
where P(xg, ..., Xn_1) 18 a polynomial in indeterminants xo, ..., X,,_, With
integer coefficients. A classical problem of number theory, called Hiibert's
tenth problem (see Davis [2]) is whether there is an automatic method for
determining whether an arbitrary diophantine equation has an integral solu-
tion. By means of Gd&del numbering this question can be given a rigorous
form. The answer (Theorem 7.24) is negative, and follows from an even
stronger result which we now want to formulate. An n-ary relation R € "w
is called diophantine if there is a polynomial P(xg, ..., Xpo1s Fos e - -2 V1)
with integral coefficients such that

R = {x € "w : there exist y;, ..., Ym-1 € @ such that
P(x[)-: * vy x:ﬂ.—l: _Pm S] _]-"m—l) = ﬂ}'

Theorem 7.22 (J. Robinson, M. Davis, Y. Matiyasevic). A relation is r.e. iff
it is diophantine.

As an interesting corollary we have

Theorem 7.23. There is a polynomial with integral coefficients such that its
positive values, when members of w are substituted, are exactly all positive
primes.

It is also easy to derive the solution to Hilbert’s tenth problem from 7.22:

Theorem 7.24. There is no automatic method which, presented with a dio-
phantine equation e, will decide whether & has a solution.

BIBLIOGRAPHY

1. Boone, W. W. The word problem. Ann. Math., 70 (1959), 207-265.

2. Davis, M. Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly, 80
(1973), 233-269.

3. Dekker, J. C. E. Les Fonctions Combinatoires et les Isols. Paris: Gauthier-
Villars (1966).

4. Dekker, 1. C. E. and Myhill, J. Recursive equivalence types. Univ. Calif. Publ.
Math., 3 (1960), 67-214.

3. Hermes, H. Enumerability, Decidability, Computability. New York: Springer
(1969).

111

