1 Recursive Funcetions

§1.1 The Informal Notion of Algorithm 1

§1.2 An Example: The Primitive Recursive Functions 5
§1.3 Extensionality 9

§1.4 Diagonalization 10

§1.5 Formal Characterization 11

§1.6 The Basic Result 18

§1.7 Church’s Thesis 20

§1.8 Go6del Numbers, Universality, s-m-n Theorem 21
§1.9 The Halting Problem 24

§1.10 Recursiveness 26

§1.1 THE INFORMAL NOTION OF ALGORITHM

In this chapter we give a formal (i.e., mathematically exact) charac-
terization of recursive function. The concept is basic for the remainder
of the book. It is one way of making precise the informal mathematical
notion of function computable “by algorithm” or “by effective procedure.”
In this section, as a preliminary to the formal characterization, we discuss
certain aspects of the snformal notions of algorithm and function computable
by algorithm as they occur in mathematics.

Roughly speaking, an algorithm is a clerical (i.e., deterministic, book-
keeping) procedure which can be applied to any of a certain class of symbolic
inputs and which will eventually yield, for each such input, a corresponding
symbolic output. An example of an algorithm is the usual procedure given
in elementary calculus for differentiating polynomials. (The name calculus,
of course, indicates the algorithmic nature of that discipline.)

In what follows, we shall limit ourselves to algorithms which yield, as
outputs, integers in some standard notation, e.g., arabic numerals, and
which take, as inputs, integers, or k-tuples of integers for a fixed k, in some
standard notation. Hence, for us, an algorithm is a procedure for com-
puting a function (with respect to some chosen notation for integers). For
our purposes, as we shall see, this limitation (to numerical functions)
results in no loss of generality. It is, of course, important to distinguish
between the notion of algorithm, i.e., procedure, and the notion of function
computadble by algorithm, i.e., mapping yielded by procedure. The same

1

2 Recursive functions

function may have several different algorithms. We shall occasionally
refer to functions computable by algorithm as algorithmic functions.t

Here are several examples of functions for which well-known algorithms
exist (with respect to the usual denary notation for integers).

a. A\z[zth prime number]. (The method of Eratosthenes’ sieve is an
algorithm here.) (We are assuming Church’s lambda notation. To say
that f = Nr[zth prime number] is to say that for all z, f(z) = xth prime
number.1)

b. Azylthe greatest common divisor of x and y]. (The Euclidean algorithm
serves here.)

c. \x[the integer <9 whose arabic numeral occurs as the xth digit in the
decimal expansion of * = 3.14159 - - ‘]. (Any one of a number of common
approximation methods will give an algorithm, e.g., quadrature of the unit
circle by Simpson’s rule.)

Of course there are even simpler and commoner examples of functions
computable by algorithm. One such funection is

d. Mxylr + y]. Such common algorithms are the substance of elemen-
tary school arithmetic.

Several features of the informal notion of algorithm appear to be essen-
tial. We describe them in approximate and intuitive terms.

*1. An algorithm s given as a set of instructions of finite size. (Any
classical mathematical algorithm, for example, can be described in a finite
number of English words.)

*2. There is a computing agent, usually human, which can react to the
nstructions and carry out the computations.

*3. There are facilities for making, storing, and retrieving steps in a
computation.

*4. Let P be a set of instructions as in *1 and L be a computing agent as in
*2. Then L reacts to P in such a way that, for any given input, the computa-
tion is carried out in o discrete stepwise fashion, without use of continuous
methods or analogue devices.

*5. L reacts to P in such a way that a computation is carried forward
determinzistically, without resort to random methods or devices, e.g., dice.§

Virtually all mathematicians would agree that features *1 to *5, although
inexactly stated, are inherent in the idea of algorithm. The reader will
note an analogy to digital computing machines: *1 corresponds to the

1 Beginning in §1.5, we shall extend our use of the word algorithm to include pro-
cedures for computing nontotal partial functions.

1 As we proceed, we shall assume, without further comment, the conventions of
notation and terminology set forth in the Introduction. In addition to the lambda
notation, the restriction of function and partial function to mean mappings on (non-
negative) integers is important for Chapter 1.

§ In a more careful discussion, a philosopher of science might contend that *4 implies
*5. Indeed, he might question whether there is any real difference between *4 and *5.

§1.1 The informal notion of algorithm 3

program of a computer, *2 to its logical elements and circuitry, *3 to its
storage memory, *4 to its digital nature, and *5 to its mechanistic nature.

A straightforward approach to giving a formal counterpart to the idea
of algorithm is, first, to specify the symbolic expressions that are to be
accepted as sets of instructions, as inputs, and as outputs (we might call
this the P-symbolism), and, second, to specify, in a uniform way, how any
instructions and input determine the subsequent computation and how the
output of that computation is to be identified (we might call this the L-P
specifications).

Once we begin a search for a useful choice of P-symbolism and L-P
specifications, *1 to *5 serve as a helpful intuitive guide. There are, how-
ever, several features of the informal idea of algorithm that are less obvious
than *1 to *5 and about which we might find less general agreement. We
discuss them Dbriefly here, formulating them as questions and answers.
Later, after we have settled on a particular formal characterization, we
shall return and see how our answers accord with our chosen formal char-
acterization. There are five questions. They are closely interrelated, as
will be evident, and all have to do with the role of arbitrarily large sizes
and arbitrarily long times.

The first three questions are:

*6. Is there to be a fized finite bound on the size of inputs?

*7. Is there to be a fixed finite bound on the size of a set of instructions?

*8. Is there to be a fixed finite bound on the amount of ‘“‘memory’ storage
space available? (For each of *6, *7, and *8, size could be measured by
the number of elementary symbols (or English words) used.)

Most mathematicians would agree in answering ‘“no” to *6. They
would assert that a general theory of algorithms should concern computa-
tions which are possible ¢n principle, without regard to practical limitations.
For the same reason, they would agree in answering ‘“‘no” to *7. However,
*7 raises an issue that is already implicit in *6, namely, what sort of intellec-
tual “capacity’’ do we require of L? If instructions are to be unbounded
in size, will not this require unbounded “ability’’ of some kind on the part
of L in order that L may comprehend and follow them? We consider this
further under *9 below.

Question *8 is interesting in that physically existing computing machines
are_bounded in their available storage space. One might at first suppose
that a negative answer to *8 is implied by our negative answers to *6 and *7,
since arbitrarily large inputs and sets of instructions would, in themselves,
require arbitrarily large amounts of space for storage. We can interpret *8,
however, as referring to that storage space which is necessary over and
above the space needed to store instructions, input, and output. Under
this interpretation, *8 becomes of interest, apart from our answers to *6
and *7. We might conceive, for instance, of an ordinary computing machine
of fixed finite size and fixed finite memory where the instructions P take

4 Recursive functions

the form of a finite printed tape fed into the machine, where the input is
fed in on a second tape which (unlike the instruction tape) moves in only
one direction, and where the output is printed, digit by digit, on a third
tape which moves in only one direction. It is not difficult to show that a
number of simple functions, including A2[2z], can be computed by an
arrangement of this kind.} It is possible, however, to make a rather con-
vineing and general argument that the function Az[z?] cannot be computed
by any such arrangement; as input = increases, larger and larger amounts
of space for ‘“seratch work” are required. On account of this narrowness,
most mathematicians would answer ‘“no’”’ to any form of question *8. We
therefore take ‘“no’’ as our answer to questions *6, *7, and *8.

Our comments on *7 lead us to a fourth question about the informal
notion of algorithm.

*9. Is there to be, in any sense, a fized finite bound on the capacity or
ability of the computing agent L? Let the reader imagine the following
situation: he is given unlimited supplies of ordinary paper and pencil; he
is given two tapes upon each of which is written a 1-million digit integer;
and he is asked to apply the Euclidean algorithm to these integers and to
write the result on a third tape. After some reflection, the reader will
find it credible that he could work out a bookkeeping and cross-reference
system whereby he could keep track of his progress and mark his place
at various stages of the computation, and whereby he could indeed carry
out the computation satisfactorily, given enough time. Indeed, the reader
could doubtless find a uniform system that would work for input integers
of arbitrary size. By such a system, he would, in effect, transfer excessive
demands on his own mental capacities as L into additional demands on his
(unlimited) paper-and-pencil memory storage. Similar ‘“place-marking’
systems can be introduced when the set of instructions P is of great length
and complexity, provided that P is sufficiently well organized and detailed.
Such a system would serve to ‘“mark one’s place’” in P as well as in the
input, output, and computation. In fact, we would expect that such a
place-marking system could, in some sense, be made a part of P itself, if
the P-symbolism is sufficiently flexible. We therefore answer ‘“yes” to
question *9.

When we later present and discuss our formal characterization, we
shall see that these rather vague plausibility arguments can be substan-
tiated (see §1.8). Indeed, once the P-symbolism and computation sym-
bolism are given in sufficiently detailed form, it is possible to limit L to
the following (without otherwise limiting the notion of algorithm): (@) a
few simple clerical operations, including operations of writing down symbols,
operations of moving one symbol at a time backward or forward in the

t Such functions are sometimes called functions computable by finite-state machine.

(What functions &re so computable depends, in part, on the choice of symbolism for
inputs and outputs.) See Exercise 2-14.

§1.2 Primitive recursive functions 5

" computation to or from symbols previously written, operations of moving
one symbol at a time backward or forward in P to or from symbols previ-
ously examined, and operations for writing the output; (b) a finite short-
term memory of fixed size which at any point preserves symbols written or
examined in various of the preceding steps; and (c) a fixed finite set of simple
rules according to which the clerical operation next to be performed and the
next state of the short-term memory are uniquely determined by the con-
tents of the short-term memory together with the symbol written or exam-
ined last. (This remark will become clearer after §§1.5 and 1.8.)

We now turn to a final and somewhat deeper question about the informal
notion of algorithm. It is a question upon which considerable disagree-
ment can exist.

*10. Is there to be, in any way, a bound on the length of a computation?
More specifically, should we require that the length of a particular computation
be always less than a value which is “easily calculable” from the input and
from the set of instructions P? To put it more informally, should we require
that, given any input and given any P, we have some idea, “ahead of time,”
of how long the computation will take?

The question is vague. If one is to give an affirmative answer without
begging the question, one must define “easily calculable’’ with care. Never-
theless, an affirmative answer to *10 is an essential feature of the notion
of algorithm for many mathematicians.

We propose, however, to make no such affirmative answer to the ques-
tion, arguing that it is simpler and more natural to accept such a restriction
only if it proves to be a consequence of our other assumptions. We thus
require only that a computation terminate after some finite number of steps;
we do not insist on an a priori ability to estimate this number. As we shall
see, this attitude toward *10 will accord with the formal characterization
we select. To the extent that a reader can make *10 precise and can give
an affirmative answer to *10 which is not a consequence of our formal char-
acterization—to that extent will his informal notion be narrower than our
formal characterization.

As we shall see (Theorem XTI in §1.10), our position on *10 is funda-
mental. The absence of any such a priori requirement is a distinctive
feature of the discipline developed in the remainder of this book.

§1.2 AN EXAMPLE: THE PRIMITIVE
RECURSIVE FUNCTIONS

One method for characterizing a class of functions is to take, as members
of the class, all functions obtainable by certain kinds of recursive definition.
A recursive definition for a function is, roughly speaking, a definition
wherein values of the function for given arguments are directly related to

6 Recursive functions

values of the same function for “simpler’”’ arguments or to values of “sim-
pler” functions. The notion “simpler” is to be specified in the chosen
characterization—with the constant functions, among others, usually taken
as the simplest of all. This method of formal characterization is useful
for our purposes, in that recursive definitions can often be made to serve
as algorithms.

Recursive definitions are familiar in mathematics. For instance, the
function f defined by

) =1,
Q) =1,
f@+2) =fl+1) + fl2),
gives the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, (The study of

difference equations concerns the problem of going from recursive definitions
to algebraic definitions. The Fibonacci sequence is given by the algebraic

definition
\5 (1 + \/E)IH _V5 (1—_\/_5)’“_)

@ =~ 2 5\ 2

The primaitive recursive functions are an example of a broad and interest-
ing class of functions that can be obtained by such a formal characterization.

Definition The class of primitive recursive funciions is the smallest
class @€ (i.e., intersection of all classes @) of functions such that

(1) All constant functions, \x1xe * * * xx[lm], arein €, 1 < k, 0 < m;

(ii) The successor function, A\z[z + 1], is in @;

(iil) All <dentity functions, N\xy * * * zx[xs], arein @, 1 <17 < k;

(iv) If f is a function of k variables in @, and g1, g2, . . . , gs are (each)
functions of m variables in @, then the function Azy * * + z.[f(gi(zy, . . .,
Zm)y, « - o H06(@1, . . . ,xw))]isin €, 1 < kym;

(v) If h is a function of & 4+ 1 variables in €, and ¢ is a function of
k — 1 variables in €, then the unique function f of k& variables satisfying

f(O,xz, e ,xk) = g(ﬁ?z, « o ,.’Zik),
f(y + 1) T2y « « + xk) = h(yyf(y)x27 s)xk))x21 L)xk)

isin ¢, 1 < k. (For (v), “function of zero variablesin @” is taken to mean
a fixed integer.)

It follows directly from the definition that, for any f, f is primitive
recursive if and only if there is a finite sequence of functions fi, fz, . . . , fa
such that f, = f and for each j < n, either f; is in @ by (i), (ii), or (iii), or
f; is directly obtainable from some of the f;, ¢ < 7, by (iv) or (v). (To show
this, let © be the class of all functions f for which such a sequence fy, . . . ,fa
exists. D is evidently contained in every class € that is closed under (i)
to (v); furthermore D is itself closed under (i) to-(v). It follows that D

§1.2 Primitive recursive functions 7

coincides with the intersection of all such €.) If such a sequence for f is

described, together with a specification of how each f; is obtained for j < n,

we say that we have a derivation for f as a primitive recursive function.
For an example, consider the function f given by the derivation

f1 = \zx] by (iii) (a function of
1 variable)
fo = Nzfz + 1] by (i) (1 variable)
fs = Azizexs[zs] by (iii) (3 variables)
fo = fofs by @v) (3 variables)

fs to satisfy

fs(0,25) = fi(x2)

foy + 1, x2) = fu(y,fo(y,22),22) by (v) (2 variables)
= fs = fo(fi,f1) by (iii) (1 variable).

It is easy to verify that fe is the function Az[2z] (and, incidentally, that fs
is Azy[r + y]). Hence we can conclude that the function Az[22] is primi-
tive recursive.

A derivation can be written down in any one of a number of standard
symbolic forms. A written derivation can serve as a set of instructions
for effectively computing the function which it defines. For instance, to
compute f(2) in the preceding example, the derivation leads us to the
computation

f2) = fe(2)

= f5(f1(2),f1(2))
= f5(2,f1(2))
= f 5(2)2)
= f4(1:f5(1y2)72)
= f4(1’f4(07f5(0:2);2))2)
= fu(1,£4(0,f1(2),2),2)
= f4(11f4(0)2;2);2)
= fu(1,f2(£5(0,2,2)),2)
= fu(1,£2(2),2)
= f 4(1)3}2)
= f2(f3(1;3)2))

= f2(3)

4,

We obtain the computation uniquely by working from the inside out and
from left to right.

All this suggests that we include the precise notion of primitive recursive
function within our informal notion of function computable by algorithm.
How does this accord with our discussion in §1.1? The computing agent
is human (and not formally defined) ; nevertheless, the computation depends
on the derivation in so simple and direct a way and via such obviously

8 Recursive functions

mechanical steps, that *1 to *5 are evidently satisfied. We can choose a
standard P-symbolism for expressing derivations, and the L-P specifications
are the simple substitution rules according to which a derivation and input
determine a computation. Note, in passing, that questions *6 to *8 receive
the same answers for primitive recursive functions as were given in §1.1.
Question *9 must remain vague, since the computing agent is not formally
defined. Question *10, as we shall indicate in a moment, can be given the
answer ‘‘yes.”

How inclusive is the class of primitive recursive functions? Perhaps
it is broad enough to include all desired algorithms, and perhaps, in conse-
quence, one can contend that it is an accurate formal counterpart to the
informal notion of function computable by algorithm. Although the defining
rules for primitive recursive functions might at first seem limited, one can
supply an impressive body of evidence to support this contention. Virtually
all the algorithmic functions of ordinary mathematics ean be shown to be
primitive recursive. (All the examples so far mentioned in this chapter
are primitive recursive.) Ways to illustrate and demonstrate the breadth
of primitive recursiveness are found in Péter [1951, pp. 1-67].

Unfortunately, it is possible to construct functions, with obvious
algorithms, which are not primitive recursive. One such is the Ackermann
generalized exponential, a function f of three variables such that

fOzy) =y + =,

f(]-)x;y) =Yz,

f(2,x,y) = y%

ftz + 1, z, y) = result of applying y to itself £ — 1 times
under the zth level operation Muv[f(z,u,v)].

A more formal (and ‘‘recursive’) definition for this f is given by the
conditions:

f0,0,y) =y,

fO,z+1,9) = f0,2,y) + 1,

f(1,0,y) = 0,

f(z+2: O) y) = 1:

fe+ 1L+ 1,9 = fefi+ 1,z 9)).

There is no primitive recursive derivation for this function (see Péter [1951,
p. 68]). Indeed, as Péter in effect shows, a function similar to f can be
used to obtain an “easily calculable” function that gives an affirmative
answer to *10 for the primitive recursive functions (if we take “easily
calculable’” to mean having simple defining conditions, like those for f above).

Since the generalized exponential would be almost universally accepted
as a function computable by algorithm, and since it is not primitive recur-

§1.3 Extensionality 9

sive, we must reject the primitive recursive functions as an accurate formal
counterpart to the informal notion of algorithmic function.f

§1.3 EXTENSIONALITY

As was remarked in §1.1, it is important to distinguish between the
notion of algorithm and the notion of algorithmic function. We now give
several examples further to emphasize this distinction. In particular, we
define a function g for which we can prove that an algorithm exists but
for which we do not know how to get a specific algorithm. Consider the
functions f and g defined by

1, if a consecutive run of ezactly x 5’s oceurs in the
fl@) = decimal expansion of r;
0, otherwise;
1, if a consecutive run of at least x 5’s occurs in the
and g¢(z) = decimal expansion of =;

0, otherwise.

At the present time, no algorithm is known for computing f. Indeed,
it may be that no algorithm exists for f. (Onece our formal characterization
is given, the notion of a function having no algorithm will become precise.
We shall see that such functions exist.) In contrast to our ignorance
about f, we do have the knowledge that g is primitive recursive. For either
g must be the constant function Az[1], or else there must exist some fixed &
such that

g(x) =1, for z < k,
and g(x) = 0, for k < z.

In either case, a primitive recursive derivation exists (see Exercise 2-1),
but no one knows, at the present time, how to identify the correct derivation.

For an even simpler example, take an unsettled conjecture of mathe-
matics, e.g., Goldbach’s conjecture that every even number greater than 2
is the sum of two primes, and define a function & by

hz) = 1, if conjecture true;
0, if conjecture false.

t The question naturally arises: does there exist a function of one variable which is
algorithmic but not primitive recursive? It can be shown that Az[f(z,z,z)], where f is
the Ackermann generalized exponential, is such a function. We shall see another
example in §1.4.

1 Note that one and the same primitive recursive function can have an infinite
number of different derivations, i.e., algorithms. One trivial way of obtaining such
derivations is to insert additional appearances of Az[z] in a given derivation.

10 Recursive functions

h is evidently a constant function. Hence it is primitive recursive, though
again we do not know how to identify its correct derivation.}

We shall be concerned both with functions and with algorithms. OQur
chief emphasis will be on functions. In traditional logical terminology,
our emphasis will be extensional, in that we shall be more concerned with
objects named (functions) than with objects serving as names (algorithms).

§1.4 DIAGONALIZATION

In §1.2 we gave an example of an (intuitively) algorithmic function
that is not primitive recursive. We now look at a method which can be
applied to a variety of formally characterized classes of algorithmic func-
tions and which, in each case, produces an algorithmic function falling
outside of the given formally characterized class. We call this method
diagonalization and describe it through an example. In the example, we
apply the method to the primitive recursive functions.

Consider all possible primitive recursive derivations. It is easy to
set up a precise formal symbolism for derivations which uses only a finite
number of basic symbols. These symbols would include a function symbol;
several symbols for wvariables; digits for subscript numerals; digits for
ordinary numerals; parentheses; the comma; plus and equals signs; several
special symbols for indicating constant, successor, and identity functions;
and a special symbol to mark the end of a line. Any derivation could then
be represented as a single finite string of these basic symbols. Further-
more, an obvious effective (i.e., algorithmic) test would exist for determining,
given any string of basic symbols, whether or not that string constituted a
legitimate primitive recursive derivation. Hence we could list, in sequence,
all possible primitive recursive derivations by first examining all strings
of length 1, then examining all strings of length 2, etc. Indeed, we could
give a definite, if informal, algorithmic procedure for making this list.
(The list is infinite, but each derivation is reached at some finite point.)
From this, we could, in turn, devise an algorithmic procedure which would
list just the derivations for primitive recursive functions of one variable.
Let Q. be the (z 4 1)st derivation in this latter list. Let g, be the function
determined by Q.. Define h, by

h(z) = g.(x) + 1.

1 The proofs that g and h are primitive recursive use the logical principle of the excluded
middle. Such nonconstructive methods are qualified or rejected in various ‘“‘construc-
tive” reformulations of mathematics, such as that of the snmtuitionists. Throughout
this book we allow nonconstructive methods; we use the rules and conventions of classical
two-valued logic (as is the common practice in other parts of mathematics), and we say
that an object exists if its existence can be demonstrated within standard set theory.
We include the axiom of choice as a principle of our set theory.

§1.5 Formal characterization 11

Evidently, we have an algorithm for computing 4; namely, to get h(z)
for given z, generate the list of derivations out to @Q., then employ @, to
compute g.(z), then add 1. On the other hand, & cannot be primitive
recursive. If it were, we would have h = g¢,, for some z,. But then we
would have g.,(z0) = h(x0) = gz(%o) + 1, a contradiction. (The reader
will note an analogy to Cantor’s diagonal proof of the nondenumerability
of the real numbers, in classical set theory.)

It is evident that the diagonalization method has wide scope, for it is
applicable to any case where the sets of instructions in the P-symbolism
can be effectively (i.e., algorithmically) listed. At first glance, it is difficult
to see how a formal characterization can avoid such effective listing and
still be useful. The diagonal method would appear to throw our whole
search for a formal characterization into doubt. It suggests the possibility
that no single formally characterizable class of algorithmic functions can
correspond exactly to the informal notion of algorithmic function. Perhaps,
no matter what P-symbolism and L-P specifications we choose, that
symbolism and those specifications can be augmented by stronger sym-
bolism and more complex “effective’”’ operations to yield new functions.
Even if we use the entire English language as P-symbolism, it may be that
there are more complex clerical operations that demand new names. Per-
haps, indeed, the algorithmic functions form a nondenumerable class, and
perhaps there is a spectrum of algorithmic computability upon which all
functions fall.

These are some of the considerations and difficulties, albeit vague and
informal, that surround the problem of getting a satisfactory characteriza-
tion of algorithm and of algorithmic function. They had to be faced by
mathematicians who first addressed themselves to that problem in the
1930’s, mathematicians who were stimulated in their work by recent suc-
cesses of formal logic and its methods.

§1.5 FORMAL CHARACTERIZATION

We can avoid the diagonalization difficulty by allowing sets of instructions
for nontotal partial functions as well as for total functions. Of course, situa-
tions may then arise where there is no evident way to determine whether a
set of instructions yields a total function or not. Assume, for example,
that we can have an expression of the P-symbolism which embodies the
instructions: “To compute f(z), carry out the decimal expansion of = until
a run of at least x consecutive 5’s appears; if and when this occurs, give the
position of the first digit of this run as output.” Or, for a simpler example,
take: “To compute g(z), examine successive even numbers greater than
2 until one appears which is not the sum of two primes; if and when this
occurs, give the output g(z) = 0.”” In each example, unlike the illustra-

12 Recursive functions

tions in §1.3, where we had nonconstructive definitions for specific functions
(but no algorithms), we have a specific computing procedure but do not
know whether this procedure gives a function, i.e., whether it always termi-
nates and yields an output. What we can conclude is that each procedure
gives a partial function. If it should happen to be true that there are runs
of eight 5’s but none of greater length in m, then the first example would
give a set of instructions for a partial function whose domain consisted of
the first nine integers. If Goldbach’s conjecture is true, then the second
example would give the empty partial function; if the conjecture is false,
then the second example would give the constant function Az[0]. In any
case, each example provides specific calculating instructions which deter-
mine a specific partial function.

With a formal characterization for a class of partial functions we are not
immediately subject to the diagonalization difficulty. For let ¥, be the
partial function determined by the (x + 1)st set of instructions ,, and
let zo be chosen so that ., is the partial function ¢ defined by the following
instructions: to compute ¢(z), find @,, compute ¥.(x), and if and when a
value for y,(x) is obtained, give ¢.(z) 4+ 1 as the value for o(z). The
equation y¥.,(zo) = @(20) = ¥s,(zo) + 1 does not yield a contradiction, since
o(xzo) does not need to have a value. We might perversely hope to reinstate
diagonalization by effectively selecting just those sets of instructions which
do yield total functions; however, as we have noted, there may be no evident
way to do this. Indeed, if we are to avoid diagonalization, it must be the
case that no algorithm for such a selection procedure can exist. (These
comments are related to the basic incompleteness theorems of mathematical
logic. We discuss this further in Chapter 2.)

The approach by way of partial functions is, in essence, the approach
taken by Kleene [1936], Church [1936], Turing [1936], and others in the
1930’s. Each obtained a formal characterization for a wide class of partial
functions. The characterizations differed both in outline and in detail.
They had the common features, however, first, of giving (through a P-sym-
bolism) a formal counterpart to the notion of algorithm (for partial func-
tions) and second, in consequence (and via L-P specifications), of giving a
counterpart to the notion of partial function computadble by algorithm.t,}

t Virtually all the discussion and terminology of §§1.1 and 1.3 can be applied, mutatis
mutandis, to the problem of characterizing algorithm for a partial function and partial
function computable by algorithm.

1 Historically, in a number of instances, e.g., that of Kleene, the investigator did
not give an explicit first treatment of partial functions but rather gave a single, more
complex characterization for total functions computable by algorithm. In retrospect,
each of these more complex characterizations can be analyzed into two steps: first,
characterization of the algorithmic partial functions; and second, identification of the
algorithmic functions as those algorithmic partial functions which happen to be total.
Our discussion of the Kleene characterization below will make this retrospective modi-

fication, although it will detract, in certain respects irrelevant to our purposes, from
the simplicity of Kleene’s original formulation.

