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Bias in Recommender Systems

• Recommender systems are susceptible to biases, impacting fairness and accuracy.

• Types of bias: user, item, demographic, etc.

• Challenges: unfair treatment, limited diversity, stereotype reinforcement.

Position bias: it is a tendency to prioritize items in prominent positions, reinforcing popular
items.

• Note that, however, often the recommender can be programmed to show some
items in the first positions.

• Also, note that the models actually aim to ‘bias’ the recommendation by putting
the more relevant items in the first positions, and because of that, some PML
algorithms focus on that.

• However, we can have some ML problems that are invariant by nature.
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Invariant Models

Domain invariance: For instance, Graph Neural Networks (GNNs) can
be employed in Collaborative Filtering, where user-item interactions are
modeled as a graph. GNNs are utilized to capture interactions, irrespec-
tive of their domain.

Time invariance: It is common to assume that the model is not influenced
by time. For example, the order in which users rate the items is not con-
sidered in the evaluation of their taste.

Permutation-equivariant models: These models demonstrate equivari-
ance concerning input permutations.
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Odd-One-Out Problem

• The odd-one-out problem is a widely explored concept in Recommender Systems.

• Traditionally, it involves predicting user choices, such as identifying which item a
user is most likely to click from a given list.

• Our lecture, however, focus to a more nuanced application within neuroscience,
particularly in the context of triplets.

• Triplets Problem: Consider presenting three images to an individual: Ia , Ib, Ic .

– The task is to predict which pair of images exhibits the closest conceptual
similarity based on given options.

– Among goals we aim to develop models capable of predicting similarity
within new triplets.

– Simultaneously, we aim to construct embeddings that capture how humans
perceive and understand conceptual relationships.
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Triplets Problem: Data
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Triplets Problem: Odd-one-out
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Triplets Problem: Similar
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Sequential Recommendation (RECAP)
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A First Try
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Is it a Invariant Model?
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SPoSE
• SPoSE is a model developed to learn individual representations from

triplets.
• It is an acronym for Sparse Positive Similarity Embedding.
• These representations predict a latent similarity structure between

objects, capturing most of the explainable variance in human
behavioral judgments.

• The model is based on the concept of probability. Let S(a,b) be a
function representing the similarity between a and b. One way to
compute the probabilities of the three possible embeddings x1, x2,
and x3 such that they add up to one, can be given by:

P(x1, x2) =
eS(x1,x2)

eS(x1,x2) + eS(x1,x3) + eS(x2,x3)
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SPoSE

• Similarity can be computed in various ways.
• The authors of the SPoSE paper tried two methods: one based on

Euclidean distance and another on cosine similarity.
• Experimentally, cosine similarity showed to be more effective.
• Given a set of triplets T = {t1, t2, · · · tn},where ti = {ai,1,ai,2,ai,3} and

item ai,1 is more similar to item ai,2 (in other words, ai,3 is the
odd-one-out item),an embedding vector of item ai,j is represented
by xai,j . With the aim to learn X = {x1, x2, · · · xm}, we have

argminxj

n∑
i=1

log
ex⊤

ai,1
xai,2

ex⊤
ai,1

xai,2 + ex⊤
ai,1

xai,3 + ex⊤
ai,2

xai,3
+ λ

∑
j

|xj|1
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Permutational Layer

• Component of neural networks for handling variable-length input
sequences.

• Processes permutations of input elements, allowing the model to
handle different orders of sequence elements.

• Extracts features irrespective of the original positions, enhancing the
model’s understanding of relationships.

• Particularly useful in tasks where the order of elements should not
influence the model’s predictions, like set-based or graph-based
data.

• Commonly applied in set classification tasks, where predictions are
based on set properties rather than element order.
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