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Bias in Recommender Systems

e Recommender systems are susceptible to biases, impacting fairness and accuracy.
o Types of bias: user, item, demographic, etfc.
¢ Challenges: unfair treatment, limited diversity, stereotype reinforcement.

Position bias: it is a fendency to prioritize items in prominent positions, reinforcing popular
items.

o Note that, however, often the recommender can be programmed to show some
items in the first positions.

¢ Also, note that the models actually aim to the recommendation by putting
the more relevant items in the first positions, and because of that, some PML
algorithms focus on that.

e However, we can have some ML problems that are invariant by nature.
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Invariant Models

Domain invariance: For instance, Graph Neural Networks (GNNs) can
be employed in Collaborative Filtering, where user-item interactions are
modeled as a graph. GNNs are utilized to capture interactions, irrespec-
five of their

Time invariance: It is common to assume that the model is not influenced
by . For example, the order in which users rate the items is not con-
sidered in tThe evaluation of their faste.

Permutation-equivariant models: These models demonstrate equivari-
ance concerning permutations.
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Odd-One-Out Problem

e The odd-one-out problem is a widely explored concept in Recommender Systems.

o Traditionally, it involves predicting user choices, such as identifying which item a
user is most likely to click from a given list.

e Our lecture, however, focus to a more nuanced application within neuroscience,
particularly in the context of triplets.

¢ Triplets Problem: Consider presenting three images to an individual: Z,, Zy, Z..

— The task is to predict which pair of images exhibits the
based on given options.
— Among goals we aim to develop models capable of predicting similarity
within new triplets.
- Simultaneously, we aim to construct embeddings that capture how humans
perceive and understand conceptual relationships.
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Triplets Problem
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Triplets Problem: Data
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Triplets Problem: Odd-one-out
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Triplets Problem: Similar
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Sequential Recommendation (RECAP)
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Sequential Recommendation (RECAP)
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Sequential Recommendation (RECAP)
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A First Try
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Is it a Invariant Model?
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SPoSE

e SPOSE is a model developed to learn individual representations from
friplets.

e |t is an acronym for Sparse Positive Similarity Embedding.

e These representations predict a latent similarity structure between
objects, capturing most of the explainable variance in human
behavioral judgments.

e The model is based on the concept of probability. Let S(a, b) be a
function representing the similarity between a and b. One way to
compute the probabilities of the three possible embeddings x;. xs,
and x3 such that they add up to one, can be given by:

eS(Xl ,Xz)

P(X],Xz) =
S(x1,X2) S(x1,x3) S(x2,x3)
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SPoSE

Similarity can be computed in various ways.
The authors of the SPOSE paper tried two methods: one based on
and another on cosine similarity.
Experimentally, cosine similarity showed to be more effective.
Given aset of triplets T = {t;, by, - - - th} where t; = {a; 1, a; 2, a; 3} and
item a; 1 is more similar to item a; o (in other words, a; 3 is the
odd-one-out item),an embedding vector of item a;; is represented
by xq, ;. With the aim fo learn X = {x1, x2, - - - xin }. We have
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SPoSE
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SPoSE
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Permutational Layer

Component of neural networks for handling variable-length input
sequences.

Processes permutations of input elements, allowing the model to
handle different orders of sequence elements.

Extracts features , enhancing the
model’s understanding of relationships.

Particularly useful in tasks where the order of elements should not
influence the model’s predictions, like set-based or graph-based
data.

Commonly applied in set classification tasks, where predictions are
based on set properties rather than element order.
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Permutational Layer
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Permutational Layer
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Permutational Layer

Permutational Layer
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