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Matrix Factorization
• Matrix factorization is one of the main PML algorithms.

• The targets can be stored in a target matrix R of dimensions m × n with elements
from R.

• For recommender systems, an example of a target matrix (rating matrix) with m = 4
users and n = 6 items is given by:

R =


1 4 3 2 2 1
3 2 3 4 2 1
1 5 5 5 3 5
2 1 2 3 3 3

 .

This means, for example, that user u3 rated item i1 with 1 star, item i2, i3, i4, and i6
with 5 stars, and item i5 with 3 stars.

• Note that in real-life applications, we never fully observe all the entries.

1 Matrix Factorization
Personalized Machine Learning



Idea of Matrix Factorization

• By matrix factorization, we usually mean expressing a given matrix R
as a product of matrices. For example:

R = UV⊤

• Matrix factorization methods are a cornerstone of many algorithms
and are used to achieve more numerically stable computations.
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Intuition of Matrix Factorization

• The very basic idea of the lower dimensional approximation of an input matrix R of
dimension m × n is based on this first-linear-algebra-lesson fact:

Multiplying matrices U ∈ Rm×d and V ∈ Rd×n will result a low-rank matrix of dimension
m × n. The multiplication is true for any positive integer d and R will have low-rank for any
d < min(m,n).

• Optimisation: Given a rating matrix R, find lower dimensional matrices U and V so
that the known elements of R are well approximated by the matrix UV⊤.
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Rank of a Matrix

• The rank of a matrix is the number of linearly independent columns it has.

• Alternatively, we can define the rank as the number of non-zero singular values of a
matrix.

• Let rank(A) denote the rank of a matrix A ∈ Rm×n . Properties and definitions:

– rank(A) = rank(A⊤).
– WLOG, if m ≥ n, matrix A is considered full rank when rank(A) = n. In

this case, n is also the maximum possible rank.
– For matrices where m = n, an inverse A−1 exists only if A is full rank.
– A matrix is said to be of low rank (or rank deficient) if it does not have

full rank.
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Rank of a Matrix
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SVD
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SVD
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SVD
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Prediction
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Rank Approximation
Facts we have so far in our example:

• Our rating matrix R has full rank.

Does there exist a rank-2 matrix that can approximate R well?

• Note that the genres ”Action” and ”Drama” explain the phenomenon better than
”Noise”!

Eckart–Young–Mirsky Theorem

Let A ∈ Rm×n be a matrix with rank r, and let k be a positive integer such that 1 ≤ k ≤ r.
The best rank-k approximation to A in terms of the Frobenius norm is given by the
Singular Value Decomposition (SVD):

Ak =

k∑
i=1

diuiv⊤
i

where d1 ≥ d2 ≥ . . . ≥ dk > 0 are the singular values of A, and ui and vi are the
corresponding left and right singular vectors.
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SVD Approximation </>
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SVD Approximation
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SVD Approximation
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Recommender as a Matrix
• So far, we have examined a fully-known problem that doesn’t apply to

recommenders.

• For Recommender Systems (RSs), ratings can be stored in a rating matrix R of
dimension m × n with elements from R ∪ {?}.

• An example of a rating matrix for m = 4 users and n = 6 items could look like this:

R =


1 ? ? 2 ? 1
? 2 3 ? 2 1
1 5 5 ? ? 5
? ? 2 ? ? 3

 .

This means, for example, that user u1 rated items i1 and i6 with 1 star, item i4 with 2
stars, and had no interactions with items i2, i3, and i5.

• Our goal is to predict the unknown ratings ru,i =? using the knowledge of the known
ratings ru,i ̸=?.
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Matrix Factorization for Recommenders

• Let us denote:

– The i-th row of U as ui ; the number of rows of U equals
the number of users |U|.

– The j-th column of V as vj; the number of columns of V
equals the number of items |I|.

– Ω the subset of U × I of user-item pairs (i, j) such that
ri,j is known, i.e., ri,j ̸=?.

• The approximation of ri,j is given by the number uT
i vj, i.e., by the

dot product of the two d-dimensional vectors.

• d is the upper bound to the rank matrix.

Do we need to know all the entries of a matrix R to factorize it, for
example R = UV⊤?
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Optmization Problem

• The error of approximation is usually measured by the squared
residual:

(ri,j − uT
i vj)

2.

• Hence, the matrices U and V are obtained by solving the
optimization task:

argminU,V

∑
(i,j)∈Ω

(ri,j − uT
i vj)

2 + λ(
∑

x

||ux ||2 +
∑

y

||vy||2).
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Sparsity and Prediction

• The matrices U and V are optimized only by considerung the known
entries of R that are usually only a minority of entries.

• E.g. in the Netflix prize in 2006 there were n = 17K movies and
m = 500K users, meaning that the matrix R had 8500M entries. But
only 100M was given by Netflix!

• Still, the result of the matrix multiplication UV⊤ is a matrix having the
same dimensions as R with all entries known!

• The unknown rating ri,j =? is estimated as r̂i,j = uT
i vj..
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Example

• Consider our toy example matrix from above:

R =


1 ? ? 2 ? 1
? 2 3 ? 2 1
1 5 5 ? ? 5
? ? 2 ? ? 3

 .

• Assume that we chose the hyperparameter d = 2, i.e., we look for approximation
matrices U and V with dimensions 4 × 2 and 2 × 6, respectively.

• Let us pretend that the matrices resulting from the optimization are

U =


0.3 0.7
0.3 0.5
0.2 0.4
0.2 0.1

 and V⊤ =

(
1 10 11 10 4 20
1 −1 −2 −1 1 −4

)
.
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Example

• The resulting approximation is

UV⊤ =


0.3 0.7
0.3 0.5
0.2 0.4
0.2 0.1

(
1 10 11 10 4 20
1 −1 −2 −1 1 −4

)
=

=


1 2.3 1.9 2.3 1.9 3.2

0.8 2.5 2.3 2.5 1.7 4
0.6 1.6 1.4 1.6 1.2 2.4
0.3 1.9 2 1.9 0.9 3.6

 ,

where the red numbers are the desired predictions!

• E.g. the 3rd user predicted rating of the 4th item is r̂3,4 = 1.6.
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Supervised Learning Task

• The learning parameters: U ∈ Rm×d and V ∈ Rn×d

• The hyperparameters:
– the regularization constant λ > 0,
– the matrix dimension d, which is a positive integer (significantly smaller

than min{m,n}).

• These hyperparameters can be tuned in the usual way via
crossvalidation

• Therefore we would like to learn U and V , given d and λ by

argminU,V

∑
(i,j)∈Ω

(ri,j − uT
i vj)

2 + λ(
∑

x

||ux ||2 +
∑

y

||vy||2).
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Alternating Least Squares (ALS)

• The idea of ALS is to fix alternately the matrix U and V . The non-fixed
matrix is then considered learning variable and a subject to minimiza-
tion.

• With one of the matrices fixed, the optimization problem becomes
convex and very similar to the linear regression problem.

• Let’s try ti understand how the mechanism works
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Alternating Least Squares (ALS)
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Alternating Least Squares (ALS)

• Then we have the following optimization problem

minui ||RΩi − VΩi ui ||2 + λ||ui ||2

• Convex problem with closed-form

ûi = (V⊤
Ωi VΩi + λI)−1V⊤

Ωi RΩi

Alternating least squares (ALS)
Randomly initialize U and V

• WHILE does not converge

– ∀i ∈ U , minui ||RΩi − VΩi ui ||2 + λ||ui ||2
– ∀j ∈ I, minvj ||RΩj − UΩj vj||2 + λ||vj||223 Matrix Factorization

Personalized Machine Learning



MF for Implicit Feedback

• In real-world applications, we often observe more implicit feedback
than explicit feedback.

• In fact, explicit feedback is sometimes considered implicit.
• Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean
that the user likes A more than twice as much as B?

• The method we learned above is more appropriate for explicit
feedback. Why?
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Modelling Implicit Feedback

• Let’s understand a more appropriate method

• Assume the binary interaction matrix P:

P =


1 0 0 1 0 1
0 1 1 0 1 1
1 1 1 0 0 1
0 0 1 0 0 1

 .

• That is, if user-i interact with item-j, than Pij = 1, otherwise Pij = 0.

• Now let C be a matrix of confidence regarding the interaction:

C =


0.85 0 0 0.34 0 0.98

0 0.37 0.10 0 0.63 0.01
0.45 0.42 0.43 0 0 0.23

0 0 0.26 0 0 0.88

 .
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Collaborative Filtering for Implicit Feedback

• Then we propose the following optimisation problem:

minU ,V

∑
i,j

Cij(Pij − u⊤
i vj)

2 + λ||ui ||2 + λ||vj||2

• Two main differences from previous MF method:

– We need to account for the varying confidence levels
– Optimization should account for all possible i, j pairs, rather than only

those corresponding to observed data.
• We can use gradient descent to solve it.

• And ALS? By fixing V , can we find ui?
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Closed form

• Assume V being fix and let’s find ui .

• Then we need to minimize the following loss

Li = minui

∑
j

Cij(Pij − u⊤
i vj)

2 + λ||ui ||2

That is the same of:

Li = minui

∑
j

(
√

Cij(Pij − u⊤
i vj))

2 + λ||ui ||2

Exercise: Find the closed form.
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Alternating Least Squares (ALS)
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Closed form

• Therefore is the same of solving:

Li = ||
√

CiPi −
√

CiVui ||2 + λ||ui ||2

• Taking the derivative

∇ui = −2(
√

CiV )⊤(
√

CiPi −
√

CiVui) + 2λui

• Remind if D is diagonal D =
√

D ×
√

D is trivial and D = D⊤

• Therefore, with just some algebraic derivations

ui = (V⊤CiV + λI)−1V⊤CiPi
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