

Personalized Machine Learning Autoencoders for CF

Rodrigo Alves October 8, 2024

Dimensionality Reduction

- Dimensionality reduction is a technique used to reduce the number of features in a dataset while retaining the most relevant information.
- Different types of data inputs, such as music, photos, or text, have unique characteristics that require specific machine learning approaches.
- Traditional methods like PCA may fail, particularly when dealing with data featuring non-linear relationships.
- Autoencoders, which are unsupervised neural networks, are employed for compressed data representation and are effective for dimensionality reduction and handling complex inputs.

Autoencoder

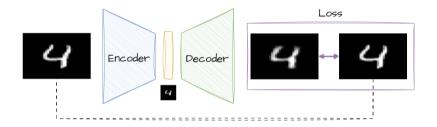
- An autoencoder is a type of feed-forward neural network.
- It is designed to reconstruct its input x_i as output x_i .
- Traditional methods like PCA may struggle, especially when dealing with non-linear relationships.
- To prevent trivial solutions, the network includes a bottleneck layer (or code layer) with significantly fewer dimensions than the input.

Autoencoder

- An autoencoder is composed of both an encoder and a decoder.
- The encoder and the decoder typically have a similar structure.
- More formally, let *E*(*x*) be an encoder and *D*(*x*) be a decoder. Our optimization problem can be described as follows:

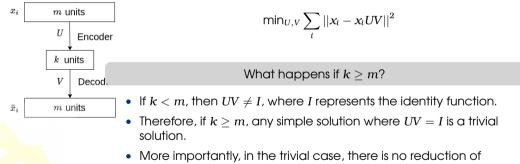
$$\mathsf{min}_{\mathcal{E},\mathcal{D}}\sum_i ||x_i - \mathcal{D}(\mathcal{E}(x_i))||$$

What is an autoencoder?



Autoencoders

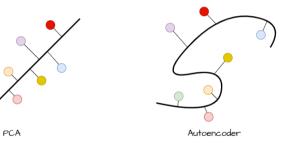
- The simplest autoencoder has one hidden layer and uses squared error loss.
- The optimization function can be denoted as:



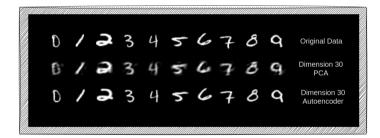
Autoencoders for CF Personalized Machine Learning

5

$\textbf{PCA} \times \textbf{Autoencoder}$



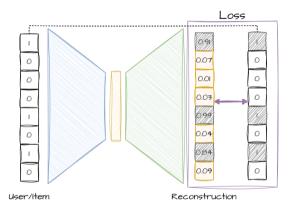
$\textbf{PCA} \times \textbf{Autoencoder}$



Autoencoders for Collaborative Filtering

- Encode user-item interactions into a lower-dimensional space to discover meaningful patterns.
- Applicable to both explicit and implicit feedback.
- Effectively handle sparse user-item interaction data.
- Balancing model complexity and scalability, especially in large-scale recommendation systems.
- Potential for leveraging transfer learning to enhance content-based methods.

Autoencoder for implicit feedback



- EASE is the shallowest auto-encoder possible.
- It aims to solve the following problem:

$$\mathsf{min}_B ||X - XB||^2 + \lambda ||B||^2$$
 s.t. $\mathsf{diag}(B) = 0$

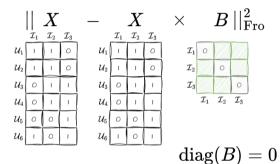
- Why do we need the constraint diag(B) = 0?
- EASE has a closed-form solution, which we will explore shortly.
- Is this a good method?
- 10 Autoencoders for CF Personalized Machine Learning

EASE Results

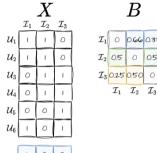
Table 1: Ranking accuracy (with standard errors of about 0.002, 0.001, and 0.001 on the *ML-20M*, *Netflix*, and *MSD* data, respectively), following the experimental set-up in [13].

(a) ML-20M	Recall@20	Recall@50	NDCG@100
popularity	0.162	0.235	0.191
EASER	0.391	0.521	0.420
$EASE^R \ge 0$	0.373	0.499	0.402
results reprod	uced from [13	3]:	
SLIM	0.370	0.495	0.401
WMF	0.360	0.498	0.386
CDAE	0.391	0.523	0.418
MULT-VAE PR	0.395	0.537	0.426
MULT-DAE	0.387	0.524	0.419
(b) Netflix			
popularity	0.116	0.175	0.159
EASER	0.362	0.445	0.393
$EASE^R \ge 0$	0.345	0.424	0.373
results reprod	uced from [13	3]:	
SLIM	0.347	0.428	0.379
WMF	0.316	0.404	0.351
CDAE	0.343	0.428	0.376
MULT-VAE PR	0.351	0.444	0.386
MULT-DAE	0.344	0.438	0.380
(c) MSD			
popularity	0.043	0.068	0.058
EASER	0.333	0.428	0.389
$EASE^R \ge 0$	0.324	0.418	0.379
results reprod			
SLIM	 did not finish in [13] — 		
WMF	0.211	0.312	0.257
CDAE	0.188	0.283	0.237
MULT-VAE PR	0.266	0.364	0.316
MULT-DAE	0.266	0.363	0.313

EASE: dimensions



EASE: intuition



$$\min_{B} \|X - XB\|_{F}^{2} + \lambda \|B\|_{F}^{2}$$

s.t. diag(B) = 0

Here $X \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times n}$.

Lagrangian:

$$\mathcal{L}(B) = \|X - XB\|_F^2 + \lambda \|B\|_F^2 + 2\gamma^ op$$
diag (B)

Lagrangian:

$$\mathcal{L}(B) = \|X - XB\|_F^2 + \lambda \|B\|_F^2 + 2\gamma^\top \mathrm{diag}(B)$$

Derivative of the Lagrangian:

$$\begin{split} \mathcal{L}'(B) &= 2(X)^\top (XB - X) + 2\lambda B + 2 \text{diagMat}(\gamma) \\ &= 2X^\top (XB - X) + 2\lambda B + 2 \text{diagMat}(\gamma) \\ &= 2X^\top XB - 2X^\top X + 2\lambda B + 2 \text{diagMat}(\gamma) \end{split}$$

Derivative of the Lagrangian:

Assume:

$$P = (X^\top X + \lambda I)^{-1}$$

We have:

$$\begin{split} \hat{B} &= (X^{\top}X + \lambda I)^{-1} \big(X^{\top}X - \mathsf{diagMat}(\gamma) \big) \\ &= P \big(P^{-1} - \lambda I - \mathsf{diagMat}(\gamma) \big) \\ &= I - P \big(\lambda I + \mathsf{diagMat}(\gamma) \big) \end{split}$$

We know that:

$$\operatorname{diag}(\hat{B}) = 0$$

Therefore:

$$\begin{aligned} \mathsf{diag}\Big(I - P\big(\lambda I + \mathsf{diagMat}(\gamma)\big)\Big) &= \vec{0}\\ \mathsf{diag}(I) - \mathsf{diag}\big(P \times \mathsf{diagMat}(\lambda \vec{1} + \gamma)\big) &= \vec{0}\end{aligned}$$

Finally:

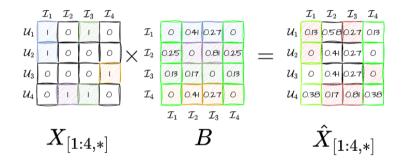
18

$$\vec{1} - \operatorname{diag}(P) \bigodot (\lambda \vec{1} + \gamma) = \vec{0}$$

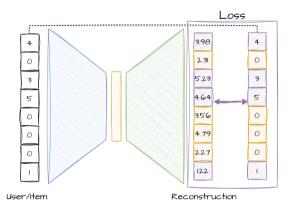
$$\vec{1} - \operatorname{diag}(P) \bigodot \lambda \vec{1} - \operatorname{diag}(P) \bigodot \gamma = \vec{0}$$

$$\operatorname{diag}(P) \bigodot \gamma = \vec{1} - \lambda \operatorname{diag}(P)$$
Autoencoders for CF
$$\gamma = (\vec{1} - \lambda \operatorname{diag}(P)) \oslash \operatorname{diag}(P)$$

Matrix \hat{B}



What about explicit feedback? </>



Obrigado :) - Faculty of Information Technology