

Personalized Machine Learning Matrix Factorization

Rodrigo Alves October 9, 2025

Matrix Factorization

- Matrix factorization is one of the main PML algorithms.
- The targets can be stored in a **target matrix** R of dimensions $m \times n$ with elements from \mathbb{R} .
- For recommender systems, an example of a target matrix (rating matrix) with m=4 users and n=6 items is given by:

$$R = \begin{pmatrix} 1 & 4 & 3 & 2 & 2 & 1 \\ 3 & 2 & 3 & 4 & 2 & 1 \\ 1 & 5 & 5 & 5 & 3 & 5 \\ 2 & 1 & 2 & 3 & 3 & 3 \end{pmatrix}.$$

This means, for example, that user u_3 rated item i_1 with 1 star, item i_2 , i_3 , i_4 , and i_6 with 5 stars, and item i_5 with 3 stars.

Note that in real-life applications, we never fully observe all the entries.

Idea of Matrix Factorization

By matrix factorization, we usually mean expressing a given matrix R
as a product of matrices. For example:

$$R = UV^{\top}$$

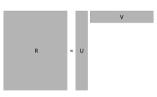
 Matrix factorization methods are a cornerstone of many algorithms and are used to achieve more numerically stable computations.

Intuition of Matrix Factorization

• The very basic idea of the lower dimensional approximation of an input matrix R of dimension $m \times n$ is based on this first-linear-algebra-lesson fact:

Multiplying matrices $U \in \mathbb{R}^{m \times d}$ and $V \in \mathbb{R}^{d \times n}$ will result a **low-rank** matrix of dimension $m \times n$. The multiplication is true for any positive integer d and R will have low-rank for any d < min(m, n).

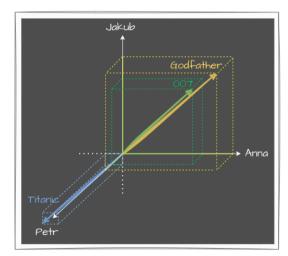
• Optimisation: Given a rating matrix R, find lower dimensional matrices U and V so that the known elements of R are well approximated by the matrix $\mathbf{U}\mathbf{V}^{\top}$.



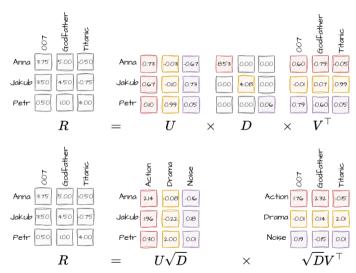
Rank of a Matrix

- The rank of a matrix is the number of linearly independent columns it has.
- Alternatively, we can define the rank as the number of non-zero singular values of a matrix.
- Let rank(A) denote the rank of a matrix $A \in \mathbb{R}^{m \times n}$. Properties and definitions:
 - $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}).$
 - WLOG, if $m \ge n$, matrix A is considered full rank when rank(A) = n. In this case, n is also the maximum possible rank.
 - For matrices where m = n, an inverse A^{-1} exists only if A is full rank.
 - A matrix is said to be of low rank (or rank deficient) if it does not have full rank.

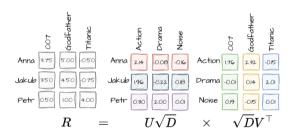
Rank of a Matrix



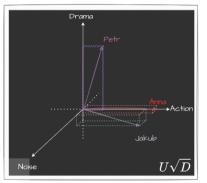
SVD

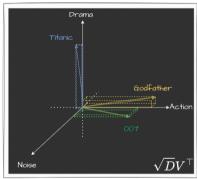


SVD

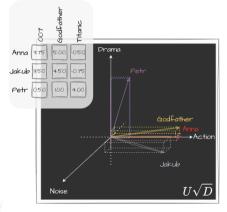


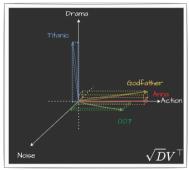
SVD





Prediction





$$\langle a \;,\; b
angle = ||a|| ||b|| \cos(heta)$$

Rank Approximation

Facts we have so far in our example:

• Our rating matrix *R* has full rank.

Does there exist a rank-2 matrix that can approximate R well?

 Note that the genres "Action" and "Drama" explain the phenomenon better than "Noise"!

Eckart-Young-Mirsky Theorem

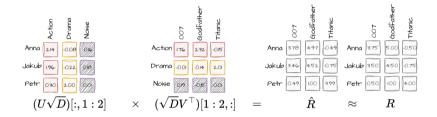
Let $A \in \mathbb{R}^{m \times n}$ be a matrix with rank r, and let k be a positive integer such that $1 \le k \le r$. The best rank-k approximation to A in terms of the Frobenius norm is given by the Singular Value Decomposition (SVD):

$$A_k = \sum_{i}^k d_i u_i v_i^{ op}$$

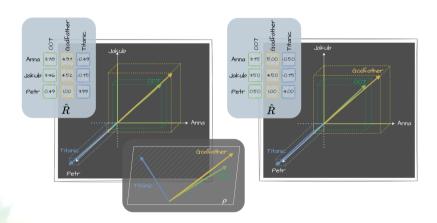
where $d_1 \ge d_2 \ge ... \ge d_k > 0$ are the singular values of A, and u_i and v_i are the corresponding left and right singular vectors.

Matrix Factorization

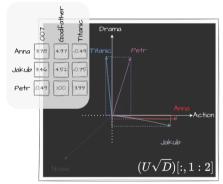
SVD Approximation </>

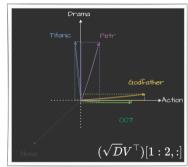


SVD Approximation



SVD Approximation





$$\langle a \;,\; b
angle = ||a|| ||b|| \cos(heta)$$

Recommender as a Matrix

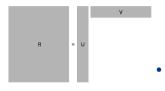
- So far, we have examined a fully-known problem that doesn't apply to recommenders.
- For Recommender Systems (RSs), ratings can be stored in a rating matrix R of dimension $m \times n$ with elements from $\mathbb{R} \cup \{?\}$.
- An example of a rating matrix for m=4 users and n=6 items could look like this:

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}.$$

This means, for example, that user u_1 rated items i_1 and i_6 with 1 star, item i_4 with 2 stars, and had no interactions with items i_2 , i_3 , and i_5 .

- Our goal is to predict the unknown ratings $r_{u,i} = ?$ using the knowledge of the known ratings $r_{u,i} \neq ?$.
- 14 Matrix Factorization Personalized Machine Learning

Matrix Factorization for Recommenders



• Let us denote:

- The *i*-th row of U as u_i ; the number of rows of U equals the number of users $|\mathcal{U}|$.
- The *j*-th column of V as v_j ; the number of columns of V equals the number of items $|\mathcal{I}|$.
- Ω the subset of $\mathcal{U} \times \mathcal{I}$ of user-item pairs (i,j) such that $r_{i,j}$ is known, i.e., $r_{i,j} \neq ?$.
- The approximation of r_{i,j} is given by the number u_i^Tv_j, i.e., by the
 dot product of the two d-dimensional vectors.
- d is the upper bound to the rank matrix.

Do we need to know all the entries of a matrix R to factorize it, for example $R = UV^{\top}$?

Optmization Problem

 The error of approximation is usually measured by the squared residual:

$$(r_{i,j}-u_i^Tv_j)^2.$$

 Hence, the matrices U and V are obtained by solving the optimization task:

$$\operatorname{argmin}_{\mathbf{U},\mathbf{V}} \sum_{(i,j) \in \Omega} (r_{i,j} - u_i^T v_j)^2 + \lambda (\sum_{x} ||u_x||^2 + \sum_{y} ||v_y||^2).$$

Sparsity and Prediction

- The matrices U and V are optimized only by considering the known entries of R that are usually only a minority of entries.
- E.g. in the Netflix prize in 2006 there were n=17K movies and m=500K users, meaning that the matrix R had 8500M entries. But only 100M was given by Netflix!
- Still, the result of the matrix multiplication UV^{\top} is a matrix having the same dimensions as R with all entries known!
- The unknown rating $r_{i,j} = ?$ is estimated as $\hat{r}_{i,j} = u_i^T v_j$..

Example

Consider our toy example matrix from above:

$$R = \begin{pmatrix} 1 & ? & ? & 2 & ? & 1 \\ ? & 2 & 3 & ? & 2 & 1 \\ 1 & 5 & 5 & ? & ? & 5 \\ ? & ? & 2 & ? & ? & 3 \end{pmatrix}.$$

- Assume that we chose the hyperparameter d=2, i.e., we look for approximation matrices U and V with dimensions 4×2 and 2×6 , respectively.
- Let us pretend that the matrices resulting from the optimization are

$$U = egin{pmatrix} 0.3 & 0.7 \\ 0.3 & 0.5 \\ 0.2 & 0.4 \\ 0.2 & 0.1 \end{pmatrix} \quad ext{and} \quad V^ op = egin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20 \\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix}.$$

Example

• The resulting approximation is

$$\mathbf{U}\mathbf{V}^{\top} = \begin{pmatrix} 0.3 & 0.7 \\ 0.3 & 0.5 \\ 0.2 & 0.4 \\ 0.2 & 0.1 \end{pmatrix} \begin{pmatrix} 1 & 10 & 11 & 10 & 4 & 20 \\ 1 & -1 & -2 & -1 & 1 & -4 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 2.3 & 1.9 & 2.3 & 1.9 & 3.2 \\ 0.8 & 2.5 & 2.3 & 2.5 & 1.7 & 4 \\ 0.6 & 1.6 & 1.4 & 1.6 & 1.2 & 2.4 \\ 0.3 & 1.9 & 2 & 1.9 & 0.9 & 3.6 \end{pmatrix},$$

where the red numbers are the desired predictions!

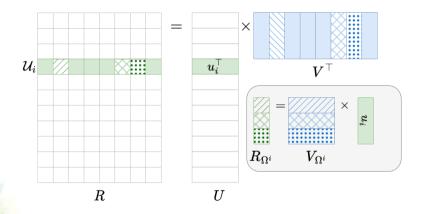
• E.g. the 3rd user predicted rating of the 4th item is $\hat{r}_{3,4} = 1.6$.

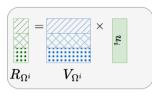
Supervised Learning Task

- The learning parameters: $U \in \mathbb{R}^{m \times d}$ and $V \in \mathbb{R}^{n \times d}$
- The hyperparameters:
 - the regularization constant $\lambda > 0$,
 - the matrix dimension d, which is a positive integer (significantly smaller than $\min\{m,n\}$).
- These hyperparameters can be tuned in the usual way via crossvalidation
- Therefore we would like to learn U and V, given d and λ by

$$\mathrm{argmin}_{\mathbf{U},\mathbf{V}} \sum_{(i,j) \in \Omega} (r_{i,j} - u_i^T v_j)^2 + \lambda (\sum_x ||u_x||^2 + \sum_y ||v_y||^2).$$

- The idea of ALS is to fix alternately the matrix U and V. The non-fixed matrix is then considered learning variable and a subject to minimization.
- With one of the matrices fixed, the optimization problem becomes convex and very similar to the linear regression problem.
- Let's try ti understand how the mechanism works





Then we have the following optimization problem

$$\mathsf{min}_{u_i} ||R_{\Omega^i} - V_{\Omega^i} u_i||^2 + \lambda ||u_i||^2$$

Convex problem with closed-form

$$\hat{u}_i = (V_{\Omega^i}^\top V_{\Omega^i} + \lambda I)^{-1} V_{\Omega^i}^\top R_{\Omega^i}$$

Alternating least squares (ALS)

Randomly initialize U and V

- WHILE does not converge
 - $\ orall i \in \mathcal{U}, \, \mathsf{min}_{u_i} || R_{\Omega^i} V_{\Omega^i} u_i ||^2 + \lambda ||u_i||^2$
 - $\ \forall j \in \mathcal{I}, \, \mathsf{min}_{v_j} || R_{\Omega^j} U_{\Omega^j} v_j ||^2 + \lambda ||v_j||^2$

MF for Implicit Feedback

- In real-world applications, we often observe more implicit feedback than explicit feedback.
- In fact, explicit feedback is sometimes considered implicit.
- Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean that the user likes A more than twice as much as B?

 The method we learned above is more appropriate for explicit feedback. Why?

Modelling Implicit Feedback

- Let's understand a more appropriate method
- Assume the binary interaction matrix P:

$$P = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

- That is, if user-i interact with item-j, than $P_{ii} = 1$, otherwise $P_{ii} = 0$.
- Now let C be a matrix of confidence regarding the interaction:

$$C = \begin{pmatrix} 0.85 & 0 & 0 & 0.34 & 0 & 0.98 \\ 0 & 0.37 & 0.10 & 0 & 0.63 & 0.01 \\ 0.45 & 0.42 & 0.43 & 0 & 0 & 0.23 \\ 0 & 0 & 0.26 & 0 & 0 & 0.88 \end{pmatrix}.$$

Collaborative Filtering for Implicit Feedback

Then we propose the following optimisation problem:

$$\mathsf{min}_{U,V} \sum_{i,j} C_{ij} (P_{ij} - u_i^ op v_j)^2 + \lambda ||u_i||^2 + \lambda ||v_j||^2$$

- Two main differences from previous MF method:
 - We need to account for the varying confidence levels
 - Optimization should account for all possible i,j pairs, rather than only those corresponding to observed data.
- We can use gradient descent to solve it.
- And ALS? By fixing V, can we find u_i?

Closed form

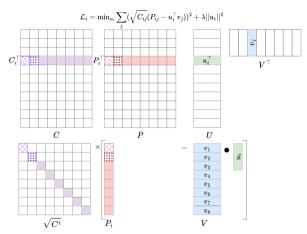
- Assume V being fix and let's find u_i .
- Then we need to minimize the following loss

$$\mathcal{L}_i = \mathsf{min}_{u_l} \sum_{j} C_{ij} (P_{ij} - u_l^ op v_j)^2 + \lambda ||u_l||^2$$

That is the same of:

$$\mathcal{L}_i = \mathsf{min}_{u_i} \sum_{j} (\sqrt{C_{ij}}(P_{ij} - u_i^ op v_j))^2 + \lambda ||u_i||^2$$

Exercise: Find the closed form.



Closed form

• Therefore is the same of solving:

$$\mathcal{L}_i = ||\sqrt{C^i}P_i - \sqrt{C^i}Vu_i||^2 + \lambda||u_i||^2$$

Taking the derivative

$$abla u_i = -2(\sqrt{C^i}V)^{ op}(\sqrt{C^i}P_i - \sqrt{C^i}Vu_i) + 2\lambda u_i$$

- Remind if D is diagonal $D = \sqrt{D} \times \sqrt{D}$ is trivial and $D = D^{\top}$
- Therefore, with just some algebraic derivations

$$u_i = (V^\top C^i V + \lambda I)^{-1} V^\top C^i P_i$$

Obrigado:) - Faculty of Information Technology