

#### Personalized Machine Learning Invariant Models

Rodrigo Alves November 13, 2025

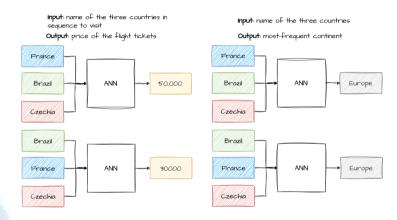
## Bias in Recommender Systems

- Recommender systems are susceptible to biases, impacting fairness and accuracy.
- Types of bias: user, item, demographic, etc.
- Challenges: unfair treatment, limited diversity, stereotype reinforcement.

**Position bias:** it is a tendency to prioritize items in prominent positions, reinforcing popular items.

- Note that, however, often the recommender can be programmed to show some items in the first positions.
- Also, note that the models actually aim to 'bias' the recommendation by putting
  the more relevant items in the first positions, and because of that, some PML
  algorithms focus on that.
- However, we can have some ML problems that are invariant by nature.

#### **Invariant Models**



#### **Invariant Models**

**Domain invariance:** For instance, Graph Neural Networks (GNNs) can be employed in Collaborative Filtering, where user-item interactions are modeled as a graph. GNNs are utilized to capture interactions, irrespective of their domain.

**Time invariance:** It is common to assume that the model is not influenced by time. For example, the order in which users rate the items is not considered in the evaluation of their taste.

**Permutation-equivariant models:** These models demonstrate equivariance concerning input permutations.

#### **Odd-One-Out Problem**

- The odd-one-out problem is a widely explored concept in Recommender Systems.
- Traditionally, it involves predicting user choices, such as identifying which item a
  user is most likely to click from a given list.
- Our lecture, however, focus to a more nuanced application within neuroscience, particularly in the context of triplets.
- Triplets Problem: Consider presenting three images to an individual:  $\mathcal{I}_a, \mathcal{I}_b, \mathcal{I}_c$ .
  - The task is to predict which pair of images exhibits the closest conceptual similarity based on given options.
  - Among goals we aim to develop models capable of predicting similarity within new triplets.
  - Simultaneously, we aim to construct embeddings that capture how humans perceive and understand conceptual relationships.

# **Triplets Problem**





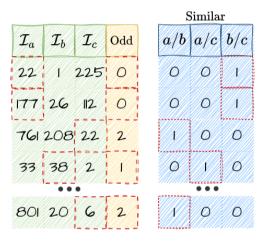




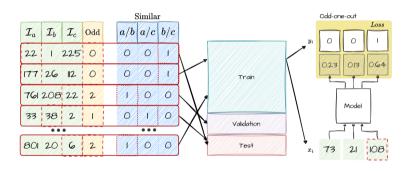




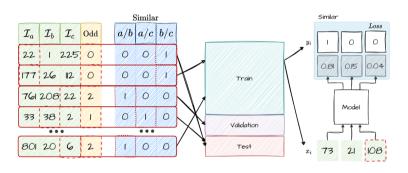
### **Triplets Problem: Data**



# **Triplets Problem: Odd-one-out**



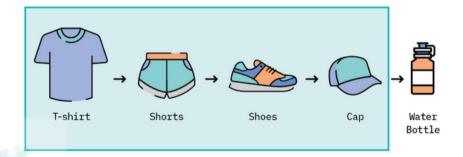
### **Triplets Problem: Similar**



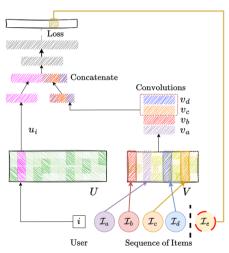
## **Sequential Recommendation (RECAP)**



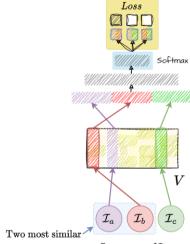
### **Sequential Recommendation (RECAP)**



## **Sequential Recommendation (RECAP)**

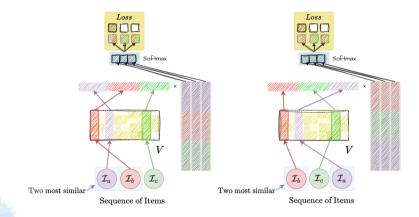


# **A First Try**



Sequence of Items

#### Is it a Invariant Model?

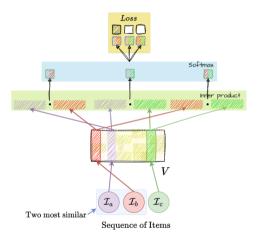


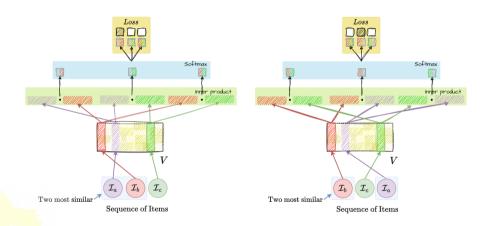
- SPoSE is a model developed to learn individual representations from triplets.
- It is an acronym for Sparse Positive Similarity Embedding.
- These representations predict a latent similarity structure between objects, capturing most of the explainable variance in human behavioral judgments.
- The model is based on the concept of probability. Let S(a,b) be a function representing the similarity between a and b. One way to compute the probabilities of the three possible embeddings  $x_1$ ,  $x_2$ , and  $x_3$  such that they add up to one, can be given by:

$$P(x_1, x_2) = \frac{e^{S(x_1, x_2)}}{e^{S(x_1, x_2)} + e^{S(x_1, x_3)} + e^{S(x_2, x_3)}}$$

- Similarity can be computed in various ways.
- The authors of the SPoSE paper tried two methods: one based on Euclidean distance and another on cosine similarity.
- Experimentally, **cosine similarity** showed to be more effective.
- Given a set of triplets  $T=\{t_1,t_2,\cdots t_n\}$ , where  $t_i=\{a_{i,1},a_{i,2},a_{i,3}\}$  and item  $a_{i,1}$  is more similar to item  $a_{i,2}$  (in other words,  $a_{i,3}$  is the odd-one-out item), an embedding vector of item  $a_{i,j}$  is represented by  $x_{a_{i,j}}$ . With the aim to learn  $X=\{x_1,x_2,\cdots x_m\}$ , we have

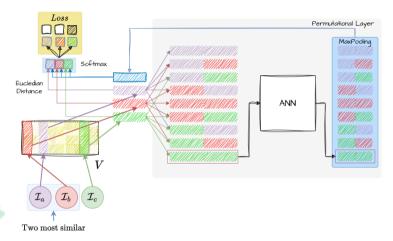
$$\text{argmin}_{x_j} \sum_{i=1}^n \log \frac{e^{x_{a_{i,1}}^\top x_{a_{i,2}}}}{e^{x_{a_{i,1}}^\top x_{a_{i,2}}} + e^{x_{a_{i,1}}^\top x_{a_{i,3}}} + e^{x_{a_{i,2}}^\top x_{a_{i,3}}}} + \lambda \sum_j |x_j|_1$$

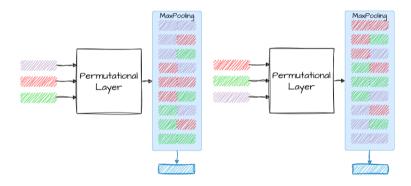


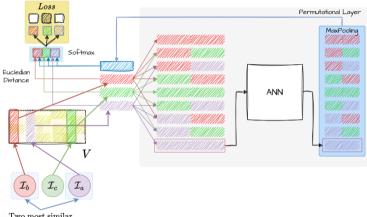


Invariant Models
Personalized Machine Learning

- Component of neural networks for handling variable-length input sequences.
- Processes permutations of input elements, allowing the model to handle different orders of sequence elements.
- Extracts features irrespective of the original positions, enhancing the model's understanding of relationships.
- Particularly useful in tasks where the order of elements should not influence the model's predictions, like set-based or graph-based data.
- Commonly applied in set classification tasks, where predictions are based on set properties rather than element order.







Two most similar



Obrigado:) - Faculty of Information Technology