3. Geometry and Graph Drawing
In the third seminar, we covered geometry and graph drawing. First, we looked at finite projective planes and how they are constructed. Next, we talked about planar graphs, their properties and characterization. Finally, we tried drawing graphs on other surfaces - torus, real projective plane and Klein bottle.
Presentation
References
- DIESTEL, Reinhard. Graph Theory. 5 ed. Berlin, Heidelberg: Springer, 2017. Graduate Texts in Mathematics. ISBN 978-3-662-53621-6. Available at: https://doi.org/10.1007/978-3-662-53622-3
- PACH, Janos a SHARIR, Micha. Combinatorial Geometry and Its Algorithmic Applications. American Mathematical Society, 2009. Mathematical Surveys and Monographs. ISBN 978-0-8218-4691-9. Available at: https://doi.org/http://dx.doi.org/10.1090/surv/152
- Projective plane. Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001-. Available at: https://en.wikipedia.org/wiki/Projective_plane
- JOHNSON, Paul. Graph Theory lecture notes [online]. Available at: https://ptwiddle.github.io/MAS341-Graph-Theory-2017/Notes/
Other resources
- PARKER, Matt. How does Dobble (Spot It) work? In: Youtube [online]. 30. 4. 2021. Available at: https://youtu.be/VTDKqW_GLkw
- Two Moebius bands make a Klein bottle In: Youtube [online]. 21. 11. 2015. Available at: https://youtu.be/a5Azcwe9p4o.