

Personalized Machine Learning Memory-based Approaches

Rodrigo Alves October 22, 2024

Recommender Systems

- Recommenders can recommend:
 - Items to users (most common)
 - Users to items
 - Items to items
 - Users to users
- Items can include movies, products, news, music, books, recipes, and more.

Working in pairs: Open an app (e.g., Instagram) or visit a website (e.g., seznam.cz) and find one example of **each** of the four recommender scenarios above that is already applied or where you think it could be implemented.

Recommender Systems

Recommenders are mostly seen as two different learning problems:

- Predictive modeling: predicting the rating of item j by user i.
- Retrieval modeling: learning ranking systems User i prefer item j_1 more than item j_2 .

Typically, these systems are based on **past interactions** and (or) **attributes** (from users and items).

- Interactions: Normally modeled as an interaction matrix.
 - Explicit: When a user rates a song with 4 stars on a scale from 0 to 5.
 - Implicit: When a user watches 80
- Attributes: Normally modeled as attribute matrices.
 - Users: Gender, age, location, and more.
 - Items: Text, video, metadata, and more.

Modelling Interactions: Explicit feedback

	m ₁	m 2	 mn
U1	?	2	 3
U2	5	1	 ?
Uз	?	3	 1
Um	4	4	 ?

Modelling Interactions: Implicit feedback

U1	m ₁	12/11/2021 09:01:21	Watch	25%
U2	m ₁	17/03/2021 14:27:09	Clicked	
U2	m 4	17/03/2021 14:22:09	Clicked	Purchase
Um	mn	14/06/2020 23:14:46	Watch	100%

	\mathbf{m}_1	m 2	 mn
U 1	1	0	 0
U 2	1	0	 0
Из	0	1	 1
Um	0	1	 1

Memory-based Approaches Personalized Machine Learning

4

Mixing Implicit and Explicit

Personalized Machine Learning

- Personalization is not a simple regression or classification problem.
- A personalized model implies that if users have different interactions (or attributes), the recommendations *might* be different.
- Suppose the vectors a_i and a_j are attribute vectors of user i and item j, respectively.
- We can use linear regression to predict how user *i* will like item *j*:

$$r_{i,j} = \omega^ op imes egin{bmatrix} a_i \ a_j \end{bmatrix}$$

Is linear regression a personalized model for recommenders? Why?

Memory-based Approaches Personalized Machine Learning

6

PML vs ML </>

	Nationality	Age	Movie ID	Action	Drama
0	0	25	0	0	1
/// 1///	1	15		0.5	0.5
2	1	2.3	2	1	0

Recommendation Algorithms

Collaborative Filtering

Day One: Joe and Julia independently read an article on police brutality

Day Two: Joe reads an article about deforestation, and then Julia is recommended the deforestation article

7 Memory-based Approaches Personalized Machine Learning

Content-Based Filtering

Day One: Julia watches a Drama

 $\mathbf{1}$

DRAMA

Day Two: Dramas are recommended

Memory-based Approaches

- Memory-based approaches are the simplest and, perhaps, the most ubiquitous models in recommendation.
- Items are recommended because they are similar to one (or more) that the user has interacted with before.
- Choosing the correct method for computing similarity is the key to this approach.
- Similarity could be based on:
 - User/item attributes
 - User-item interactions

Does similarity depend on perception?

Memory-based Approaches Personalized Machine Learning

8

Modelling Attributes

	Color		Price	Category		
				Float	T-Shirt	Chair
mı	1	0	0	0.9996	0	1
m ₂	0	0.7	0.7	1.0000	0	1
mз	0	0.7	0.7	0.0008	1	0
m 4	1	0	0	0.0000	0	1

Memory-based Approaches Personalized Machine Learning

9

How Could We Recommend from Attributes?

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

Figure source: kdnuggets

k-NN Algorithm for Recommendation

- k-NN is an instance-based method that can be either content-based or collaborative filtering.
- k-NN is also commonly used for regression and classification. More formally,

User-based Nearest Neighbors

- Let u_i be a feature vector of user *i* with an unknown rating $r_{i,j}$ for item *j*.
- Compute the **distance** d(x, i) between u_i and all u_x .
- Find the k instances (neighbors) in u_x that are closest to u_i and have observed item j.
- Combine their $r_{x,j}$ values.
- Output the combination.

The simplest way of combining is by computing the average of k nearest instances. We will further discuss **distance** d(x, i).

Weighted k-NN Algorithm

- In k-nearest neighbors, one can find users with different similarities.
- The prediction can take into consideration and give more weight according to users' similarities.
- For example, for the prediction of the rating of user *i* for item *j*, we have

$$\hat{r}_{i,j} = \frac{\sum_{l \in \mathcal{K}} \operatorname{sim}(i, l) \times r_{l,j}}{\sum_{l \in \mathcal{K}} \operatorname{sim}(i, l)}$$

where \mathcal{K} represents the k nearest neighbors.

Defining a Similarity Function

- So far, all the examples that we have seen were well-defined because the vectors being compared were fully known.
- However, in Recommender Systems, we frequently have partially known vectors since we only observe part of the user's interactions.
- To simplify, let's consider the implicit feedback case where users interacted or not with an item. For instance:

$$\begin{split} U_1 &= \{1,3,4,8,12,15,17,24,35,39,41,43\}\\ U_2 &= \{2,3,4,5,9,12,13,16,19,24,17,31\},\\ U_3 &= \{4,5,9,12\}, \text{ and }\\ U_4 &= \{4,9\}. \end{split}$$

• Naively, we could define $sim(i, l) = |U_l \cap U_l|$. Memory-based Approaches Personalized Machine Learning

14

Intersection as Similarity

Intersection as Similarity

16 Memory-based Approaches Personalized Machine Learning

Is it reasonable to say sim(1,2) > sim(3,4)?

Intersection as Similarity

17 Memory-based Approaches Personalized Machine Learning In pairs, discuss with *a colleague* whether, in **terms of recommender systems**, it is reasonable to compute the similarities as shown in the previous slides:

 $\bullet \text{sim}(1,2) = 4$

$$\bullet sim(2,3) = 4$$

$$\bullet \text{sim}(3,4) = 2$$

- Note that users 1 and 2 are highly motivated users who have interacted with many different items.
- Such types of users tend to bias the similarity function by making them similar to every user.

The Jaccard Similarity

- Our first attempt at correcting this issue would be by normalizing the similarity by the users' popularity.
- The Jaccard similarity does that by dividing the union by the intersection:

$$\mathsf{Jaccard}(i, l) = rac{|U_i \cap U_l|}{|U_i \cup U_l|}$$

• The Jaccard similarity is only defined for non-empty sets.

Note that $Jaccard(i, l) \in [0, 1]$. Jaccard(i, l) = 0 if i and l have not interacted with any items in common. On the other hand, Jaccard(i, l) = 1 if all interactions of both users are the same.

The Jaccard Similarity

19 Memory-based Approaches Personalized Machine Learning Is it more reasonable now?

Cosine Similarity

- The Jaccard similarity has a limitation: it is only defined when interactions are represented as sets.
- It would not be defined, for example, when feedback is associated.
- Suppose we have the following recommender system with the following possibilities:
 - Positive feedback (e.g., like): +1;
 - Negative feedback (e.g., dislike): -1;
 - Unobserved feedback: 0.
- Cosine similarity measures the angle extension between the vector of interactions and can be computed as:

$$\cos(heta) = rac{\langle m{a}, m{b}
angle}{||m{a}|| \cdot ||m{b}||}$$

Cosine Similarity </>

$$\cos(heta) = rac{\langle a \;,\; b
angle}{||a||||b||}$$

Cosine Similarity </>

Euclidean Similarity

- In some cases, we would like to measure similarity based on the distances between vectors.
- However, the Euclidean distance, for example, is larger for vectors that are distant and smaller for close (or similar) vectors.
- We can define the Euclidean Similarity as follows:

$$\mathsf{ES}(a,b) = \frac{1}{1+\mathsf{d}(a,b)},$$

where d(a, b) is the Euclidean distance between vectors a and b.

- Note that ES(a, b) = 1 when a = b and approaches zero as a becomes initially distant from b.
- In fact, we can define this score for any defined distance measure.

Explicit Feedback

Haters vs. Lovers

- Some users tend to be more rigorous in their ratings, while others are generous.
- Let's take a look at our previous example:

- One way to mitigate this bias is by subtracting the average rating of each user and then performing *k*-NN.
- In the prediction step, the user's average rating is added back.
- 25 Memory-based Approaches Personalized Machine Learning

k-NN for Recommendation

- \checkmark *k*-NN is considered a memory-based method because no training is needed. Instead, predictions are made directly from data.
- $\checkmark\,$ It is simple to implement and simple to explain.
- \checkmark The method is relatively stable with the addition of interactions.
- \times The method can have limited coverage due to sparsity.
- \times The method can be impractical for large datasets
 - Clustering and dimensionality reduction are frequently used to deal with scalability.

Obrigado :) - Faculty of Information Technology