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Matrix Factorization (Sampled)
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CF as a Supervised Learning Problem

e Matrix Factorization can be seen as a supervised learning problem.

Supervised Learning Data

— Inputs: raw data instances x;, xs, . .., xp, where x; € RP,

— Labels: annotations of the inputs yi, ys, . . ., yn. Where y; € R,

What are the xs and ys in CF-based matrix factorization?
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CF as a Supervised Learning Problem
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CF as a Supervised Learning Problem

e Thus, x; = {i,j} e R>and y, € R.
- For explicit feedback, for example, y; € {1,2, 3,4, 5}.
- For implicit feedback, for example, y; € {0, 1}.
e Therefore, we can see an MF optimization problem (without regularization)
> (- )
1jeEQ
as
> (g — g(i))?
1jEQ
e So far, we see g(i,j) as a linear function.

e If we replace g(i,j) with a deep architecture, we would have a deep CF problem.
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Generalized Matrix Factorization(GMF)

o Many deep learning methods can generalize their shallow
equivalents.

e For example, in our previous toy example, the shallow method is
equivalent to linear regression with the predictor y = wrx.

e An equivalent version of this shallow model in the context of a deep
model could be represented as follows:

y = ReLU(x X w11 + 511) X wa1 + ReLU(x X wig + 612) X W9
= RelU(x x 1+ 0) x wpr+RelU(x x =1+ 0) x —wp
= WRX

e Similarly, we could have a deep matrix factorization method that

can generadlize shallow matrix factorization methods.
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Multilayer Perceptron (MLP)

o Another natural view of matrix factorization is as a deep model using
a multilayer perceptron.

e This model is known for its fully connected dense layers.

e Although the model can also represent simple models, such as
shallow matrix factorization, it is more powerful and can represent a
wider range of functions.

e Powerful models are more susceptible to overfitting.

o Architectural design and regularization, as is typical in deep models,
are best evaluated through validation procedures.
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Neural Collaborative Filtering (NCF)

¢ One of the early approaches to using deep methods in
collaborative filtering.
e [t consists of two modules:

— GMF (Generalized Matrix Factorization).
— MLP (Multilayer Perceptron).

o Traditionally used for implicit feedback.
— Utilizes sampling to balance the negative feedback.
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Graph Neural Networks (GNNs) for CF

e Tradifional collaborative filtering methods often ignore the rich
structural information present in user-item interaction data.

e GNNs are a powerful approach to leverage this structure for
recommendation systems.

e Key components:

- Graph Representation: Model user-item interactions as a bipartite
graph where users and items are nodes, and interactions are edges.
- Message Passing: Propagate information along graph edges to
capture collaborative patterns.
e Advantages of GNNs:
— Ability to handle sparsity.

— Capture complex relationships beyond traditional matrix factorization.

— | oved recommendation accuracy.
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GNNs
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GNNs

Users Items Graph neural network

user average rating = 3
item average rating = 5 -

item total ratings received = 2 . (like)
similar users’ average rating= 35
#0ol (@40 230 =5
#of (@-;0-,0-:@

Learn graph patterns Predict ratings

Users

user average rating = 4
item average rating = 1
item total ratings received = 1
similar users’ average rating= 1 - . (dislike)
#0l (@-,0-,0-1@)=1
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Deep Autoencoders for Collaborative Filtering

o We've explored how autoencoders provide a versatile approach for
collaborative filtering tasks.

e Deep autoencoders are neural networks explicitly designed to
acquire efficient representations of user-item interactions.

e Autoencoders are frequently employed to extract embeddings from
input and output data.

e They can serve as a powerful technique to complement deep
collaborative approaches.
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Deep Autoencoders
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Mixing Implicit and Explicit Feedback

e Some methods incorporate a mixture of implicit and explicit
feedback concepts.
e Consider the following:
— Explicit feedback: Ratings from 1 to 5 stars;
- Implicit feedback: Whether the user interacts (1) or not (0) with the
same item.
e We will introduce the 1-by-1 convolutional autoencoder to combine
implicit and explicit feedback.
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Mixing Implicit and Explicit Feedback
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Mixing Implicit and Explicit Feedback
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Mixing Implicit and Explicit Feedback
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Mixing Implicit and Explicit Feedback
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Sequential-based Recommendation

In fraditional recommendation systems, user-item interactions are treated
independently.

e However, many real-world scenarios involve sequences of user actions or events.

e Sequential-based recommendation models take info account the order and
timing of user inferactions.

o This is especially important for applications like:

— Recommending products in an e-commerce session.

— Suggesting the next movie or video in a user’s watch history.

— Personalizing content in news and article recommendation systems.
e Sequential recommendation models leverage the sequential patterns, temporal

dynamics, and user behavior to provide more accurate and context-aware
recommendations.
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Sequential-based Recommendation
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Sequential-based Recommendation
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Mixing Implicit and Explicit Feedback
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