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Matrix Factorization
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Matrix Factorization (Sampled)
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CF as a Supervised Learning Problem

• Matrix Factorization can be seen as a supervised learning problem.

Supervised Learning Data
– Inputs: raw data instances x1, x2, . . . , xn , where xl ∈ Rp.

– Labels: annotations of the inputs y1,y2, . . . ,yN , where yl ∈ R.

What are the xs and ys in CF-based matrix factorization?
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CF as a Supervised Learning Problem
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CF as a Supervised Learning Problem

• Thus, xl = {i, j} ∈ R2 and yl ∈ R.

– For explicit feedback, for example, yl ∈ {1,2,3,4,5}.
– For implicit feedback, for example, yl ∈ {0,1}.

• Therefore, we can see an MF optimization problem (without regularization)∑
i,j∈Ω

(rij − u⊤
i vj)

2

as ∑
i,j∈Ω

(rij − g(i, j))2

• So far, we see g(i, j) as a linear function.

• If we replace g(i, j) with a deep architecture, we would have a deep CF problem.
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Generalized Matrix Factorization(GMF)

• Many deep learning methods can generalize their shallow
equivalents.

• For example, in our previous toy example, the shallow method is
equivalent to linear regression with the predictor y = ωLRx .

• An equivalent version of this shallow model in the context of a deep
model could be represented as follows:

y = ReLU(x × ω11 + β11)× ω21 + ReLU(x × ω12 + β12)× ω22

= ReLU(x × 1 + 0)× ωLR + ReLU(x ×−1 + 0)×−ωLR

= ωLRx

• Similarly, we could have a deep matrix factorization method that
can generalize shallow matrix factorization methods.
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GMF
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Multilayer Perceptron (MLP)

• Another natural view of matrix factorization is as a deep model using
a multilayer perceptron.

• This model is known for its fully connected dense layers.
• Although the model can also represent simple models, such as

shallow matrix factorization, it is more powerful and can represent a
wider range of functions.

• Powerful models are more susceptible to overfitting.
• Architectural design and regularization, as is typical in deep models,

are best evaluated through validation procedures.
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MLP
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Neural Collaborative Filtering (NCF)

• One of the early approaches to using deep methods in
collaborative filtering.

• It consists of two modules:
– GMF (Generalized Matrix Factorization).
– MLP (Multilayer Perceptron).

• Traditionally used for implicit feedback.
– Utilizes sampling to balance the negative feedback.
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NCF
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Graph Neural Networks (GNNs) for CF

• Traditional collaborative filtering methods often ignore the rich
structural information present in user-item interaction data.

• GNNs are a powerful approach to leverage this structure for
recommendation systems.

• Key components:
– Graph Representation: Model user-item interactions as a bipartite

graph where users and items are nodes, and interactions are edges.
– Message Passing: Propagate information along graph edges to

capture collaborative patterns.
• Advantages of GNNs:

– Ability to handle sparsity.
– Capture complex relationships beyond traditional matrix factorization.
– Improved recommendation accuracy.
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GNNs
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GNNs
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Deep Autoencoders for Collaborative Filtering

• We’ve explored how autoencoders provide a versatile approach for
collaborative filtering tasks.

• Deep autoencoders are neural networks explicitly designed to
acquire efficient representations of user-item interactions.

• Autoencoders are frequently employed to extract embeddings from
input and output data.

• They can serve as a powerful technique to complement deep
collaborative approaches.
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Deep Autoencoders
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Mixing Implicit and Explicit Feedback

• Some methods incorporate a mixture of implicit and explicit
feedback concepts.

• Consider the following:
– Explicit feedback: Ratings from 1 to 5 stars;
– Implicit feedback: Whether the user interacts (1) or not (0) with the

same item.

• We will introduce the 1-by-1 convolutional autoencoder to combine
implicit and explicit feedback.
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Mixing Implicit and Explicit Feedback
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Mixing Implicit and Explicit Feedback
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Mixing Implicit and Explicit Feedback
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Mixing Implicit and Explicit Feedback
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Sequential-based Recommendation

• In traditional recommendation systems, user-item interactions are treated
independently.

• However, many real-world scenarios involve sequences of user actions or events.

• Sequential-based recommendation models take into account the order and
timing of user interactions.

• This is especially important for applications like:

– Recommending products in an e-commerce session.
– Suggesting the next movie or video in a user’s watch history.
– Personalizing content in news and article recommendation systems.

• Sequential recommendation models leverage the sequential patterns, temporal
dynamics, and user behavior to provide more accurate and context-aware
recommendations.

22 Deep Learning Methods
Personalized Machine Learning



Sequential-based Recommendation

23 Deep Learning Methods
Personalized Machine Learning



Sequential-based Recommendation
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Mixing Implicit and Explicit Feedback
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