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Tossing a Coin

• Tossing a coin is a very popular method worldwide for making binary
decisions.

• What is the probability of getting a head and a tail?
• Let’s say I have a fair coin, meaning that P(head) = P(tail) = 1

2 .
– Now, if I were to toss the coin 100 times, and 70 of those times resulted

in a head what would be the probability of getting a tail in the next
toss?

• Perhaps you should question whether P(head) = P(tail) = 1
2 !
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Tossing a Coin

• In the majority of cases, it’s challenging to determine if a coin is truly fair.

• What’s even more problematic is that it’s probable that finding a genuinely fair
coin is very difficult.

• Nevertheless, many coins have probabilities such that P(head) ≈ P(tail) ≈ 1
2 .

• Suppose I tell you that I have a fair coin, where P(head) = P(tail) = 1
2 .

– Now, if I were to toss it 100 times, and 70 of those times resulted in
heads

• Is it likely that P(head) = P(tail) = 1
2 ?

• Can we estimate the most likely values of P(head) and P(tail)?
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Maximum Likelihood Estimation
To be more formal, let’s assume the following:

• Yi is a random variable representing the i-th toss.
– Yi = 1 indicates that the i-th toss resulted in a head.
– Yi = 0 indicates that the i-th toss resulted in a tail.

• Consequently, we have P(Yi = 0) + P(Yi = 1) = 1, which implies
P(Yi = 0) = 1 − P(Yi = 1).

• If we denote P(Yi = 1) as p, then P(Yi = 0) = 1 − p.
• We observe a sequence of tosses: Y1,Y2, · · · ,Y100, and among

them, 70 are heads.

P(Y1,Y2, · · · ,Y100) =
∏

i

pYi (1 − p)1−Yi

= p
∑

i Yi (1 − p)100−
∑

i Yi

= p70(1 − p)30
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Maximum Likelihood Estimation

• It’s a fact: the event has occurred, with 70 heads and 30 tails.
• Now, we have P(Y1,Y2, · · · ,Y100) = p70(1 − p)30.
• The key question is: which value of p maximizes P(Y1,Y2, · · · ,Y100)?

In other words, can we compute the most likely value of p by considering that we ob-
served 70 heads and 30 tails?

• Once again, we encounter an optimization problem:

L(p) = p70(1 − p)30
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Some Logarithm Properties

• ln(ab) = ln(a) + ln(b)

• ln
(a

b

)
= ln(a)− ln(b)

• ln(ab) = b ln(a)
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Maximum Likelihood Estimation

• The function L(p) = p70(1 − p)30 is a real and continuous function.
• Therefore, we can simply compute its derivative and set it to zero.

L(p) = p70(1 − p)30

lnL(p) = ln
(
p70(1 − p)30)

= lnp70 + ln(1 − p)30

= 70 lnp + 30 ln(1 − p)
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Maximum Likelihood Estimation
• Computing the derivative:

ℓ(p) = 70 lnp + 30 ln(1 − p)

ℓ′(p) =
70
p

− 30
1 − p

• By setting the derivative to 0, we get:

0 =
70
p

− 30
1 − p

= 70(1 − p)− 30p = 70 − 70p − 30p

100p = 70

p = 0.70
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Maximum Likelihood Estimation
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Popularity in Recommender Systems

• Popularity is a fundamental concept in recommender systems.
• It refers to the relative frequency of items among users.
• Popularity can be measured in various ways, such as the

number/rate of views, ratings, or purchases.
• Understanding popularity is essential for building effective

recommendation algorithms.
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Popularity in Recommender Systems
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Popularity in Recommender Systems

• Previous research shows that the popularity of online items varies
between:

– calm (or normal) periods;
– and huge sequences of events (bursts of events).

• We, thus, model the popularity split into two audiences:
– Stable: responsible for calm periods;
– Curious: responsible for the bursts.

“All models are wrong. Some are useful!”

— George Box
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Stable vs Curious

• Curiosity is hard to measure. Bursts of events are highly
unpredictable:

– when they will happen.
– how big the number of events will be.

• Therefore, we are more interested in knowing the rate of events of
the stable audience.

• And it is important for recommender systems to understand whether
an item is in a stable or curious mode.
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Point Processes

• Let’s model our audiences through point processes.
• Point Process: It’s a mathematical model for random events

occurring over time (or space).
• Events are random and may be discrete or continuous.
• The intensity function (λ(t)) describes the event occurrence rate.
• Events can be dependent or independent.
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Intensity Function

Definition
Consider a point process with n observed times T = {t1, t2, . . . , tn}. Let
N(t) represent the number of events in the point process up to time t. It is
defined as:

N(t) =
n∑

i=1

1(ti≤t and ti∈T )

The intensity function λ(t) reflects the instantaneous event rate at each
point in time within the point process and is defined as:

λ(t) = lim
∆t→0

E[N(t +∆t)− N(t)]
∆t
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Poisson Process

A Poisson process is point process, characterized by the following
properties:

• Homogeneity: The event rate is constant over time, denoted as
λ(t) = λP .

• Memorylessness: The time until the next event follows an
exponential distribution, which means it has no memory of the past.

The Poisson process is widely used in various fields to model random
events, such as arrivals at a service center, radioactive decay, and more.
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Poisson Process: Homogeneity

• In a Poisson Process, the rate of incoming events, denoted as λ(t) = λP , remains
constant.

• This property makes the Poisson Process a suitable model for describing a stable
audience.

• Specifically, this means that within each fixed unit of time (e.g., seconds, minutes,
days), we expect E[N(t + 1)− N(t)] = λ.

Note: the constancy of λ does not imply regularity in the sense that events
will occur precisely at regular intervals. For example, when λ = 1, in 10
unit times

• we may not necessarily observe the events at times {1,2, . . . ,10};
• we only expect to have 10 events in total, but the actual number of

events may vary.
16 Temporal Dynamics and Popularity

Personalized Machine Learning



Poisson Process: Memorylessness
The time until the next event follows an exponential distribution, which
means it has no memory of the past.
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Poisson Process: λ
• Now, let’s consider the scenario where we have knowledge of the

time stamps T = {t1, t2, . . . , tn} ∈ (0, T ]. How can we determine the
value of λ?

• Perhaps a more appropriate question is: What is the most likely value
for λ?

Likelihood of Point Processes Definition
When considering the history H of a point process at a specific point ti ,
which encompasses all events occurring before ti , we can define the
likelihood function for the parameters of a generic point process as
follows:

L(θ) =
n∏

i=1

λ(ti |H)e−
∫ T

0 λ(t|H)dt
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Poisson Process: λ

L(θ) =

n∏
i=1

λ(ti |H)e−
∫ T

0 λ(t|H)dt

ℓ(θ) = log

(
n∏

i=1

λ(ti |H)e−
∫ T

0 λ(t|H)dt

)

=

n∑
i=1

log λ(ti |H)−
∫ T

0
λ(t|H)dt

=

n∑
i=1

log λP−
∫ T

0
λPdt

= n log λP − λP(T − 0)

= n log λP − λPT19 Temporal Dynamics and Popularity
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Poisson Process: λ
ℓ(θ) = n log λP − λPT

ℓ′(θ) = n
1
λP

− T

0 = n
1
λP

− T

T = n
1
λP

T
n

=
1
λP

n
T = λP
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Curious Audiences
• The Poisson Process might not be the best choice for modeling curious audiences.

• As we observed in the examples, bursts of events occur unexpectedly and with
varying intensities.

• However, curious behaviors happen continuously.

• During quiet periods, they may not be well-observed because the intensity is lower.

• Therefore, we need to find a process that alternates between calm and bursts of
events. An ideal λS(t|H) would be
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Self-Feeding Process

• A point process can be fully defined if we specify its intensity function λ(t|H).

• However, obtaining the ideal function as mentioned earlier can be challenging
without making some strong assumptions.

• Let’s consider a more accessible approximation:

SFP Intensity Function
Consider a point process with n observed times T = {t1, t2, . . . , tn} sampled from a
Self-Feeding Process (SFP). The intensity function, defined by a parameter µ, is as follows:

λS(t|H) =


µ if t ≤ t1,

1
t1+

µ
e

if t1 < t ≤ t2,
1

∆t+µ
e

otherwise.

Here, ∆t is the difference between the two last events before t.
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Self-Feeding Process
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MLE for SFP
• We know that the likelihood for point processes is defined as:

L(θ) =
n∏

i=1

λ(ti |H)e−
∫ T

0 λ(t|H)dt

• By observing events, we can compute λ(t|H) for any µ:

• Unfortunately, there is no closed-form solution for µ in SFP. However, finding a
numerical minimum is straightforward since it’s a single parameter.

• We estimate µ using the set ∆T = {t2 − t1, t3 − t2, . . . , tn − tn−1}:

µ ≈ Median(∆T )24 Temporal Dynamics and Popularity
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Observation

• We have defined models for both types of audiences: stable (PP)
and curious(SFP).

• Given a time series T = {t1, t2, . . . , tn}, our goal is to determine the
respective parameters of the processes: λP and µ.

• We assume that the process generating the stable and curious
audiences operate independently.

• If we know which events belong to each process, calculating λP
and µ is straightforward.

• However, we only observe a mixture of both processes.
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Observation
• We observe only the joint process T = {t1, t2, . . . , tn}.

• Let zi ∈ {0,1} be the unobserved labels for the events.

– zi = 0 if ti is from the stable (PP). zi = 1 if ti is from the stable (SFP).

• Therefore, we aim to find the set Z = {z1, z2, . . . , zn}, λP , and µ that maximizes:

L(θ) =
n∏

i=1

λ(ti |H)e−
∫ T

0 λ(t|H)dt

• Randomly choosing labels would be impractical due to the vast number of
possibilities.
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EM Algorithm

• The Expectation-Maximization (EM) algorithm is a powerful statistical method widely
used for estimating parameters in models with hidden or missing data.

• It is an iterative algorithm that alternates between two main steps:

1. Expectation (E-step): In this step, we calculate the expected values of
the missing or latent variables using the current parameter estimates.

2. Maximization (M-step): In this step, we update the model parameters
to maximize the likelihood based on the expected values obtained in
the E-step.

• The EM algorithm continues iterating between the E-step and M-step until
convergence, where the parameter estimates no longer change significantly.

In our problem, what are the latent variables and what are the model parameters?
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EM Algorithm
• The labels Z are latent variables and θ = {λP , µ} model parameters.

EM Algoritm - PP + SFP

Initialise Z (0), λP and µ (e .g, randomly). Set a N > 0.
UNTIL λP and µ converge DO
E-STEP

• Update ∀j update Z (j) from previous Zs.

• FOR j ∈ {1,2, · · ·N} DO

– ∀i sample Z (j)
i ∼Bernoulli

(
L(λP ,µ,Z

(j)
−i ,zi=1)

L(λP ,µ,Z
(j)
−i ,zi=0)+L(λP ,µ,Z(j)

−i ,zi=1)

)
.

M-STEP

• Estimate the parameters λP and µ as

λP =

∑N
j

∑n
j (1−z(j)

i )

T

N
and µ =

∑N
j Median(∆T |Z (j))
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MLE of the Mixture

• Z−i represents all the z’s except zi .

• The likelihood function of the mixture can be written as:

L(λP , µ,Z) =
n∏

i=1

λS(ti |H)ziλ1−zi
P e−

∫ T
0 (λS(t|H)+λP )dt

• Consequently, we can compute L(λP , µ,Z
(j)
−i , zi = 1) and L(λP , µ,Z

(j)
−i , zi = 0).

However, this would be computationally expensive.

• Let h(i) denote the next SFP point after ti .
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MLE of the Mixture zi = 0
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MLE of the Mixture zi = 1
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MLE of the Mixture
Note we can factorise L(λP , µ,Z−i , zi = z) as:

L(λP , µ,Z−i , zi = z) =
h(h(i))∏

j=i

λS(tj|H)zjλ
1−zj
P e−

∫ th(h(i))
ti

(λS(t|H)+λP )dt

×
i−1∏
j=1

λS(tj|H)zjλ
1−zj
P

n∏
j=h(h(i))

λS(tj|H)zjλ
1−zj
P e

−
∫ ti
0 (λS(t|H)+λP)dt−

∫ T
th(h(i))

(λS(t|H)+λP)dt
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MLE of the Mixture

Let L(•)[ti ,th(h(i))] be the likelihood computed in the interval [ti , th(h(i))] defined as

L(•)(ti ,th(h(i))] =

h(h(i))∏
j=i

λS(tj|H)zjλ
1−zj
P e−

∫ th(h(i))
ti

(λS(t|H)+λP )dt

and a constant α the likelihood computed outside of the same interval [ti , th(h(i))] as

α = L(•)(0,T ]/[ti,th(h(i))] =

i−1∏
j=1

λS(tj|H)zjλ
1−zj
P

n∏
j=h(h(i))

λS(tj|H)zjλ
1−zj
P e

−
∫ ti
0 (λS(t|H)+λP)dt−

∫ T
th(h(i))

(λS(t|H)+λP)dt
,

.
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MLE of the Mixture

Call L(λP , µ,Z−i , zi = z) by L(•, zi = 1) and λS(t|H|zi = z) + λP by λ(t|z). Then we have

L(•, zi = z)
L(•, zi = 0) + L(•, zi = 1)

=

[
L(•)(ti ,th(h(i))]

]
zi=z

α[
L(•)(ti ,th(h(i))]

]
zi=0

α+

[
L(•)(ti ,th(h(i))]

]
zi=1

α

=

[
L(•)(ti ,th(h(i))]

]
zi=z[

L(•)(ti ,th(h(i))]

]
zi=0

+

[
L(•)(ti ,th(h(i))]

]
zi=1
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EM Algorithm
• Finally we have all the tools for the EM-Algorithm.

EM Algoritm - PP + SFP

Initialise Z (0), λP and µ (e .g, randomly). Set a N > 0.
UNTIL λP and µ converge DO
E-STEP

• Update ∀j update Z (j) from previous Zs.

• FOR j ∈ {1,2, · · ·N} DO

– ∀i sample Z (j)
i ∼Bernoulli

(
L(λP ,µ,Z

(j)
−i ,zi=1)

L(λP ,µ,Z
(j)
−i ,zi=0)+L(λP ,µ,Z(j)

−i ,zi=1)

)
.

M-STEP

• Estimate the parameters λP and µ as

λP =

∑N
j

∑n
j (1−z(j)

i )

T

N
and µ =

∑N
j Median(∆T |Z (j))
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