Go to course navigation

Past Years

2024

WeekDateLecturerTopic & Materials
122.2.2024+LMiroslav ČepekLecture: Introduction & Repeatable ML Projects - MLOps Supplement - Weight & Biases Tutorial
229.2.2024Petr ŠimánekLecture: Optimisation in Deep Learning
37.3.2024+LZdeněk BukLecture: ML in modeling and control
414.3.2024Rodrigo Da Silva AlvesLecture: Recommender Systems (1)
521.3.2024+LRodrigo Da Silva AlvesLecture: Recommender Systems (2)
628.3.2024Vojtěch RybářLecture: Interpretable and Explainable Models
74.4.2024+LVojtěch RybářLecture: Causal Machine Learning
811.4.2024Alexander KovalenkoLecture: Advanced Image Processing
918.4.2024+LAlexander KovalenkoLecture: Nature Inspired Deep Learning
1025.4.2024Petr ŠimánekLecture: Meta and Continual Learning
112.5.2024+LEXCEPTIONNo lecture - Wednesday’s schedule.
129.4.2024Petr ŠimánekLecture: Physics Informed ML
1316.5.2024+LMiroslav Čepek

Lecture: Large Language Models

== 2023

[%header,cols="1,2,1,5"]

| Week | Date | Lecturer | Topic & Materials | 1 | 23.2.2023 | Petr Šimánek | Introduction, Optimisation in Deep Learning & Optimisation | 2 | 2.3.2023 | Petr Šimánek & Miroslav Čepek | Optimisation in Deep Learning & Repeatable ML Projects - MLOps | 3 | 9.3.2023 | Rodrigo Da Silva Alves | Recommender Systems: Intro | 4 | 16.3.2023 | Rodrigo Da Silva Alves | Recommender Systems: Modern Methods | 5 | 23.3.2023 | Alexander Kovalenko | Advanced Image Processing | 6 | 30.3.2023 | Zdeněk Buk | ML in modeling and control | 7 | 6.4.2023 | — | EXCEPTION - Monday’s schedule | 8 | 13.4.2023 | Miroslav Čepek | Time Series Modeling | 9 | 20.4.2023 | Petr Šimánek | Meta and Continual Learning | 10 | 27.4.2023 | Vojtěch Rybář | Interpretable and Explainable Models | 11 | 4.5.2023 | Vojtěch Rybář | Causal Machine Learning | 12 | 11.5.2023 | Petr Šimánek | Physics Informed ML | 13 | 18.5.2023 | Petr Šimánek | AI Alignment

[%header,cols="1,2,1,5"]

| Week | Date | Lecturer | Topic & Materials | 1 | 2.3.2023 | Petr Šimánek | Optimisation in Deep Learning (& link). Homework: Use the previous link, train one network for 50 epochs with three different methods: AdamW, LION and one 2nd order method. Compare the loss, accuracy and batch gradient variance (from BackPACK) for each method. Implement the 2nd-order method using BackPACK (e.g. Diagonal Gauss-Newton Second order optimizer). Deadline: 21.3.2023. Send the resulting colab notebook to petr.simanek@fit.cvut.cz. | 2 | 16.3.2023 | Rodrigo Da Silva Alves | Recommender Systems: The instructions for the tutorial and homework are in notebook you can find Recommender Systems: here. | 3 | 30.3.2023 | Zdeněk Buk | ML in modeling and control | 4 | 20.4.2023 | Miroslav Čepek | Advanced Image Processing - Denoising Diffusion Model

| 5 | 27.4.2023 | Vojtěch Rybář | Interpretable and Explainable Models | 6 | 11.5.2023 | | Work on project