

Personalized Machine Learning Autoencoders for CF

Rodrigo Alves

October 23, 2025

Dimensionality Reduction

- Dimensionality reduction is a technique used to reduce the number of features in a dataset while retaining the most relevant information.
- Different types of data inputs, such as music, photos, or text, have unique characteristics that require specific machine learning approaches.
- Traditional methods like PCA may fail, particularly when dealing with data featuring non-linear relationships.
- Autoencoders, which are unsupervised neural networks, are employed for compressed data representation and are effective for dimensionality reduction and handling complex inputs.

Autoencoder

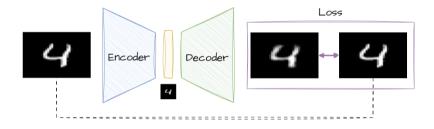
- An autoencoder is a type of feed-forward neural network.
- It is designed to reconstruct its input x_i as output x_i .
- Traditional methods like PCA may struggle, especially when dealing with non-linear relationships.
- To prevent trivial solutions, the network includes a bottleneck layer (or code layer) with significantly fewer dimensions than the input.

Autoencoder

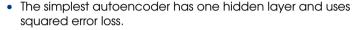
- An autoencoder is composed of both an encoder and a decoder.
- The encoder and the decoder typically have a similar structure.
- More formally, let $\mathcal{E}(x)$ be an encoder and $\mathcal{D}(x)$ be a decoder. Our optimization problem can be described as follows:

$$\mathsf{min}_{\mathcal{E},\mathcal{D}} \sum_i ||x_i - \mathcal{D}(\mathcal{E}(x_i))||$$

What is an autoencoder?



Autoencoders

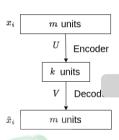


The optimization function can be denoted as:

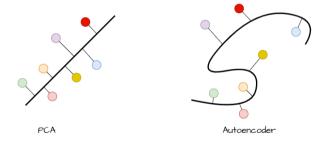
$$\min_{U,V} \sum_{i} \left| \left| x_i - x_i U V \right| \right|^2$$

What happens if $k \ge m$?

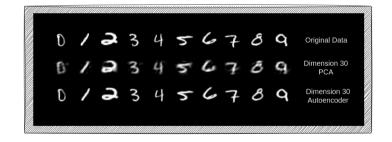
- If k < m, then $UV \neq I$, where I represents the identity function.
- Therefore, if $k \ge m$, any simple solution where UV = I is a trivial solution.
- More importantly, in the trivial case, there is no reduction of dimension.



PCA × Autoencoder



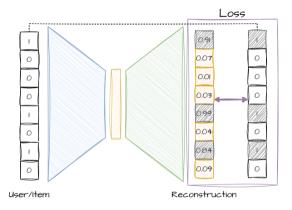
PCA × Autoencoder



Autoencoders for Collaborative Filtering

- Encode user-item interactions into a lower-dimensional space to discover meaningful patterns.
- Applicable to both explicit and implicit feedback.
- Effectively handle sparse user-item interaction data.
- Balancing model complexity and scalability, especially in large-scale recommendation systems.
- Potential for leveraging transfer learning to enhance content-based methods.

Autoencoder for implicit feedback



EASE

- EASE is the shallowest auto-encoder possible.
- It aims to solve the following problem:

$$\min_{B} ||X - XB||^2 + \lambda ||B||^2$$
 s.t. $\operatorname{diag}(B) = 0$

- Why do we need the constraint diag(B) = 0?
- EASE has a closed-form solution, which we will explore shortly.
- Is this a good method?

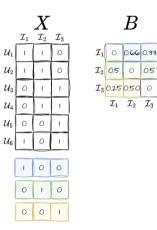
EASE Results

Table 1: Ranking accuracy (with standard errors of about 0.002, 0.001, and 0.001 on the ML-20M, Netflix, and MSD data, respectively), following the experimental set-up in [13].

(a) ML-20M	Recall@20	Recall@50	NDCG@100
popularity	0.162	0.235	0.191
EASE ^R	0.391	0.521	0.420
$EASE^R \ge 0$	0.373	0.499	0.402
results reproduced from [13]:			
SLIM	0.370	0.495	0.401
WMF	0.360	0.498	0.386
CDAE	0.391	0.523	0.418
Mult-vae ^{pr}	0.395	0.537	0.426
MULT-DAE	0.387	0.524	0.419
(b) Netflix			
popularity	0.116	0.175	0.159
EASER	0.362	0.445	0.393
$EASE^R \ge 0$	0.345	0.424	0.373
results reproduced from [13]:			
SLIM	0.347	0.428	0.379
WMF	0.316	0.404	0.351
CDAE	0.343	0.428	0.376
Mult-vae ^{pr}	0.351	0.444	0.386
MULT-DAE	0.344	0.438	0.380
(c) MSD			
popularity	0.043	0.068	0.058
EASER	0.333	0.428	0.389
$EASE^R \ge 0$	0.324	0.418	0.379
results reprod	uced from [13	3]:	
SLIM	did not finish in [13]		
WMF	0.211	0.312	0.257
CDAE	0.188	0.283	0.237
Mult-vae PR	0.266	0.364	0.316
MULT-DAE	0.266	0.363	0.313

EASE: dimensions

EASE: intuition



$$\min_B \lVert X - XB \rVert_F^2 + \lambda \lVert B \rVert_F^2$$
 s.t. $\operatorname{diag}(B) = 0$

Here $X \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times n}$.

Lagrangian:

$$\mathcal{L}(B) = \|X - XB\|_F^2 + \lambda \|B\|_F^2 + 2\gamma^{\top} \mathsf{diag}(B)$$

Lagrangian:

$$\mathcal{L}(B) = \|X - XB\|_F^2 + \lambda \|B\|_F^2 + 2\gamma^{\top} \mathsf{diag}(B)$$

Derivative of the Lagrangian:

$$\begin{split} \mathcal{L}'(B) &= 2(X)^\top (XB - X) + 2\lambda B + 2 \mathrm{diagMat}(\gamma) \\ &= 2X^\top (XB - X) + 2\lambda B + 2 \mathrm{diagMat}(\gamma) \\ &= 2X^\top XB - 2X^\top X + 2\lambda B + 2 \mathrm{diagMat}(\gamma) \end{split}$$

Derivative of the Lagrangian:

$$\begin{array}{rcl} 0 &=& 2X^\top XB - 2X^\top X + 2\lambda B + 2\mathrm{diagMat}(\gamma) \\ 0 &=& X^\top XB - X^\top X + \lambda B + \mathrm{diagMat}(\gamma) \\ X^\top XB + \lambda B &=& X^\top X - \mathrm{diagMat}(\gamma) \\ (X^\top X + \lambda I)B &=& X^\top X - \mathrm{diagMat}(\gamma) \\ \hat{B} &=& (X^\top X + \lambda I)^{-1} \big(X^\top X - \mathrm{diagMat}(\gamma)\big) \end{array}$$

Assume:

$$P = (X^{\top}X + \lambda I)^{-1}$$

We have:

$$\begin{split} \hat{B} &= (X^\top X + \lambda I)^{-1} \big(X^\top X - \mathrm{diagMat}(\gamma) \big) \\ &= (X^\top X + \lambda I)^{-1} \big(X^\top X + \lambda I - \lambda I - \mathrm{diagMat}(\gamma) \big) \\ &= (X^\top X + \lambda I)^{-1} \big((X^\top X + \lambda I) - \lambda I - \mathrm{diagMat}(\gamma) \big) \\ &= P \big(P^{-1} - \lambda I - \mathrm{diagMat}(\gamma) \big) \\ &= I - P \big(\lambda I + \mathrm{diagMat}(\gamma) \big) \end{split}$$

FASF: closed-form </>

We know that:

$$diag(\hat{B}) = 0$$

Therefore:

$$\label{eq:diag} \begin{split} \mathrm{diag}\Big(I - P\big(\lambda I + \mathrm{diagMat}(\gamma)\big)\Big) &= \vec{0} \\ \mathrm{diag}(I) - \mathrm{diag}\big(P \times \mathrm{diagMat}(\lambda \vec{1} + \gamma)\big) &= \vec{0} \end{split}$$

Finally:

$$\vec{1} - \operatorname{diag}(P) \bigodot (\lambda \vec{1} + \gamma) = \vec{0}$$

$$\vec{1} - \operatorname{diag}(P) \bigodot \lambda \vec{1} - \operatorname{diag}(P) \bigodot \gamma = \vec{0}$$

$$\operatorname{diag}(P) \bigodot \gamma = \vec{1} - \lambda \operatorname{diag}(P)$$

Matrix \hat{B}

$$X_{[1:4,*]}$$
 $X_{[1:4,*]}$
 $X_{[1:4,*]}$

EASE: Scalability Limitation

We learned that EASE computes the item-item weight matrix \hat{B} in closed form:

$$\hat{B} = P^{-1}(\text{diag}(P^{-1}))^{-1},$$

where $P = X^{\top}X + \lambda I$.

However:

- $P \in \mathbb{R}^{n \times n}$, where n = number of items.
- We must store and invert this dense $n \times n$ matrix.
- Memory and time complexity $\mathcal{O}(n^2)$ and $\mathcal{O}(n^3)$ respectively.
- \Rightarrow Not scalable when n is large (e.g., tens or hundreds of thousands of items).
- Oftentimes recommenders works with millions of users and items

ELSA: Scalable Linear Shallow Autoencoder

Idea: Replace the full item-item matrix \hat{B} with a low-rank factorization.

$$\hat{B} = AA^{\top}, \quad A \in \mathbb{R}^{n \times r}, \quad r \ll n$$

Optimization objective:

$$\min_{A} ||X - X(AA^{\top} - I)||_F^2$$

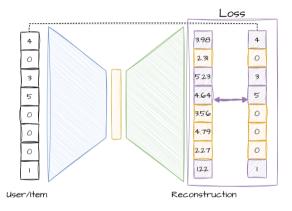
subject to:

$$\operatorname{diag}(AA^{ op}) = 0, \quad \|A_{i,\cdot}\|_2 = 1$$

- Reduces parameters from n^2 to $n \times r$
- Trains via gradient descent (no matrix inversion)
- Keeps the same shallow linear structure as EASE

Result: Similar or better performance, with linear scalability.

What about explicit feedback? </>



Obrigado:) - Faculty of Information Technology