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Matrix Factorization

e Matrix factorization is one of the main PML algorithms.

e The targets can be stored in a target matrix R of dimensions m x n with elements
from R.

e Forrecommender systems, an example of a target matrix (rating matrix) with m = 4
users and n = 6 items is given by:

N = W =
— 01N
N O W
W U s N
W whN N
W Ol = =

This means, for example, that user us rated item i; with 1 star, item i, i3, is, and is
with 5 stars, and item is with 3 stars.

o Note that in real-life applications, we never fully observe all the entries.
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Idea of Matrix Factorization

¢ By matrix factorization, we usually mean expressing a given matrix R
as a product of matrices. For example:

R=UV'

o Matrix factorization methods are a cornerstone of many algorithms
and are used to achieve more numerically stable computations.
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Intuition of Matrix Factorization

e The very basic idea of the lower dimensional approximation of an input matrix R of
dimension m x n is based on this first-linear-algebra-lesson fact:

Multiplying matrices U € R™4 and V € R*™ will result a low-rank matrix of dimension
m x n. The multiplication is frue for any positive integer d and R will have low-rank for any
d < min(m, n).

o Optimisation: Given a rating matrix R, find lower dimensional matrices U and V so
that the known elements of R are well approximated by the matrix UV,

\
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Rank of a Matrix

e The rank of a matrix is the number of linearly independent columns it has.

o Alfernatively, we can define the rank as the number of non-zero singular values of a
matrix.

¢ Letrank(A) denote the rank of a matrix A € R™*". Properties and definitions:
- rank(A) = rank(AT).
- WLOG, if m > n, matrix A is considered full rank when rank(A) = n. In
this case, n is also the maximum possible rank.
- For matrices where m = n, an inverse A~! exists only if A is full rank.

— A matrix is said o be of low rank (or rank deficient) if it does not have
full rank.

4  Matrix Factorization
Personalized Machine Learning



5

Rank of a Matrix
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Prediction
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Rank Approximation

Facts we have so far in our example:
e Our rating matrix R has full rank.

Does there exist a rank-2 matrix that can approximate R well?

o Note that the genres “Action” and “Drama” explain the phenomenon better than
“Noise”!

Eckart-Young—-Mirsky Theorem

Let A € R™" be a matrix with rank r, and let k be a positive integer such that 1 < k <.
The best rank-k approximation to A in tferms of the Frobenius norm is given by the
Singular Value Decomposition (SVD):

k
Ay = Z diuv]

i=1
where d; > dy > ... > di > 0 are the singullor values of A, and w; and v; are the
corresponding left and right singular vectors.
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SVD Approximation

Droma
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Recommender as a Matrix

So far, we have examined a fully-known problem that doesn’t apply to
recommenders.

For Recommender Systems (RSs), ratings can be stored in a rating matrix R of
dimension m x n with elements from R U {7}.

An example of a rating matrix for m = 4 users and n = 6 items could look like this:

2

I R
2Ol N v
N O W
[ECEEECEN (SRR
W o1~

?
?
?

This means, for example, that user u; rated items i; and is with 1 star, item iy with 2
stars, and had no interactions with items i, i3, and is.

Our godl is to predict the unknown ratings r.,,; =? using the knowledge of the known
ratings ry,i #7.
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Matrix Factorization for Recommenders

e Let us denote:

- The i-th row of U as u;; the number of rows of U equals
the number of users |U/].

- The j-th column of V as v;; the number of columns of V
equals the number of items |Z|.

— Q the subset of U x Z of user-item pairs (i,j) such that
riJ iS knOWn, i.e., riJ #7

¢ The approximation of r;; is given by the number uf v, i.e., by the
dot product of the two d-dimensional vectors.

e dis the upper bound to the rank matrix.

Do we need to know all the entries of a matrix R to factorize it, for
example R=UV'?
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Optmization Problem

o The error of approximation is usually measured by the squared
residual:

(rij — w vy)*.

e Hence, the matrices U and V are obtained by solving the
optimization task:

argmingy Y (ry — uf 1) + A( ZHWHZJrZHUyH

(ig)e

16  Matrix Factorization
Personalized Machine Learning



Sparsity and Prediction

The matrices U and V are optimized only by considerung the known
entries of R that are usually only a minority of entries.

E.g. in the Neftflix prize in 2006 there were n = 17K movies and
m = 500K users, meaning that the matrix R had 8500M entries. But
only 100M was given by Neftflix!

Still, the result of the matrix multiplication UV is a matrix having the
same dimensions as R with all entries known!

The unknown rating ry; =? is estimated as 7;; = ul v;..
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Example

o Consider our foy example matrix from above:

D b D
2Ol N v
N O W v
0 0 9 N
[ECEEECEN (CIERN]
W Ol = =

o Assume that we chose the hyperparameter d = 2, i.e., we look for approximation
matrices U and V with dimensions 4 x 2 and 2 x 6, respectively.

e Let us pretend that the matrices resulting from the optimization are

03 07
_ |03 05 T (1 10 11 10 4 20
U=lo2 04| @9V *(1 -1 -2 -1 1 —4)'
02 0.1
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Example

e The resulting approximation is

03 07
oy _ |03 05 (1 10 11 10 4 20)_
02 04|\1 -1 -2 -1 1 -4
02 0.1
1 23 19
|08 25 23
“|o6 16 14
03 19 2

where the red numbers are the desired predictions!
e E.g. the 3rd user predicted rating of the 4th itemis i34 = 1.6.
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Supervised Learning Task

The learning parameters: U € R™*4 and V € R™4
The hyperparameters:

— the regularization constant A > 0,
— the matrix dimension d, which is a positive integer (significantly smaller
than min{m, n}).

These hyperparameters can be tuned in the usual way via
crossvalidation

Therefore we would like to learn U and V, given d and \ by
argmingy > (ry— uuy)® + A Z\quHz-i-ZHvyH

(i))eq
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Alternating Least Squares (ALS)

e The idea of ALS is to fix alternately the matrix U and V. The non-fixed

matrix is then considered learning variable and a subject to minimiza-
fion.

e With one of the matrices fixed, the optimization problem becomes
convex and very similar to the linear regression problem.

e Let’s fry 1i understand how the mechanism works
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Alternating Least Squares (ALS)

R
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Alternating Least Squares (ALS)

~_ * Then we have the following optimization problem

(7 = X )
7 M| Ro — Voeud | 4+ Al

n

¢¢¢¢¢¢¢¢¢¢¢
...........
¢¢¢¢¢¢¢¢¢¢¢

an Vo & Convex problem with closed-form

i = (Ve Vo + M)~ ViR

Alternating least squares (ALS)

Randomly initialize U and V/
e WHILE does not converge

- Vie U, ming||Ro — Vou||? + Aljw||?

— Vi i . 0112 112
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MF for Implicit Feedback

¢ In real-world applications, we often observe more implicit feedback
than explicit feedback.

e |n fact, explicit feedback is sometimes considered implicit.
e Suppose user i watched 35% of movie A and 85% of movie B.

Does this mean that the user likes A more than B? If so, does it mean
that the user likes A more than twice as much as B?

e The method we learned above is more appropriate for explicit
feedback. Why?
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Modelling Impilicit Feedback

Let’s understand a more appropriate method

Assume the binary interaction matrix P:

™)
O OO+
[eNeh Ne]
bt

0
1
1
0

OO+

That is, if user-i interact with item-j, than P; = 1, otherwise P; = 0.

Now let C be a matrix of confidence regarding the interaction:

0.85 0 0 034 0 098
0] 0.37 0.10 0 0.63 0.01
0.45 042 043 0] 0 023
0] 0 026 0] 0 0.88

C=
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Collaborative Filtering for Implicit Feedback

Then we propose the following optimisation problem:

mmUVZCy ul UJ +>‘Hui|‘2+)‘||vj||2

Two main differences from previous MF method:

— We need to account for the varying confidence levels
— Optimization should account for all possible i, j pairs, rather than only
those corresponding to observed data.

We can use gradient descent to solve it.

And ALS? By fixing V, can we find u;?
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Closed form

e Assume V being fix and let’s find w;.
e Then we need to minimize the following loss

Li=miny Y Cy(Py — w vy)” + Al|w||?
J
That is the same of:
Li=miny > (v/Cy(Py — ' 1))* + A || |
J

Exercise: Find the closed form.
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Alternating Least Squares (ALS)

Li = ming, Y (1/Cij(Py — u]v,))* + AlJuwil|*
J

o

o P u] VT
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Closed form

Therefore is the same of solving:

Li = [[VCP = VTV > + || [*

Taking the derivative

Vi = —2(VCV) T (VTP — VCViy) + 2w

Remind if D is diagonal D = +/D x /D s frivialand D = D"
Therefore, with just some algebraic derivations
w= (V' Cv+ )V CP
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